CN105452519B - 用于获得被提供有包含不连续的薄金属层的涂层的基材的方法 - Google Patents

用于获得被提供有包含不连续的薄金属层的涂层的基材的方法 Download PDF

Info

Publication number
CN105452519B
CN105452519B CN201480046431.XA CN201480046431A CN105452519B CN 105452519 B CN105452519 B CN 105452519B CN 201480046431 A CN201480046431 A CN 201480046431A CN 105452519 B CN105452519 B CN 105452519B
Authority
CN
China
Prior art keywords
base material
coating
layer
thin metal
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480046431.XA
Other languages
English (en)
Other versions
CN105452519A (zh
Inventor
A.帕拉西奥-拉卢瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS filed Critical Saint Gobain Glass France SAS
Publication of CN105452519A publication Critical patent/CN105452519A/zh
Application granted granted Critical
Publication of CN105452519B publication Critical patent/CN105452519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Polarising Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及用于获得一种包含基材的材料的方法,该基材在它的至少一个面的至少一部分上涂覆有包含至少一个基于银、金或者它们的任何合金的不连续的薄金属层的涂层,所述或者每个不连续的薄金属层被封装在至少两个薄电介质层之间,和所述或者每个不连续的薄金属层呈周期性几何图形的形式,这种方法包括沉积步骤,然后使如此涂覆的基材面对至少一个发射以至少一根线的形式聚焦在所述涂层上的激光辐射的激光装置行进,调节所述辐射的功率以便通过反润湿使得所述或者每个薄金属层是不连续的。

Description

用于获得被提供有包含不连续的薄金属层的涂层的基材的 方法
本发明涉及包含基材的材料的领域,该基材被涂覆有至少一个进行纳米等级或者微米等级纹理化的涂层。
这些纹理化涂层,其呈现为几何图形的形式,用于许多领域中的多种应用。呈周期性分布的不连续的线的形式的涂层特别地用于光学、电子学或光电子学领域中,例如作为起偏振器或者电极。
这种涂层通常通过如光刻蚀法或者纳米压印技术获得。除了它们的高成本,这些技术不允许处理具有大尺寸的基材,例如数平方米的基材。
存在对能够使涂层更加经济地进行纹理化的需要。能够使具有大尺寸的涂层纹理化还将允许扩宽这些材料的应用领域,例如应用到建筑领域中。
为此目的,本发明的第一主题是用于获得一种包含基材的材料的方法,该基材在它的至少一个面的至少一部分上涂覆有包含至少一个基于银、金或者它们的任何合金的不连续的薄金属层的涂层,所述或者每个不连续的薄金属层被封装在至少两个薄电介质层之间,和所述或者每个不连续的薄金属层呈周期性几何图形的形式。这种方法包括以下步骤:
-在基材的至少一个面的至少一部分上沉积包含至少一个基于银、金或者它们的任何合金的连续薄金属层的涂层,然后
-使如此涂覆的基材面对至少一个发射以至少一根线的形式聚焦在所述涂层上的激光辐射的激光装置行进,调节所述辐射的功率以便通过反润湿使得所述或者每个薄金属层是不连续的。
本发明的另一主题是通过根据本发明的方法能够获得的包含基材的材料,该基材在它的至少一个面的至少一部分上涂覆有包含至少一个基于银、金或者它们的任何合金的不连续的薄金属层的涂层,所述或者每个不连续的薄金属层被封装在至少两个薄电介质层之间,并且所述或者每个不连续的薄金属层呈周期性几何图形的形式。
这种获得具有周期性几何图形的纹理化涂层的方法是更加经济的并且比已知的技术(尤其基于平版印刷术的那些)更快的,因为在它的最简单的形式中,它包括涂层的沉积步骤,然后是其中该涂层在激光线下行进的处理步骤。这两个步骤还可以在具有大尺寸的基材上进行实施。
本发明人已经可以证明,激光处理,从一定功率开始,引起金属层的反润湿(démouillage),该金属层,其最初是连续的,变得不连续的以形成图形。该科学原因本身不是已知的,在这种条件下产生的反润湿引起纳米等级或者微米等级的周期性图案的形成。
该术语“不连续的”理解为该(或者每个)薄金属层覆盖该下邻层的仅仅一部分。在反润湿之后,因此在最终的材料中,该(或者每个)薄金属层优选地覆盖该下邻层的表面的30%至60%,典型地大约50%。
该措辞 “所述或者每个不连续的薄金属层被封装在至少两个薄电介质层之间”理解为电介质层围绕着所述或者每个薄层进行设置:至少一个在下面(更接近于该基材)和至少一个在上面(更远离该基材)。然而该薄电介质层不必然与它们包围的金属层接触,如在下文中更详细地解释的那样。
优选地,该基材在它的一个面的整体上方被涂覆。该涂层,无论它是中间(在激光处理之前)或者最终的(在激光处理之后),有利地包括单一薄金属层,特别地基于银甚至由银组成。
该(或者必要时每个)薄金属层优选地主要地由银、金或者它们的任何合金组成,或者由银、金或者它们的任何合金组成。优选地,该(或者每个)薄金属层由银组成。银可以容易地,特别地通过阴极溅射进行沉积,并且具有有利的光学性质和电学性质,特别地导电性质,低辐射率性质和在红外线区中的反射性质。金也具有有利的性质,但是具有高得多成本。
该周期性几何图形优选地具有在0.1至10微米,特别地0.3至5微米,甚至0.4至4微米的范围内的周期。这些图案,其在约一百纳米或者约微米的等级上进行重复,具有如在下文中详述的特别地有利性质。
几何图案的周期可以使用不同参数进行调节,特别地:
-激光辐射的波长;典型地当激光线与行进方向垂直时,该周期约为该激光辐射的波长的两倍。
-在激光线和行进方向之间的角度。实际上,该周期基本上与这种角度的正弦成比例。
-该涂层的层的厚度和折光指数,其控制激光辐射的干涉现象。
-位于该金属层下方并与其直接接触的下邻层的化学物类和厚度;事实上,这种层影响该银的润湿性质。
在一个特别有利的实施方案中,该获得的几何图案是在该基材的行进方向中延伸的线。该最终材料的几何图案因此是线。从该激光辐射的一定功率开始,该(或者每个)薄金属层的反润湿实际上开始自发地在该基材的行进方向中产生金属(特别地银)线。如上所指出,这些线的周期约为激光辐射的波长的两倍(乘以由激光线和行进方向形成的角度的正弦)。
优选地,该线的宽度为约半周期,或者甚至等于半周期。这种宽度有利地在0.05至5微米,特别地0.15至2.5微米,甚至0.2至2微米的范围内。由这些线占据的区域占该下邻层的表面的40%至60%、典型地大约50%。因此,未被该(或者每个)薄金属层涂覆的区域的宽度优选地在0.05至5微米,特别地0.15至2.5微米,甚至0.2至2微米的范围内。在光偏振应用中,周期的选择是重要的,这是因为它允许使其波长约为这种周期的辐射进行偏振。
按照另一个优选的实施方案,该周期性图案具有沿着至少两个彼此不平行的轴的周期性。该周期性图案特别地可以是具有基本相同尺寸和形状的滴状物,它们有规律地间隔并且沿着数个彼此不平行的轴周期性地顺序排列。该滴状物特别地可以进行顺序排列使得每个滴状物是六边形,特别地规则六边形的中心,六边形的顶点是六个与所讨论的滴状物最接近的滴状物。所述滴状物可以具有基本椭圆的或者圆形的形状。实际上,已经显示,通过使所述激光辐射的功率提高至比产生所述线状图案的水平更高的水平(或者如将在下文看见地,通过降低行进速度),预先形成的线本身开始进行反润湿以形成这种滴状物。在中间阶段中(因此对于中间功率或者行进速度),所述图案这时呈线形式,其宽度周期性地改变。事实上,所述滴状物仍然不是分离的。
所述或者每个连续的薄金属(特别地银)层的物理厚度优选地在2至20nm的范围内。
所述涂层(在处理之前或之后)优选包括,从基材开始,第一涂层(其包含至少一个第一电介质层、至少一个薄金属(特别地银)层,任选的上阻隔层)和第二涂层(其包含至少一个第二电介质层)。因此,该薄金属层本身被封装在至少两个电介质层之间。
该上阻隔层用来在沉积在随后的层期间(例如如果该随后的层在氧化或者氮化气氛下进行沉积)和在任选的淬火或者弯曲类型的热处理期间保护该金属层。
该金属层还可以被沉积在下阻隔层上并且与下阻隔层接触。该堆叠体因此可以包括围绕该金属层或者每个金属层的上阻隔层和/或下阻隔层。
阻隔层(下阻隔层和/或上阻隔层)通常基于选自镍、铬、钛、铌的金属或者这些不同金属的合金。特别地可以提及镍钛合金(尤其包含约50%重量的每种金属的那些)或者镍铬合金(尤其包含80%重量镍和20%重量铬的那些)。该上阻隔层还可以由数个重叠的层构成;例如;在远离该基材的方向上,钛层然后镍合金层(尤其镍铬合金),或者反之亦然。提到的不同金属或合金还可以部分地进行氧化,并且尤其可以是亚化学计量氧的(例如TiOx或NiCrOx)。
这些阻隔层(下阻隔层和/或上阻隔层)是非常薄的,通常具有低于1nm的厚度,以便不影响该堆叠体的光透射,并且在激光处理期间可以被部分氧化。通常,该阻隔层是牺牲层,其能够俘获来自大气或来自该基材的氧,因此防止该金属层的氧化。因此可能的是,在该最终产品中,该阻隔层至少部分地被氧化。
第一和/或第二电介质层优选地是由氧化物(尤其氧化锡或者氧化钛),或者氮化物,尤其氮化硅(特别地对于第二电介质层,即最远离该基材的电介质层的情况下)制成。通常,该氮化硅可以进行掺杂,例如用铝或硼掺杂,以便使得它更容易通过阴极溅射技术进行沉积。掺杂度(对应于相对于硅的量的原子百分率)通常不超过2%。这些电介质层的功能是保护金属层不受化学侵蚀或机械侵蚀并且它们还通过干涉现象影响该堆叠体的光学性质,尤其在反射中的光学性质。
第一涂层可以包含一个电介质层或多个,典型地2至4个电介质层。第二涂层可以包含一个电介质层或多个,典型地2至3个电介质层。这些电介质层优选由选自氮化硅、氧化钛、氧化锡和氧化锌或者它们的任何它们的混合物或者固溶体(例如氧化锡锌或者氧化钛锌)的材料制成。无论是在第一涂层中或者是在第二涂层中,电介质层的物理厚度,或者所有的电介质层的总物理厚度优选地为5至200nm,尤其10至100nm,或者20至50nm。
第一涂层优选包括,直接地在该金属(特别地银)层下方或在该任选的下阻隔层下方,润湿层,其功能是提高该金属(特别地银)层的湿润和粘结。氧化锌,尤其当用铝掺杂的氧化锌,被证明在这方面是特别有利的。
第一涂层还可以包含,直接地在该润湿层下方,光滑层,其是部分地或者完全地无定形的混合氧化物(因此具有非常低的粗糙度),其功能是促进润湿层沿着优先的结晶取向的生长,这通过外延现象促进银结晶。该光滑层优选由至少两种选自以下的金属的混合氧化物组成:Sn、Zn、In、Ga和Sb。优选的氧化物是锑掺杂的氧化铟锡。
在第一涂层中,该润湿层或该任选的光滑层优选被直接地沉积在第一电介质层上。第一电介质层优选地被直接地沉积在该基材上。为了最佳地调节该堆叠体的光学性质(尤其在反射中的外观),作为替代方案,第一电介质层可以被沉积在另一个氧化物或氮化物层(例如二氧化钛层)上。
在第二涂层内,第二电介质层可以被直接地沉积在该金属(特别地银)层上,或优选在上阻隔涂层上,或在其它用于调节该堆叠体的光学性质的氧化物或氮化物层上。例如,氧化锌层,尤其用铝掺杂的氧化锌层,或氧化锡层,可以被设置在上阻隔层和第二电介质层之间,该第二电介质层优选地由氮化硅制成。氧化锌,尤其铝-掺杂的氧化锌,允许改善在该金属(特别地银)和该上层之间的粘合作用。
因此,该涂层(在处理之前或之后)优选包括至少一个ZnO/Ag/ZnO序列。该氧化锌可以用铝掺杂。下阻隔层可以被设置在银层和下邻层之间。替代地或累积地,上阻隔层可以被设置在银层和下邻层之间。
最后,第二涂层在上面可以有顶层,有时在本领域中被称为“外涂层”。该堆叠体的最后层,因此与环境空气接触,其用来保护堆叠体不受任何机械侵蚀(划痕等等)或者化学侵蚀。这种外涂层通常是非常薄的以便不干扰该堆叠体在反射中的外观(它的厚度典型地为1-5nm)。它优选基于氧化钛或混合氧化锡锌,其尤其用锑掺杂,以亚化学计量的形式进行沉积。
该堆叠体可以包含一个或多个金属(特别地银)层,尤其两或三个银层。当多个金属(特别地银)层存在时,上面介绍的一般结构可以进行重复。在这种情况下,与给出的金属(特别地银)层的有关的第二涂层(并因此位于这种金属层的上面)通常与第一涂层(其与下一个金属层有关)重合。
基于氧化钛的薄层具有是自清洁的特殊性质,自清洁通过在紫外辐射作用下促进有机化合物的退化和在水流作用下除去无机污物(粉尘)来进行。它们的物理厚度优选地为2至50nm,特别地5至20nm,包括端值。
如上所述的涂层的结构同样对于该涂层在激光处理之前和在所述激光处理之后都是有效的。实际上,金属层的反润湿不改变层的顺序。然而,金属层的反润湿改变了该涂层的厚度,其变得不规则的:在用金属涂覆的区域中是较厚的,在未涂覆的区域中是较薄的。在后者区域中,金属的反润湿也具有通过金属层(例如润湿层)预先分离的层与上阻隔层接触。
根据本发明,至少一个激光装置发射以至少一根线的形式聚焦在所述涂层上的激光辐射。所述或者每根线在下文中将被称为"激光线"。
激光通常由包含一个或多个激光源以及用于成形并重定向的光学器件的组件组成。
该激光源典型地是激光二极管或者纤维或者盘形激光器。激光二极管允许经济地实现相对于电源功率的高功率密度(对于小的体积而言)。纤维激光器的体积是甚至更小的,并且获得的线功率密度可以是甚至更高的,然而具有更大的成本。
产生自激光源的辐射可以是连续的或者脉冲的,优选是连续的。当该辐射是脉冲的时候,重复频率有利地是至少10kHz,特别地15kHz,甚至20kHz,以便与所使用的高行进速度是可相容的。
该激光辐射的波长优选在200至2000nm,特别地500至1500nm范围内。在至少选自808nm、880nm、915nm、940nm或者980nm的波长发射的高功率激光二极管已经证明是特别适合的,银和金令人满意地吸收这种类型辐射。
该用于成形和重定向的光学装置优选包含透镜和反射镜,并且用作为用于辐射的定位、均匀化和聚焦的工具。
定位工具的目的是必要时沿着线设置由激光源发射的辐射。它们优选包含反射镜。均匀化工具的目的是使激光源的空间轮廓重叠以获得沿着整个线均匀的线功率密度。均匀化工具优选包含允许使入射光束分离为二次光束并且使二次光束再组合为均匀线的透镜。辐射的聚焦工具允许使辐射以具有希望长度和宽度的线的形式聚焦在待处理的涂层上。聚焦工具优选包含聚光透镜。
所述或者每根线具有长度和宽度。术语线的“长度”理解为表示该线的在该涂层的表面上进行测量的最大维度,和术语“宽度”理解为表示在相对于最大维度的方向横交的方向中的维度。按照在激光领域中的习惯,该线的宽度w对应于在该光束的轴(在那里辐射强度为最大值)和点(在那里,辐射强度等于最大强度乘以1/e2)之间的距离(沿着这种横交方向)。如果激光线的纵向轴被称为x,可以沿着这种轴定义宽度分布,称为w(x)。
所述或者每根激光线的平均宽度优选为至少35微米,特别地在40至100微米或者40至70微米范围中。在整个本文中,术语“平均”理解为表示算术平均值。在该线的整个长度上,宽度分布是窄的以避免任何处理不均匀性。因此,在最大宽度和最小宽度之间的差值优选为该平均宽度的值的最多10%。这种数字优选为最多5%甚至3%。
所述或者每根激光线的长度优选为至少10cm或者20cm,特别地在30至100cm,特别地30至75厘米,甚至30至60cm的范围内。例如,对于具有3.3m的宽度的基材,可以使用11根具有30厘米长度的线。
该用于成形和重定向的光学装置,特别地定位工具可以手动地或者借助于允许远距离地调节它们的位置的调节器进行调节。这些调节器(典型地压电电动机或者垫块(cales))可以手动地进行控制和/或自动地进行调节。在后者情况下,优选使调节器与检测器以及与反馈回路连接。
至少一部分激光组件,甚至所有激光组件,优选被布置在密封盒子中,该盒子有利地进行冷却,尤其进行通风,以便确保激光组件的热稳定性。
激光组件优选被安装在称为“桥”的基于金属元素,典型地由铝制成的刚性结构上。该结构优选不包含大理石片。该桥优选与输送工具平行地进行设置使得所述或者每根激光线的焦平面保持与待处理的基材的表面平行。优选,该桥包括至少四个脚,其高度可以分别地进行调节以确保在任何情况下平行定位。该调节可以通过位于每个脚的发动机手动地或者自动地(通过与距离传感器相连)提供。该桥的高度可以进行改变(手动地或者自动地)以考虑待处理的基材的厚度并且以因此保证该基材的平面与所述或者每根激光线的焦平面重合。
所述或者每个薄金属层的反润湿可以通过作用于激光的线功率密度和/或基材的行进速度而获得。在相同的线功率密度时,对于低于阈值的行进速度将获得该反润湿。相反地,在相同的行进速度时,对于高于阈值的线功率密度,将获得该反润湿。
对于给定的涂层(特别地给定的吸收作用),反润湿将从一定的在线功率密度(必要时除以占空比的平方根)和行进速度的平方根之间的比率值开始而获得。
这些阈值取决于多种因素:这种金属层的种类,它的厚度,堆叠体的层的类型和它们的厚度。对于给定的涂层,可以容易地通过逐渐提高激光的功率或者通过降低行进速度直至观察到几何图案的出现来确定适当的功率或者行进速度。低于最小功率或高于最大速度(对于获得反润湿而言),该金属层保持连续的,和该处理首先具有改善金属层的结晶和它的电子性质和低发射率性质的效果。
特别地对于包含具有大约10nm的物理厚度的单一银层的堆叠体,在线功率密度和行进速度的平方根之间的比率有利地为至少13或者14,特别地14至15W.min1/2.cm-3/2
除以该激光源的占空比(rapport cyclique)的平方根的线功率密度优选为至少300W/cm,有利地350或者400W/cm,特别地450W/cm,甚至500W/cm甚至550W/cm。除以该占空比的平方根的线功率密度甚至有利地为至少600W/cm,特别地800W/cm,甚至1000W/cm。当激光辐射是连续的时候,占空比等于1,使得该数字对应于线功率密度。线功率密度在使所述或者每根激光线聚焦在涂层上的位置上进行测量。它可以通过沿着该线设置功率检测器(例如量热式功率计,特别地如来自Coherent Inc公司的Beam Finder功率计)进行测量。该功率有利地在所述或者每根线的整个长度上均匀地进行分配。优选,在最高功率和最低功率之间的差值为低于该平均功率的10%。
提供给该涂层的除以该占空比的平方根的能量密度优选为至少20J/cm2,甚至30J/cm2。还是在这里,当该激光辐射是连续的时候,该占空比等于1。
该基材的行进速度有利地为至少4m/min,特别地5m/min甚至6m/min或者7m/min,或8m/min甚至9m/min或者10m/min。根据某些实施方案,该基材的行进速度可以是至少12m/min或者15m/min,特别地20m/min甚至25或者30m/min。如上所指出,允许获得该金属层的反润湿的行进速度取决于该堆叠体,但是可以容易地进行测定。为了确保处理是尽可能均匀的,该基材的行进速度在该处理期间相对于它的额定值为改变最多10%(在相对方面),特别地2%甚至1%。
为了增强该处理的有效性,优选的是,使该透射穿过该基材的和/或被涂层反射的(主要)激光辐射的至少一部分被重定向在所述基材的方向中以形成至少一个二次激光辐射,其优选在与主激光辐射相同位置上冲击该基材,有利地具有相同的聚焦深度和相同的轮廓。所述或者每种二次激光辐射的形成有利地使用仅仅包括选自反射镜、棱镜和透镜的光学元件的光学组装件,特别地由两个反射镜和透镜或者由棱镜和透镜组成的光学组装件。通过回收该损失的主要辐射的至少一部分和通过使它重定向朝向基材,该热处理由此得到显著地改善。选择使用透射穿过该基材的主要辐射部分(“透射”方式)或者被该涂层反射的主要辐射部分(“反射”方式)或者任选地选择使用该两者取决于该涂层的性质和该激光辐射的波长。
在该热处理期间该涂层经受的温度优选为至少500℃,特别地600℃,或者700℃。该反润湿通常不伴随有该金属的熔化,而是由于原子的迁移率的热活化提高。
优选地,在该热处理期间,在与被涂覆面相反的一面上的基材温度不超过100℃,特别地50℃甚至30℃。
激光线的数目可以是至少3或者4,甚至5,甚至6,或者7,甚至8,甚至9,甚至10或者11,与要处理的基材的宽度有关。激光线的数目优选地为3至11(包括端值),特别地为5至10(包括端值)。
优选地,设置该激光线使得可以处理该堆叠体的整个表面。根据激光线的尺寸可以设想多种布置。
所述或者每根激光线优选与该基材的行进方向垂直地进行设置,或者倾斜地进行设置。该激光线通常是彼此平行的。不同激光线可以同时地或者以时间延后方式处理该基材。举例来说,该激光线可以以V形,以交错行形式或以某一角度进行设置。
该激光线可以与该基材的行进方向垂直的行形式进行布置。行的数目是例如至少2,甚至3。有利地,行的数目不大于3,以限制激光处理区的占地面积(emprise au sol)。
为了保证该基材在其整体上经受该处理的影响,优选地设置激光线使得存在部分重叠,即某些区域(小尺寸,典型地低于10cm或者1cm的尺寸)被处理至少两次。
在该基材的行进方向中,在处理相邻区域的两根激光线之间的距离优选地使得该部分重叠区域具有时间返回接近于环境温度的温度以避免损害涂层。典型地,在处理相邻区域的两根激光线之间的距离有利地是在该激光线下的层的一个点行进的距离的至少三倍。
或者,该激光线可以被设置在同一根线上(即,行的数目是1)。在这种情况下,优选地选择允许在涂层处获得连续并均匀的激光线的轮廓。
该基材可以使用任何机械传送工具,例如使用平移地运动的带、辊或者托盘进行移动。该传送系统允许控制和调节该位移速度。该输送工具优选包括刚性机架和多个辊。该辊的节距有利地在50至300mm的范围内。该辊优选包含金属环,典型地由钢制成的,用塑料包带覆盖。该辊优选地被安装在具有降低间隙的托架上,典型地以每托架三个辊的比例进行安装。为了确保该输送平面的完美平坦性,每个辊的位置有利地是可调节的。该辊优选地使用由至少一个发动机驱动的传动齿轮或者链条,优选切线链条进行运动。
如果该基材用柔性有机聚合材料制成的话,它可以使用呈一系列辊形式的薄膜前进系统进行移动。在这种情况下,平坦性可以通过适当选择在辊之间的距离进行确保,同时考虑基材的厚度(并因此它的柔韧性)和该热处理可以具有对可能的下垂的产生的影响。
当然,该基材和该激光线的所有相对位置是可能的,只要该基材的表面可以被适当地照射。更通常地,基材将水平地或者基本上水平地进行布置,但是它还可以垂直地进行布置,或者以任何可能的倾斜度进行布置。当基材水平地进行布置时,激光线通常进行设置以便处理该基材的上面。该激光线还可以处理该基材的下面。在这种情况下,该基材传送系统应该允许热量通过到达要处理的区域。这是例如当使用传送辊时的情况:因为该辊是分开的,可以在位于在两个连续辊之间的区域中设置该激光线。
当该基材的两个面要进行处理时,可以使用数个位于该基材的任一面的激光线,无论基材是在水平的、垂直的或者任何倾斜的位置中。这些激光线可以是相同的或者不同的,特别地它们的波长可以是不同的,尤其适合于每个要处理的涂层。
根据本发明的激光装置可以被集成到层沉积作业线中,例如磁场增强的阴极溅射沉积作业线(磁控管方法)或化学气相沉积(CVD)作业线,尤其等离子体-增强的化学气相沉积(PECVD)作业线,在真空下或在大气压下的化学气相沉积(AP-PECVD)。通常,该作业线包括基材的搬运装置,沉积单元,光控制装置和堆叠装置。例如基材在传送辊上运行,连续地在每个装置或每个单元前面通过。
该激光装置优选位于刚好在该涂层沉积单元之后,例如在该沉积单元的出口处。该被涂覆的基材因此可以在已经沉积该涂层之后,在该沉积单元的出口和在光控制装置之前,或在该光控制装置之后并且在该基材堆叠装置之前在线进行处理。
在某些情况下,该激光装置还可以被集成到该沉积单元中。例如,激光源可以被引入到该阴极溅射沉积单元的腔室之一中,特别地在其中大气被抽空的腔室中,尤其在10-6毫巴至10-2毫巴的压力下的腔室中。该激光装置还可以被设置在该沉积单元外部,但为了处理位于在所述单元内部的基材。在使用激光的情况下,为此目的,可以例如提供对所使用的辐射波长是透明的窗户,该激光辐射将穿过该窗户能处理该层。
无论该激光装置在沉积单元外面或被集成到在其中,这些“在线”方法优于使用离线操作(procédé en reprise)的方法,在使用离线操作的方法中在沉积步骤和激光处理之间将需要堆叠该玻璃基材。
然而,其中在与实施该沉积的地点不同的地点(例如在其中进行该玻璃的转化的地点)中实施该激光处理的情况下,使用离线操作的方法可以具有益处。该激光装置因此可以被集成到不同于该层沉积作业线的作业线中。例如,它可以被集成到多重窗玻璃(尤其双或三重窗玻璃)的制备作业线中,或集成到层压窗玻璃的制备作业线中,或集成到弯曲和/或淬火窗玻璃的制备作业线中。该经层压或者弯曲或者淬火的窗玻璃都可以用作为建筑物窗玻璃或者汽车窗玻璃。在这些不同的情况中,该激光处理优选在制备该多层窗玻璃或层压窗玻璃之前进行实施。然而,该激光处理可以在制备双重窗玻璃或者层压窗玻璃之后进行实施。
该激光装置优选被设置在密闭腔室中,该密闭腔室通过防止与激光辐射的任何接触而允许保护人们和允许防止任何污染,特别地污染该基材,光学装置或者处理区域。
该涂层可以通过任何类型方法被沉积在该基材上,所述方法特别地为产生主要为无定形的或纳米晶的层的方法,如阴极溅射方法,特别地磁场增强的阴极溅射方法(磁控管方法),等离子体-增强的化学气相沉积(PECVD)方法,真空蒸发方法或溶胶凝胶法。
优选,该涂层通过阴极溅射,尤其通过特别地磁场增强的阴极溅射方法(磁控管方法)进行沉积。
该基材优选由玻璃制成、由玻璃陶瓷制成或者由有机聚合材料制成。它优选是透明的、无色的(它这时是明亮玻璃或极明亮玻璃)或有色的,例如蓝色、灰色、绿色或青铜色。该玻璃优选地是钠-钙-硅类型,但是它还可以是硼硅酸盐或者铝硼硅酸盐类型玻璃。该优选的有机聚合材料是聚碳酸酯,聚甲基丙烯酸甲酯,聚对苯二酸乙二醇酯(PET),聚萘二甲酸乙二醇酯(PEN),或含氟聚合物,如乙烯四氟乙烯(ETFE)。
该基材有利地具有至少一个的至少1m,特别地2m,特别地3m的维度。该基材的厚度通常为0.1mm至19mm,优选0.7至9mm,特别地2-8mm,甚至4-6mm。该基材可以是平面的或弯曲的,甚至挠性的。
该玻璃基材优选是浮法玻璃类型,即,能够已经通过其在于将该熔化玻璃倾倒在熔融锡浴(“漂浮”浴)上的方法获得。在这种情况下,待处理的涂层可以同等地被沉积在该基材的“锡”面上和在“大气”面上。该术语“大气面”和“锡面”被理解为表示该基材已分别地与在漂浮浴中主导的大气接触的面和与熔融锡接触的面。该锡面包含已经扩散在该玻璃的结构中的低表面量的锡。该玻璃基材还可以通过在两个辊之间的辊轧(特别地允许在该玻璃的表面上印刷图案的技术)获得。
本发明的另一主题为根据本发明的材料作为反射型起偏振器或者作为光学滤光器的用途。
该措辞“反射型起偏振器”被理解为表示能够反射一种偏振化作用和透射其它偏振化作用的起偏振器。特别地它是其几何图案是线的材料,该线将形成最好的反射型起偏振器。在这种情况下,将被偏振化的辐射将是其波长为约该线的周期的那些。根据获得的周期,因此可以使红外线或可见辐射偏振化。
反射型起偏振器特别地可以用于借助于液晶的显示装置(特别地液晶屏幕)中或可切换的反射镜中。可切换的反射镜特别地可以使用两个重叠的反射型起偏振器而获得。这种反射型起偏振器还可以用于建筑物领域中,以便能够随意地控制该窗玻璃的透射或者反射水平。
光学滤光器可以用于各种应用中,还用在显示屏领域中,或在建筑物领域中,作为允许过滤一部分太阳能的窗玻璃。该图案的周期性使得该滤光器特别地有效。
本发明的另一主题是根据本发明的材料作为电极(特别地用于太阳能电池的电极)的用途。根据本发明的材料在这种类型的应用中的优点在于它的高光学透射,金属层不覆盖该基材的整个表面。
根据本发明的材料还可以用在单一、多重或者层压窗玻璃、反射镜和玻璃墙覆盖物中。在包含至少两个通过充气腔分开的玻璃片材的多重窗玻璃的情况下,该堆叠体优选地被设置在与所述充气腔接触的面上,尤其在与外界相关的面2上(即在与该建筑物外部接触的基材的与朝向外界的面相反的面上),或在面3上(即在从该建筑物外部开始数的第二基材的朝向外界的面上)。
本发明借助于以下的附图和非限制性示例性实施方案进行举例说明。
附图1和2是根据本发明的材料的扫描电子显微镜图像。
附图3a和3b是根据本发明的材料的透射和吸收光谱。
以已知的方式通过磁控管阴极溅射将以下堆叠体沉积在4mm厚的明亮玻璃基材上:
玻璃 / Si3N4(26) / TiO2(7) / ZnO(6) / Ag(11) / TiOx(1) / ZnO(6) / Si3N4(35) / TiO2(2)。
在括号内的数字对应于物理厚度(用纳米表示)。所有层是连续的。
给出的式子不预判该形成该层的化合物的精确化学计量,也不预判可能的掺杂。在这种情况下,氮化硅(称为“Si3N4”)层还包含铝,因为使用的靶包含它。
经涂覆的基材然后在与行进方向垂直进行设置的激光线下方行进以便处理该涂层并且使银反润湿。使用高功率激光二极管形成该线。激光的线功率密度是490W/cm。
激光线的宽度是约48微米。使用的波长是913nm和980nm。
当行进速度是过高(高于13米/分钟)时,银层保持连续的。
通过降低行进速度(低于13米/分钟,特别地约11.5至12.5米/分钟),银层开始反润湿并且形成线。附图1图示了这种实施方案。在扫描电子显微镜图像上,浅色线对应于银层,其具有变成不连续的并且呈线的形式,在该基材的行进方向中延伸,与激光线垂直。该线具有约1微米的宽度,并且规则地进行分布,周期为约2微米,因此为该激光的波长的约两倍。
当行进速度进一步地被减小时(减小至11米/分钟并更低),银线开始反润湿,直至形成滴状物。附图2图示了这种实施方案。滴状物具有基本上相同的形状,接近于椭圆,并且周期性地进行分布。该椭圆的长轴具有约1微米的尺寸。该周期性图案(滴状物)具有沿着多个彼此不平行的轴的周期性。这些滴状物中每个是六边形的中心,六边形的顶点是与该所讨论的滴状物最接近的六个滴状物。
对于甚至更低的行进速度,观察到该涂层的烧蚀,甚至该玻璃的表面层的烧蚀。
以下列方式测试了包含线作为周期性图案的线的材料(在附图1中表示)的偏振化性质。使用分光光度计,对于每种偏振化作用(s和p)测量了透射光谱和反射光谱。吸收光谱已由这两种光谱进行计算。
附图3a和3b分别地表示透射光谱和吸收光谱。按照常例,在x轴上绘制波长(用nm表示)和在y轴上绘制透射或者吸收值(用百分比表示)。
该透射光谱显示,对于约1800纳米的波长和对于一种偏振化作用(在这种情况下p偏振化作用,考虑到该材料的取向)进行透射,而其它(在这里s偏振化作用)极少被透射。吸收光谱显示吸收作用不取决于偏振化作用:s偏振化作用因此被反射。

Claims (23)

1.用于获得一种包含基材的材料的方法,该基材在它的至少一个面的至少一部分上涂覆有包含至少一个基于银、金或者它们的任何合金的不连续的薄金属层的涂层,所述或者每个不连续的薄金属层被封装在至少两个薄电介质层之间,和所述或者每个不连续的薄金属层呈周期性几何图形的形式,所述方法包括以下步骤:
-在所述基材的至少一个面的至少一部分上沉积包含至少一个基于银、金或者它们的任何合金的连续薄金属层的涂层,所述或者每个连续的薄金属层被封装在至少两个薄电介质层之间,然后
-使如此涂覆的基材面对至少一个发射以至少一根线的形式聚焦在所述涂层上的激光辐射的激光装置行进,调节所述辐射的功率以便通过反润湿使得所述或者每个薄金属层是不连续的,该功率在所述线或者每根线的整个长度上均匀地进行分配。
2.根据前述权利要求的方法,其中该周期性几何图形具有在0.1至10微米的范围内的周期。
3.根据前述权利要求2的方法,其中该周期性几何图形具有在0.3至5微米的范围内的周期。
4.根据权利要求1的方法,其中该获得的几何图案是在该基材的行进方向中延伸的线。
5.根据权利要求1的方法,其中该周期性图案具有沿着至少两个彼此不平行的轴的周期性。
6.根据权利要求1的方法,其中所述或者每个连续的薄金属层的物理厚度在2至20nm的范围内。
7.根据权利要求1的方法,其中该激光辐射的波长在200至2000nm的范围内。
8.根据权利要求7的方法,其中该激光辐射的波长在500至1500nm的范围内。
9.根据权利要求1的方法,其中该激光辐射是连续的。
10.根据权利要求1的方法,其中所述线或者每根线在最高功率和最低功率之间的差值为低于所述线或者每根线的平均功率的10%。
11.根据权利要求1的方法,其中该基材由玻璃制成、由玻璃陶瓷制成或者由有机聚合材料制成。
12.根据权利要求1的方法,其中该涂层包括,从基材开始,第一涂层和第二涂层,其中第一涂层包含至少一个第一电介质层、至少一个薄金属层,任选的上阻隔层,和第二涂层包含至少一个第二电介质层。
13.根据权利要求12的方法,其中该第一和/或第二电介质层是氧化物或者氮化物。
14.根据权利要求13的方法,其中该第一和/或第二电介质层是氧化锡或者氧化钛。
15.根据权利要求13的方法,其中该第一和/或第二电介质层是氮化硅。
16.根据权利要求1的方法,其中该基材具有至少一个为至少1m的维度。
17.根据权利要求16的方法,其中该基材具有至少一个为至少2m的维度。
18.根据权利要求16的方法,其中该基材具有至少一个为至少3m的维度。
19.根据权利要求1的方法,其中该涂层通过阴极溅射进行沉积。
20.能根据前述权利要求任一项的方法可获得的材料,其中该材料包含基材,该基材在它的至少一个面的至少一部分上涂覆有包含至少一个基于银、金或者它们的任何合金的不连续的薄金属层的涂层,所述或者每个不连续的薄金属层被封装在至少两个薄电介质层之间,并且所述或者每个不连续的薄金属层呈周期性几何图形的形式。
21.根据权利要求20的材料作为反射型起偏振器或者滤光器的用途。
22.根据权利要求20的材料作为电极的用途。
23.根据权利要求20的材料作为用于太阳能电池的电极的用途。
CN201480046431.XA 2013-08-20 2014-07-31 用于获得被提供有包含不连续的薄金属层的涂层的基材的方法 Active CN105452519B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1358063 2013-08-20
FR1358063A FR3009833B1 (fr) 2013-08-20 2013-08-20 Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue
PCT/FR2014/051999 WO2015025093A1 (fr) 2013-08-20 2014-07-31 Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue

Publications (2)

Publication Number Publication Date
CN105452519A CN105452519A (zh) 2016-03-30
CN105452519B true CN105452519B (zh) 2018-01-02

Family

ID=49753319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480046431.XA Active CN105452519B (zh) 2013-08-20 2014-07-31 用于获得被提供有包含不连续的薄金属层的涂层的基材的方法

Country Status (12)

Country Link
US (1) US9587303B2 (zh)
EP (1) EP3036352B1 (zh)
JP (1) JP6096990B2 (zh)
KR (2) KR20170065681A (zh)
CN (1) CN105452519B (zh)
BR (1) BR112016002542B1 (zh)
EA (1) EA029632B1 (zh)
ES (1) ES2623630T3 (zh)
FR (1) FR3009833B1 (zh)
HU (1) HUE034358T2 (zh)
PL (1) PL3036352T3 (zh)
WO (1) WO2015025093A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815059B2 (en) * 2010-08-31 2014-08-26 Guardian Industries Corp. System and/or method for heat treating conductive coatings using wavelength-tuned infrared radiation
ES2473216B1 (es) * 2014-02-20 2015-06-02 Universitat De Barcelona Superficie con propiedades de reducción de la luz difusa por condensación de agua y procedimiento de obtención de esta
EP4235750A3 (en) * 2016-02-15 2023-09-06 Newport Corporation Method of selectively varying the wetting characteristics of a surface
JP6400062B2 (ja) * 2016-10-24 2018-10-03 日東電工株式会社 電磁波透過性金属光沢部材、これを用いた物品、及び、金属薄膜
DE102016121462A1 (de) * 2016-11-09 2018-05-09 Aixtron Se Strukturierte Keimschicht
US20180190984A1 (en) * 2016-12-30 2018-07-05 Guardian Glass, LLC Silver nano-metal mesh inclusive electrode, touch panel with silver nano-metal mesh inclusive electrode, and/or method of making the same
CN110462570A (zh) * 2017-02-08 2019-11-15 佳殿玻璃有限公司 含银纳米金属网的电极、带有含银纳米金属网的电极的触控面板和/或其制造方法
US10612145B2 (en) * 2017-06-16 2020-04-07 Lawrence Livermore National Security, Llc Nanostructured layer for graded index freeform optics
US11148228B2 (en) * 2017-07-10 2021-10-19 Guardian Glass, LLC Method of making insulated glass window units
FR3072958B1 (fr) * 2017-10-30 2022-05-06 Eurokera Article vitroceramique muni d'une couche et procede d'obtention
CN108118295A (zh) 2017-12-21 2018-06-05 上海银之川金银线有限公司 一种非连续真空镀金属薄膜、金属丝及其制作方法
US10921495B2 (en) * 2017-12-29 2021-02-16 Vitro Flat Glass Llc Solar control coatings and methods of forming solar control coatings
CN108486536B (zh) * 2018-02-05 2020-01-03 吉林大学 一种通过固态去润湿制备金属-陶瓷纳米复合薄膜的方法
US10830933B2 (en) * 2018-06-12 2020-11-10 Guardian Glass, LLC Matrix-embedded metamaterial coating, coated article having matrix-embedded metamaterial coating, and/or method of making the same
DE102018217970A1 (de) 2018-10-19 2020-04-23 Hegla Boraident Gmbh & Co. Kg Verfahren zur Herstellung einer elektronischen Struktur auf einer Glasscheibe sowie Glastafel mit mindestens einer derartigen Glasscheibe
US11751288B2 (en) * 2018-12-14 2023-09-05 Samsung Electronics Co., Ltd. Heat-emitting transparent plate, method of manufacturing the heat-emitting transparent plate, heat-emitting device including the heat-emitting transparent plate and objects including the heat-emitting device
TW202106650A (zh) * 2019-04-10 2021-02-16 美商康寧公司 具有傳輸微波訊號並反射紅外線訊號的金屬層的窗
EP4118465A4 (en) 2020-03-11 2024-03-13 Labforinvention ENERGY EFFICIENT WINDOW COVERINGS
FR3111892B1 (fr) * 2020-06-24 2022-07-22 Saint Gobain Materiau comportant un empilement a sous-couche dielectrique fine d’oxide a base de zinc et procede de depot de ce materiau
EP3929324A1 (de) * 2020-06-26 2021-12-29 Bühler Alzenau GmbH Beschichtungsverfahren und -vorrichtung
US20220221636A1 (en) * 2021-01-08 2022-07-14 LabForInvention Energy-efficient window coatings transmissible to wireless communication signals and methods of fabricating thereof
RU2761391C1 (ru) * 2021-01-12 2021-12-07 Дмитрий Юрьевич Старцев Способы нанесения на стеклянные изделия металлических покрытий из нитрида титана
CN113735460B (zh) * 2021-08-25 2023-04-07 福建省万达汽车玻璃工业有限公司 镀膜玻璃及其制造方法、以及车窗
FR3132382A1 (fr) * 2022-01-28 2023-08-04 Saint-Gobain Glass France Procede d’obtention d’un substrat muni d’un revêtement comprenant une couche mince metallique discontinue

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803174A (zh) * 2009-06-12 2012-11-28 法国圣戈班玻璃厂 薄层的沉积方法和获得的产品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728559B1 (fr) 1994-12-23 1997-01-31 Saint Gobain Vitrage Substrats en verre revetus d'un empilement de couches minces a proprietes de reflexion dans l'infrarouge et/ou dans le domaine du rayonnement solaire
JP2006110807A (ja) 2004-10-13 2006-04-27 Central Glass Co Ltd 電波透過性波長選択板
FR2911130B1 (fr) 2007-01-05 2009-11-27 Saint Gobain Procede de depot de couche mince et produit obtenu
FR2943050A1 (fr) 2009-03-11 2010-09-17 Saint Gobain Procede de depot de couche mince.
JP2010241638A (ja) * 2009-04-06 2010-10-28 Riichi Murakami 金属ナノ粒子層を挟んだ薄膜積層体
US9296183B2 (en) * 2011-11-30 2016-03-29 Corning Incorporated Metal dewetting methods and articles produced thereby
US20130183492A1 (en) * 2012-01-17 2013-07-18 Snu R&Db Foundation Metal nanoparticles on substrate and method of forming the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803174A (zh) * 2009-06-12 2012-11-28 法国圣戈班玻璃厂 薄层的沉积方法和获得的产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fabrication of periodic structures in thin metal films by pulsed laser irradiation;YuriKaganovskii et al.;《Journal of Nanophotonics》;20071227;第1卷;第1-13页 *

Also Published As

Publication number Publication date
KR101923786B1 (ko) 2018-11-29
KR20170065681A (ko) 2017-06-13
US9587303B2 (en) 2017-03-07
FR3009833A1 (fr) 2015-02-27
CN105452519A (zh) 2016-03-30
US20160201189A1 (en) 2016-07-14
BR112016002542B1 (pt) 2021-11-09
JP6096990B2 (ja) 2017-03-15
JP2017500597A (ja) 2017-01-05
HUE034358T2 (en) 2018-02-28
BR112016002542A2 (pt) 2017-08-01
KR20160027207A (ko) 2016-03-09
EA029632B1 (ru) 2018-04-30
PL3036352T3 (pl) 2017-08-31
EA201690433A1 (ru) 2016-06-30
EP3036352A1 (fr) 2016-06-29
FR3009833B1 (fr) 2015-10-16
ES2623630T3 (es) 2017-07-11
WO2015025093A1 (fr) 2015-02-26
EP3036352B1 (fr) 2017-03-01

Similar Documents

Publication Publication Date Title
CN105452519B (zh) 用于获得被提供有包含不连续的薄金属层的涂层的基材的方法
CN104204287B (zh) 用于制备经涂覆基材的方法
CN105658592B (zh) 制造涂覆有包括导电透明氧化物膜的叠层的基底的方法
CN103402940B (zh) 用于获得提供有涂层的基材的方法
US20160010212A1 (en) Process for obtaining a substrate equipped with a coating
CN102898037B (zh) 沉积薄层的方法和获得的产品
JP6022935B2 (ja) 薄膜層堆積方法及び得られる製品
KR102289587B1 (ko) 코팅을 열처리하기 위한 방법
US20190330728A1 (en) Process for obtaining a substrate provided with a coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant