CN105463372A - 一种多层复合超厚自润滑硬质涂层的制备方法 - Google Patents

一种多层复合超厚自润滑硬质涂层的制备方法 Download PDF

Info

Publication number
CN105463372A
CN105463372A CN201510923263.4A CN201510923263A CN105463372A CN 105463372 A CN105463372 A CN 105463372A CN 201510923263 A CN201510923263 A CN 201510923263A CN 105463372 A CN105463372 A CN 105463372A
Authority
CN
China
Prior art keywords
deposition
electric arc
magnetic filter
activation
metal base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510923263.4A
Other languages
English (en)
Other versions
CN105463372B (zh
Inventor
王彦峰
李争显
王浩楠
杜继红
张长伟
姬寿长
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN201510923263.4A priority Critical patent/CN105463372B/zh
Publication of CN105463372A publication Critical patent/CN105463372A/zh
Application granted granted Critical
Publication of CN105463372B publication Critical patent/CN105463372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种多层复合超厚自润滑硬质涂层的制备方法,该方法为:一、将金属基体表面抛光至镜面后浸泡于酸液中酸洗活化,然后置于真空室中进行离子轰击活化;二、在金属基体表面沉积Ti过渡层;三、在Ti过渡层表面沉积TiN中间复合层;四、在TiN中间复合层表面沉积TiC中间复合层;五、在TiC中间复合层表面沉积TiCN层;六、重复二至五的沉积过程50~100次,在金属基体表面得到厚度不小于120μm的多层复合超厚自润滑硬质涂层。本发明利用磁过滤电弧离子镀技术消除涂层中存在的“液滴”等大颗粒缺陷,利用磁控溅射技术在TiN中实现C的掺杂,既保证了硬质涂层摩擦系数的降低,又保证了涂层硬度和韧性的同步提高。

Description

一种多层复合超厚自润滑硬质涂层的制备方法
技术领域
本发明属于涂层材料制备技术领域,具体涉及一种多层复合超厚自润滑硬质涂层的制备方法。
背景技术
以TiN为代表的金属氮化物硬质涂层由于其较高的表面硬度、与基体结合力强、耐磨性能优良等优点被作为工件的表面防护涂层,显著提高了其表面服役性能。然而,目前TiN涂层的应用仍然存在许多问题,由于涂层大多数是沉积在软质金属基体之上,这种软基体/硬膜层组成的所谓“蛋壳效应”使得TiN涂层极易发生脆性破裂,再者,TiN涂层的摩擦系数高达0.5~0.6左右,较高的摩擦系数会导致涂层的快速失效。另外,目前工程应用领域TiN涂层的普遍厚度在1μm~8μm,防护效果有限,进一步提高TiN涂层的厚度就会引发涂层与基体之间的剥落及开裂。究其原因,是由于涂层沉积过程中内部积聚的热应力无法得到有效的缓解与释放,这种热应力是由于涂层与基体在晶格结构、弹性模量等物理性能的不匹配造成的,随着涂层厚度的增加,热应力积聚会越来越明显,涂层出现剥落的几率也就越来越大,显著影响到涂层的疲劳寿命、结合强度等。
制备高硬度TiN涂层的技术方法有多种,诸如化学气相沉积、磁控溅射、电弧离子镀等。化学气相沉积由于涂层中存在Cl元素、涂层过高的制备温度损伤基体性能、后续尾气对环境有害等已不再成为TiN涂层制备的主流技术。磁控溅射沉积技术获得的涂层组织细密,绕射性好,但涂层的结合强度不高,沉积效率低,适合于涂层中细密离子的掺杂。电弧离子镀技术则沉积速度快,结合强度高,但涂层中存在的“液滴”等大颗粒显著提高涂层的表面粗糙度和疏松,引起摩擦系数的升高。另外,采用上述技术很难获得厚度超过50μm的超厚涂层。
如上所述,现今国内外在TiN硬质涂层的制备上均采用单一的磁控溅射、电弧离子镀技术等,并不能有效提高TiN涂层的厚度、耐磨减摩性能。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种多层复合超厚自润滑硬质涂层的制备方法,该方法利用磁过滤电弧离子镀技术消除涂层中存在的“液滴”等大颗粒缺陷,利用磁控溅射技术在TiN中实现C的掺杂,通过控制C源的间歇式掺杂实现厚度不小于120μm的多层复合超厚自润滑硬质涂层的制备,该方法既保证了硬质涂层摩擦系数的降低,又保证了涂层硬度和韧性的同步提高。
为解决上述技术问题,本发明采用的技术方案是:一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为1×10-2Pa~1×10-1Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为60A~100A,所述离子轰击活化中金属基体的偏压为-800V~-1200V,温度为200℃~300℃;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.1Pa~0.6Pa,在所述磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为2min~10min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa~0.6Pa,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为2min~10min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.1Pa~0.6Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V,溅射靶材的溅射电流为5A~15A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为2min~10min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa~0.6Pa,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V,溅射靶材的溅射电流为5A~15A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为10min~20min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程50~100次,在金属基体表面得到厚度不小于120μm的多层复合超厚自润滑硬质涂层。
上述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤一中所述酸液为质量浓度为1%~10%的草酸溶液。
上述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤一中所述酸洗活化的时间为10s~30s。
上述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤一中所述离子轰击活化的时间为5min~10min。
上述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤三中所述氩气和氮气的气体流量比为1:(2~5)。
上述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤五中所述氩气和氮气的气体流量比为1:(2~5)。
本发明与现有技术相比具有以下优点:
1、本发明利用磁过滤电弧离子镀技术消除涂层中存在的“液滴”等大颗粒缺陷,利用磁控溅射技术在TiN中实现C的掺杂,通过控制C源的间歇式掺杂实现厚度不小于120μm的多层复合超厚自润滑硬质涂层的制备,该方法既保证了硬质涂层摩擦系数的降低,又保证了涂层硬度和韧性的同步提高。
2、本发明采用磁过滤电弧离子镀技术复合磁控溅射技术在金属基体表面制备得到多层复合超厚自润滑硬质涂层,通过对涂层的结构和成分设计,使得所制备的硬质涂层在厚度超过120μm的同时,保证其与基体的结合强度,解决了PVD法难以获得厚度超过数十微米的技术难题。
3、本发明利用磁控溅射技术实现了在硬质涂层中掺杂C,在显著改善硬质涂层韧性的同时,降低了其摩擦系数,使得硬质涂层具备了自润滑减摩性能,提高了硬质涂层的使用性能。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例1制备的硬质涂层的断面组织形貌图。
图2为本发明实施例1制备的硬质涂层的压痕形貌图。
图3为本发明实施例1制备的硬质涂层的摩擦系数测试曲线。
图4为本发明实施例1制备的硬质涂层的结合强度测试曲线。
具体实施方式
实施例1
本实施例包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为1×10-1Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为60A,所述离子轰击活化中金属基体的偏压为-800V,温度为200℃;所述金属基体为316不锈钢板材;所述酸液优选质量浓度为1%的草酸溶液,所述酸洗活化的时间优选为30s,所述离子轰击活化的时间优选为5min;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.1Pa,在所述磁过滤电弧钛靶的放电电流为60A,金属基体的偏压为-50V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为2min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa,在磁过滤电弧钛靶的放电电流为60A,金属基体的偏压为-50V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为2min;所述氩气和氮气的气体流量比优选为1:2,所述气体流量的单位为mL/min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.1Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为60A,金属基体的偏压为-50V,溅射靶材的溅射电流为5A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为2min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.3Pa,在磁过滤电弧钛靶的放电电流为80A,金属基体的偏压为-50V,溅射靶材的溅射电流为5A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为10min;所述氩气和氮气的气体流量比优选为1:2,所述气体流量的单位为mL/min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程50次,在金属基体表面得到厚度约为125μm的多层复合超厚自润滑硬质涂层。
本实施例中所述真空物理气相沉积设备由北京泰科诺科技有限公司生产提供,设备型号为TSU-1000。
从图1中可以看出,本实施例制备的硬质涂层呈现多层复合结构;显微硬度测试结果表明该硬质涂层显微硬度高达2800HV0.25,对本实施例制备的硬质涂层在载荷为500g的条件下进行压入韧性测试,从图2中可以看出,压痕周围未出现任何脆性裂纹;将本实施例制备的硬质涂层在外加载荷为5N、磨损距离为20000m的条件下磨损40min,该涂层的摩擦系数低至约0.25(如图3所示);采用划痕法表征本实施例制备的硬质涂层与金属基体的结合强度明显大于70N(如图4所示)。
实施例2
本实施例包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为5×10-2Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为80A,所述离子轰击活化中金属基体的偏压为-1000V,温度为250℃;所述金属基体为TA1纯钛板材;所述酸液优选质量浓度为5%的草酸溶液,所述酸洗活化的时间优选为20s,所述离子轰击活化的时间优选为7min;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.3Pa,在所述磁过滤电弧钛靶的放电电流为80A,金属基体的偏压为-100V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为3min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.3Pa,在磁过滤电弧钛靶的放电电流为80A,金属基体的偏压为-100V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为5min;所述氩气和氮气的气体流量比优选为1:3,所述气体流量的单位为mL/min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.3Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为80A,金属基体的偏压为-100V,溅射靶材的溅射电流为8A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为5min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.3Pa,在磁过滤电弧钛靶的放电电流为80A,金属基体的偏压为-100V,溅射靶材的溅射电流为8A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为15min;所述氩气和氮气的气体流量比优选为1:3,所述气体流量的单位为mL/min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程70次,在金属基体表面得到厚度约为155μm的多层复合超厚自润滑硬质涂层。
本实施例中所述真空物理气相沉积设备由北京泰科诺科技有限公司生产提供,设备型号为TSU-1000。
本实施例制备的硬质涂层呈现多层复合结构;显微硬度测试结果表明该硬质涂层显微硬度高达2800HV0.25,对本实施例制备的硬质涂层在载荷为500g的条件下进行压入韧性测试,结果表明,压痕周围未出现任何脆性裂纹;将本实施例制备的硬质涂层在外加载荷为5N、磨损距离为20000m的条件下磨损40min,该涂层的摩擦系数低至约0.23;采用划痕法表征本实施例制备的硬质涂层与金属基体的结合强度明显大于73N。
实施例3
本实施例包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为1×10-1Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为100A,所述离子轰击活化中金属基体的偏压为-1200V,温度为300℃;所述金属基体为Nb-1Zr合金板材;所述酸液优选质量浓度为10%的草酸溶液,所述酸洗活化的时间优选为10s,所述离子轰击活化的时间优选为10min;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.6Pa,在所述磁过滤电弧钛靶的放电电流为100A,金属基体的偏压为-200V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为10min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.6Pa,在磁过滤电弧钛靶的放电电流为100A,金属基体的偏压为-200V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为10min;所述氩气和氮气的气体流量比优选为1:5,所述气体流量的单位为mL/min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.6Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为100A,金属基体的偏压为-200V,溅射靶材的溅射电流为15A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为10min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.6Pa,在磁过滤电弧钛靶的放电电流为100A,金属基体的偏压为-200V,溅射靶材的溅射电流为15A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为20min;所述氩气和氮气的气体流量比优选为1:5,所述气体流量的单位为mL/min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程100次,在金属基体表面得到厚度约为180μm的多层复合超厚自润滑硬质涂层。
本实施例中所述真空物理气相沉积设备由北京泰科诺科技有限公司生产提供,设备型号为TSU-1000。
本实施例制备的硬质涂层呈现多层复合结构;显微硬度测试结果表明该硬质涂层显微硬度高达2790HV0.25,对本实施例制备的硬质涂层在载荷为500g的条件下进行压入韧性测试,结果表明,压痕周围未出现任何脆性裂纹;将本实施例制备的硬质涂层在外加载荷为5N、磨损距离为20000m的条件下磨损40min,该涂层的摩擦系数低至约0.2;采用划痕法表征本实施例制备的硬质涂层与金属基体的结合强度明显大于75N。
实施例4
本实施例包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为5×10-2Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为90A,所述离子轰击活化中金属基体的偏压为-1100V,温度为280℃;所述金属基体为GH30高温合金板材;所述酸液优选质量浓度为3%的草酸溶液,所述酸洗活化的时间优选为16s,所述离子轰击活化的时间优选为8min;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.4Pa,在所述磁过滤电弧钛靶的放电电流为90A,金属基体的偏压为-150V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为6min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.5Pa,在磁过滤电弧钛靶的放电电流为70A,金属基体的偏压为-150V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为7min;所述氩气和氮气的气体流量比优选为1:4,所述气体流量的单位为mL/min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.4Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为90A,金属基体的偏压为-150V,溅射靶材的溅射电流为15A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为9min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa,在磁过滤电弧钛靶的放电电流为60A,金属基体的偏压为-180V,溅射靶材的溅射电流为12A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为18min;所述氩气和氮气的气体流量比优选为1:3,所述气体流量的单位为mL/min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程80次,在金属基体表面得到厚度约为165μm的多层复合超厚自润滑硬质涂层。
本实施例中所述真空物理气相沉积设备由北京泰科诺科技有限公司生产提供,设备型号为TSU-1000。
本实施例制备的硬质涂层呈现多层复合结构;显微硬度测试结果表明该硬质涂层显微硬度高达2680HV0.25,对本实施例制备的硬质涂层在载荷为500g的条件下进行压入韧性测试,结果表明,压痕周围未出现任何脆性裂纹;将本实施例制备的硬质涂层在外加载荷为5N、磨损距离为20000m的条件下磨损40min,该涂层的摩擦系数低至约0.23;采用划痕法表征本实施例制备的硬质涂层与金属基体的结合强度明显大于71N。
实施例5
本实施例包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为1×10-1Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为70A,所述离子轰击活化中金属基体的偏压为-900V,温度为230℃;所述金属基体为紫铜板材;所述酸液优选质量浓度为8%的草酸溶液,所述酸洗活化的时间优选为12s,所述离子轰击活化的时间优选为9min;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.5Pa,在所述磁过滤电弧钛靶的放电电流为70A,金属基体的偏压为-80V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为9min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.5Pa,在磁过滤电弧钛靶的放电电流为90A,金属基体的偏压为-90V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为9min;所述氩气和氮气的气体流量比优选为1:3,所述气体流量的单位为mL/min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.5Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为70A,金属基体的偏压为-90V,溅射靶材的溅射电流为15A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为8min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa,在磁过滤电弧钛靶的放电电流为90A,金属基体的偏压为-90V,溅射靶材的溅射电流为10A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为12min;所述氩气和氮气的气体流量比优选为1:3,所述气体流量的单位为mL/min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程68次,在金属基体表面得到厚度约为140μm的多层复合超厚自润滑硬质涂层。
本实施例中所述真空物理气相沉积设备由北京泰科诺科技有限公司生产提供,设备型号为TSU-1000。
本实施例制备的硬质涂层呈现多层复合结构;显微硬度测试结果表明该硬质涂层显微硬度高达2720HV0.25,对本实施例制备的硬质涂层在载荷为500g的条件下进行压入韧性测试,结果表明,压痕周围未出现任何脆性裂纹;将本实施例制备的硬质涂层在外加载荷为5N、磨损距离为20000m的条件下磨损40min,该涂层的摩擦系数低至约0.19;采用划痕法表征本实施例制备的硬质涂层与金属基体的结合强度明显大于72N。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,包括以下步骤:
步骤一、将金属基体表面抛光至镜面后浸泡于酸液中进行酸洗活化,然后将磁过滤电弧钛靶、溅射靶材和酸洗活化后的金属基体置于真空物理气相沉积设备的真空室中,向所述真空室内通入氩气至室内气压为1×10-2Pa~1×10-1Pa,开启磁过滤电弧钛靶,所述磁过滤电弧钛靶放电产生的Ti离子对酸洗活化后的金属基体表面进行离子轰击活化;所述磁过滤电弧钛靶的放电电流为60A~100A,所述离子轰击活化中金属基体的偏压为-800V~-1200V,温度为200℃~300℃;所述溅射靶材为石墨靶材;
步骤二、待步骤一中所述离子轰击活化完毕后向真空室内通入氩气保持室内气压为0.1Pa~0.6Pa,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V的条件下,在步骤一中离子轰击活化后的金属基体表面沉积Ti过渡层,所述沉积的时间为2min~10min;
步骤三、待步骤二中所述Ti过渡层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa~0.6Pa,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V的条件下,在步骤二中所述Ti过渡层表面沉积TiN中间复合层,沉积完毕后停止通入氮气,所述沉积的时间为2min~10min;
步骤四、待步骤三中所述TiN中间复合层沉积完毕后向真空室内通入氩气保持室内气压为0.1Pa~0.6Pa,开启磁控溅射电源,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V,溅射靶材的溅射电流为5A~15A的条件下,在步骤三中所述TiN中间复合层表面沉积TiC中间复合层,所述沉积的时间为2min~10min;
步骤五、待步骤四中所述TiC中间复合层沉积完毕后向真空室内通入氩气和氮气保持室内气压为0.1Pa~0.6Pa,在磁过滤电弧钛靶的放电电流为60A~100A,金属基体的偏压为-50V~-200V,溅射靶材的溅射电流为5A~15A的条件下,在步骤四中所述TiC中间复合层表面沉积TiCN层,沉积完毕后停止通入氩气和氮气,关闭磁过滤电弧钛靶和磁控溅射电源,得到表面具有复合涂层的金属基体;所述沉积的时间为10min~20min;
步骤六、在步骤五中具有复合涂层的金属基体表面重复步骤二至步骤五中的沉积过程50~100次,在金属基体表面得到厚度不小于120μm的多层复合超厚自润滑硬质涂层。
2.按照权利要求1所述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤一中所述酸液为质量浓度为1%~10%的草酸溶液。
3.按照权利要求1所述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤一中所述酸洗活化的时间为10s~30s。
4.按照权利要求1所述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤一中所述离子轰击活化的时间为5min~10min。
5.按照权利要求1所述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤三中所述氩气和氮气的气体流量比为1:(2~5)。
6.按照权利要求1所述的一种多层复合超厚自润滑硬质涂层的制备方法,其特征在于,步骤五中所述氩气和氮气的气体流量比为1:(2~5)。
CN201510923263.4A 2015-12-11 2015-12-11 一种多层复合超厚自润滑硬质涂层的制备方法 Active CN105463372B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510923263.4A CN105463372B (zh) 2015-12-11 2015-12-11 一种多层复合超厚自润滑硬质涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510923263.4A CN105463372B (zh) 2015-12-11 2015-12-11 一种多层复合超厚自润滑硬质涂层的制备方法

Publications (2)

Publication Number Publication Date
CN105463372A true CN105463372A (zh) 2016-04-06
CN105463372B CN105463372B (zh) 2018-05-11

Family

ID=55601525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510923263.4A Active CN105463372B (zh) 2015-12-11 2015-12-11 一种多层复合超厚自润滑硬质涂层的制备方法

Country Status (1)

Country Link
CN (1) CN105463372B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034438A (zh) * 2017-05-03 2017-08-11 成都真锐科技涂层技术有限公司 高速钢丝锥表面涂层制备方法
CN114959576A (zh) * 2022-05-30 2022-08-30 广东工业大学 一种TiCN涂层及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905974A (zh) * 2004-01-30 2007-01-31 三菱麻铁里亚尔株式会社 表面包覆超硬合金制切削工具及其制造方法
CN101602272A (zh) * 2009-06-15 2009-12-16 中国兵器工业第五二研究所 TiAlN-TiBN多层厚膜及其制备方法
CN102066616A (zh) * 2008-06-13 2011-05-18 山高刀具公司 用于产生高温的金属切削应用的涂层切削工具
CN102925862A (zh) * 2012-10-29 2013-02-13 西安浩元涂层技术有限公司 一种掺Ti的类金刚石涂层的制备方法
CN103009697A (zh) * 2012-12-18 2013-04-03 安徽天一重工股份有限公司 一种自润滑梯度复合超硬膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905974A (zh) * 2004-01-30 2007-01-31 三菱麻铁里亚尔株式会社 表面包覆超硬合金制切削工具及其制造方法
CN102066616A (zh) * 2008-06-13 2011-05-18 山高刀具公司 用于产生高温的金属切削应用的涂层切削工具
CN101602272A (zh) * 2009-06-15 2009-12-16 中国兵器工业第五二研究所 TiAlN-TiBN多层厚膜及其制备方法
CN102925862A (zh) * 2012-10-29 2013-02-13 西安浩元涂层技术有限公司 一种掺Ti的类金刚石涂层的制备方法
CN103009697A (zh) * 2012-12-18 2013-04-03 安徽天一重工股份有限公司 一种自润滑梯度复合超硬膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034438A (zh) * 2017-05-03 2017-08-11 成都真锐科技涂层技术有限公司 高速钢丝锥表面涂层制备方法
CN107034438B (zh) * 2017-05-03 2019-05-31 成都真锐科技涂层技术有限公司 高速钢丝锥表面涂层制备方法
CN114959576A (zh) * 2022-05-30 2022-08-30 广东工业大学 一种TiCN涂层及其制备方法与应用

Also Published As

Publication number Publication date
CN105463372B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN103334106B (zh) 一种钛及钛合金球阀密封副和摩擦副的表面硬化处理方法
US20120135270A1 (en) Layer System with Improved Corrosion Resistance
CN107523790B (zh) 一种AlCrSiCuN纳米多层涂层及其制备方法
CN109666904B (zh) 一种低应力高耐磨抗冲蚀涂层、制备方法及应用
CN102634753B (zh) 硬质涂层及其制备方法
CN108060398A (zh) 一种燃料电池复合纳米涂层及其镀制方法
CN101717914B (zh) 一种双相纳米多层氮化铬铝涂层及其沉积方法
CN104564404A (zh) 用于内燃机的钢制活塞及其制造方法
CN108411258A (zh) 一种超厚无氢类金刚石薄膜及其制备方法
CN105568335A (zh) 一种钢基材表面制备FeNiCoCuCr高熵合金涂层的工艺
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
CN105463372A (zh) 一种多层复合超厚自润滑硬质涂层的制备方法
CN107699859A (zh) 轴瓦用全金属自润滑减摩涂层及其制备方法
CN102673043A (zh) 一种纺织钢领用高硬度、低摩擦系数耐磨涂层及其沉积方法
CN106282887B (zh) 微晶氧化物颗粒弥散强化合金涂层的原位制备方法
EP0928343B1 (de) Verfahren zur beschichtung von messing mit harten und bunten schichten
CN112359319B (zh) 一种双周期耐磨抗菌和高韧性复合薄膜的制备方法
CN111378935A (zh) Al/NiCrAlY/Al2O3复合涂层、其制备方法及应用
CN112981325A (zh) 一种热防护涂层及其制备方法与应用
CN102477532A (zh) 镀膜件及其制作方法
CN108118305A (zh) 一种强韧一体化类富勒烯碳氮多层复合薄膜及其制备方法
CN112662939A (zh) 一种表面沉积涂层的超薄永磁体
CN103160794A (zh) 在碳素钢或球墨铸铁表面制备类金刚石薄膜的方法
CN102277556A (zh) 一种纳米复合超硬薄膜的制备方法
CN113481473B (zh) 一种钛合金轴承座及其制备方法和航空部件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant