JP2006110807A - 電波透過性波長選択板 - Google Patents

電波透過性波長選択板 Download PDF

Info

Publication number
JP2006110807A
JP2006110807A JP2004299250A JP2004299250A JP2006110807A JP 2006110807 A JP2006110807 A JP 2006110807A JP 2004299250 A JP2004299250 A JP 2004299250A JP 2004299250 A JP2004299250 A JP 2004299250A JP 2006110807 A JP2006110807 A JP 2006110807A
Authority
JP
Japan
Prior art keywords
fine particles
transparent
film
transparent substrate
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299250A
Other languages
English (en)
Inventor
Hiroshi Nakajima
弘 中嶋
Atsushi Takamatsu
敦 高松
Hideo Omoto
英雄 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2004299250A priority Critical patent/JP2006110807A/ja
Publication of JP2006110807A publication Critical patent/JP2006110807A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【課題】粒状のAgを透明基板に形成してなる電波透過性波長選択ガラスにおいて、近赤外線遮蔽係数(Es)を高くするために、共振波長を600nm〜1500nmの範囲にすると、可視光の波長域において、乱反射が大きくなるという不具合があった。
【解決手段】透明基板に該透明基板の誘電率より大きい誘電率を有する透明誘電体層が、光学膜厚み20nm〜600nmの範囲で成膜され、該透明誘電体層のうえにAg微粒子から成る層を形成する。さらに、Ag微粒子から成る層の上層に光学膜厚が20nm〜200nmの透明誘電体膜を設ける。
【選択図】 図1

Description

本発明は、建造物、自動車などの窓ガラスに到来する電波および可視光線を効
率よく透過させることができるとともに、太陽の熱線を反射して充分な断熱性を
発揮する電波透過性波長選択板の作製法に関する。
近年、日射を遮蔽することを目的として、導電性薄膜を被覆した窓ガラスや導電性薄膜を塗布したフィルムを貼り付けた窓ガラスなどが普及してきた。
このような窓ガラスを高層ビルに施工すると、TV周波数帯域の電波を反射して、TV画面にゴーストを発生させる原因となる。さらに、屋内に設けたアンテナを用いて衛星放送を受信することが、困難となる。
また、住宅用窓ガラス或いは自動車用窓ガラスとして用いられた場合には、携帯電話による通信が困難となる恐れがある。また、室内アンテナや車両の窓ガラスに設けられたガラスアンテナの利得を低下させ、受信が困難となった。
このような事情から、現状では、ガラス基板に電気抵抗の比較的高い透明な熱線反射膜を被覆して、可視光線の一部を透過させるとともに電波の反射を低減させて電波障害を防止することが行なわれている。
しかしながら、前記の電気抵抗の比較的高い透明な熱線反射膜を被覆する方法
は、電波の反射を低減して電波障害を防止することは出来るが、熱線遮蔽性能が
十分ではなく、生活の快適性において問題があった。
例えば、導電性膜付きガラスの場合には、ガラス基板に被覆させた導電性膜を、入射電波の電界方向に平行な導電性膜の長さを電波の波長の1/20倍以下になるように分割し、電波障害を防止することが知られている(特許文献1)。
また、特許文献1には、導電性膜を分割する方法が示されている。分割する長さが太陽光の大部分を占める可視光、近赤外光の波長より非常に大きいので、これらの光は全て反射してしまい、電波障害を防止し充分な日射遮蔽性能を有する電波透過性波長選択スクリーンガラスは得られるが、可視光の透過性が確保できないという問題がある。さらに、開口部のサイズが2m×3mのように大きな窓では、例えば、衛星放送波を透過させるためには、衛星放送の波長約25mmの1/20、少なくとも導電膜を1.25mm平方に、好ましくは0.5mm平方に切断しなければならない。大面積の導電性膜をこのような小さいセグメントに、例えば、イットリウム−アルミニウム−ガーネットレーザで切断するには、長時間を要し現実的でない等の問題があった。
そこで、本発明者等は、透明基板にAgでなる微粒子を形成した電波透過性波長選択板を発明した(特許文献2)。
前記、電波透過性波長選択板は、Ag粒状層を形成することにより、分光反射率の最大となる波長(以下、共振波長と略す)が近赤外線遮蔽係数の大きい600nm〜1500nmの範囲にシフトされ、可視光線透過率の高い優れた断熱性を有するものである。
なお、近赤外線遮蔽係数は、次の(1)式で定義する値である。
Figure 2006110807
ここで、λ:膜面に入射する電磁波の波長
Rdp:波長λにおける膜面の反射率
Isr:波長λにおけるエアーマス1.5における太陽の放射強度
特開平6−40752号公報 特開2000−281388号公報
特許文献2に示すような、粒状のAgを透明基板に形成してなる電波透過性波長選択ガラスにおいて、近赤外線遮蔽係数(Es)を高くするために、共振波長を600nm〜1500nmの範囲にすると、可視光の波長域において、乱反射が大きくなるという不具合があった。
本発明の電波透過性波長選択板は、透明基板にAg微粒子で成る層を設けてなる電波透過性波長選択板において、透明基板に該透明基板の誘電率より大きい誘電率を有する透明誘電体層が、光学膜厚み20nm〜600nmの範囲で成膜され、該透明誘電体層のうえにAg微粒子から成る層が形成されてなることを特徴とする電波透過性波長選択板である。
また、本発明の電波透過性波長選択板は、前記電波透過性波長選択板において、Ag微粒子から成る層の上層に設けた透明誘電体膜の光学膜厚が20nm〜200nmの範囲であることを特徴とする電波透過性波長選択板である。
本発明の電波透過性波長選択板は、乱反射が少なく、従って、透視性に優れた電波透過性波長選択板を提供する。
本発明に用いる透明基板は、ガラス基板、透明セラミック基板、耐熱性透明プラスチック基板等を用いることができ、建物や、車両の開口部に、本発明の電波透過性波長選択板を用いる場合は、ガラス基板が望ましいが、使用する場所等に応じてガラス基板、透明セラミック基板、耐熱性透明プラスチック基板等を選択することが好ましい。
本発明の電波透過性波長選択板は、図1に示すように、透明基板1に透明誘電体層2を積層し、該透明誘電体層の上にAg微粒子でなるAg粒状層3を形成し、さらに、Ag粒子層3の保護を目的として、Ag粒子層の上に透明誘電体層4を成膜たものである。
透明誘電体層2には、透明基板の誘電率よりも大きい誘電率を有する誘電体を用いることが望ましい。例えば、透明基板に無色透明な酸化物ガラス、例えば、ソーダライム系、無アルカリ、硼珪酸ガラス、石英ガラスなどでなる板状ガラスを用いる場合は、透明誘電体層2には、窒化アルミニウム、窒化珪素、酸化チタン、酸化亜鉛、酸化スズ、酸化アルミニウム、酸化タンタル、酸化タングステン等を好適に用いることができる。
本発明は、Ag微粒子によって近赤外線を反射するものである。このAg微粒子の粒径が増大すると乱反射も大きくなる。透明誘電体層2として、透明基板1の誘電率よりも大きい誘電率を有する誘電体を用いることにより、透明誘電体層の上に成形されたAg微粒子の共振周波数は、乱反射の増大を伴わずに長波長側にシフトすることができる。従って、乱反射の生じやすい、比較的粒径の小さいAg微粒子の場合においても、近赤外線遮蔽係数Esを増大させることができるという効果が得られる。
透明誘電体層2の成膜には、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング等の成膜法を用いる。特に、DCマグネトロンスパッタリング法は生成する層の均一性、生産性の点より好ましい。
透明誘電体層2の厚みに関しては、光学厚みが20nm未満の場合、共振周波数の高周波数側へのシフトが生じないので、透明誘電体層2の光学厚みを20nm以上とすることが好ましい。共振周波数の長波長側へのシフトは、透明誘電体層2を20nm以上の光学膜厚で形成すれば生じるので、透明誘電体層2の光学膜厚は20nm以上いくらでもよいが、生産性の観点から透明誘電体層2の光学厚みは600nm以下とすることが望ましい。
Ag粒子層3は、透明誘電体層2の上にAg膜を形成して、該Ag層を加熱処理することにより、粒状のAg微粒子が形成されて作製できる。
Ag膜は、膜厚を5nm〜1μmの範囲とすることが好ましい。5nm未満では、Ag膜が島状になり、均一に成膜されないので好ましくなく、1μmを越えると透明基板の軟化点以下の加熱温度で、粒状に形成することが困難となり、好ましくない。
Ag膜を成膜する方法については、特に限定するものではなく、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング等の成膜法を用いることができる。特に、Agターゲット材を用いて行うDCマグネトロンスパッタリング法によるAg膜の成膜は、Ag膜の均一性、生産性の点より好ましい。
Ag微粒子の形状は、ドーム状、半球状、数珠状(例えば、ドーム状が連なった形状)、扁平状、鱗片状、針状等であり、光学的な性能から、半球状、ドーム状、扁平状、鱗片状等の形状が好ましい。
Ag微粒子の単位面積あたりの個数は、透明誘電体層2の膜厚およびAg膜の膜厚によって所定の個数にすることができ、また、Ag粒子層の上にAg膜を成膜して加熱することにより、Ag微粒子を大きくすることができる。従って、成膜するAg膜の厚みと、Ag膜の成膜と加熱処理を繰り返すことによって、Ag微粒子の大きさと、透明基板の単位面積あたりのAg微粒子の個数、Ag微粒子層が透明基板を覆う面積の透明基板の面積に対する割合を所望の値にすることができる。
Ag微粒子を形成する加熱方法としては、抵抗加熱、ガス燃焼加熱、レーザ照射、電子線照射、誘導加熱加熱方法を用いることができる。
耐熱性透明プラスチックを透明基板とする場合、該透明基板にほとんど吸収されないレーザービームによる加熱や、導電性物質のみを選択的に加熱できる誘導加熱は、好適な加熱方法である。
加熱処理における透明基板の温度は、150℃以上で、該透明基板の軟化点以下であることが望ましい。
Ag膜を形成した透明基板を、例えば加熱炉などで加熱する場合、Ag微粒子を数時間で成形するために、150℃以上にすることが望ましい。
透明基板の温度が軟化点を越えると、特に、透明基板に酸化物ガラスを用いる場合、Ag原子が透明基板内に拡散し、電磁波の反射による波長選択性が著しく低下する。
なお、Ag膜をレーザまたは電子線などのビームの照射、あるいは誘導加熱で行う場合、透明基板を加熱せずに、Ag膜を選択的に加熱できるので、加熱温度の上限を、Agの沸点2212℃とすることができる。
また、加熱時間は、抵抗加熱、ガス燃焼加熱の場合、数秒から数時間、レーザまたは電子線などのビームの照射、あるいは誘導加熱の場合は、マイクロ秒から数秒とすることが好ましい。なお、加熱後、自然放冷による冷却、あるいは空気を吹き付けるなどの強制放冷で冷却してもよい。
また、Agには、Agの消衰係数が無限小になるプラズマ周波数は、紫外線領域の可視光領域に近い波長域に存在するので、Ag微粒子の厚みと透明誘電体層の膜厚を制御することにより、可視光の透過性が確保できる。
本発明の電波透過性波長選択板は、Ag膜の厚みおよび加熱条件により、Ag微粒子の粒径L、個数、分布等を制御し、近赤外線を選択的に反射するものである。個数は、粒径Lに対して、基板表面の占有面積比として把握してもよい。
近赤外線を選択的に反射するためには、近赤外線遮蔽係数(Es)が、0.3以上であることが好ましい。近赤外線遮蔽係数Esを0.3以上とするには、電波透過性波長選択板の分光反射率の最大値が600nm〜1500nmの波長範囲にあればよい。分光反射率の最大値を示す波長は、Ag微粒子の平均粒径とAg微粒子層が透明基板を被覆する面積の透明基板の面積に対する割合とで調整することができる。
本発明の電波透過性波長選択板の近赤外線遮蔽係数(Es)を0.3以上とするには、Ag微粒子層の占有面積が0.25〜0.6の範囲とすることが望ましく、また、底面積が0.01μm以上のAg微粒子について、平均粒径が150nm〜330nmの範囲にあることが好ましい。
まお、平均粒径とは、1個のAg微粒子の底面積と等価の円の直径で該Ag微粒子の粒径を表し、各Ag微粒子の直径の平均値で定義される値である。
Ag微粒子の占有面積比が0.25未満になると、粒状Ag間の平均距離が粒径の2倍以上となり、粒子間の相互干渉が小さくなり、有効な近赤外線遮蔽係数を有する電波透過性波長選択板が得られない。また、Ag微粒子の平均粒径が150nm未満の場合、分光反射率の最大値が600nm以下となってしまう。
占有面積比が0.6を越えると、ほとんどのAg微粒子が連鎖上となって、電波を透過させるという波長選択の機能が失われてしまう。
Ag微粒子の占有面積比は、例えば、透明基板の法線方向から電界放射型走査電子顕微鏡(FE−SEM)で観察しSEM画像を得、Ag微粒子とAg微粒子の存在しない透明基板の表面とを画像処理でSEM画像を2値化して、Ag微粒子の総面積をSEM画像全体の面積で除して、求めることができる。
また、Ag微粒子の粒径Lは、SEM画像を2値化して得られる画像でAg微粒子の個数を求め、該個数でAg微粒子の総面積を除し、求められた面積を同面積の円として、その円の直径をAg微粒子の粒径としてもよい。
従って、例えばAg微粒子の形状がドーム状の場合は、平均粒径Lはドームの底面の直径に対応する。
本発明の電波透過性波長選択板において、Ag微粒子層3の上にも透明誘電体層4を設けることが望ましい。
Ag微粒子層3の上に形成される透明誘電体層4は、Ag微粒子層3の変質を防止する保護膜として有効なばかりでなく、Ag微粒子層3の共振周波数を長波長側にシフトする効果を有している。
この透明誘電体層4は金属の酸化物あるいは窒化部とを好適に用いることができ、Ag微粒子を形成した後、該Ag微粒子の上に透明誘電体層4を積層する。
なお、Ag微粒子上に形成されるに透明誘電体層4は、透明基板上に成膜した透明誘電体層3との相互作用によって可視光透過率が高めることができ、Al、Siの窒化物、Al、Si、Zn、Sn、Ti、Ta、Inの酸化物から選ばれる1種以上の誘電体を1層以上で成膜したものが望ましい。
Ag微粒子層3の上に成膜する透明誘電体層4の成膜方法については、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング等の成膜法を用いる。特に、DCマグネトロンスパッタリング法は生成する層の均一性、生産性の点より好ましい。
Ag微粒子層3の上層に設ける透明誘電体層4の光学膜厚は、光学膜厚が20nm未満ではAg微粒子層の共振周波数が長波長側にシフトすることがなく、200nmを越えると長波長へのシフトする量が変化しなくなるので、20nm〜200nmの範囲とすることが好ましい。
なお、本発明の電波透過性波長選択板は、透明誘電体層2によって共振周波数を長波長側へシフトさせるので、Ag微粒子の粒径を大きくすることをせずに近赤外線遮蔽係数を大ききすることができ、従って、Ag微粒子による乱反射を問題のないレベルにすることが可能となる。
電波透過性波長選択板において、次の(2)式で定義する乱反射比(Hr)は0.3以下とすることが好ましい。
Figure 2006110807
ここで、Rnは波長550nmにおける膜面の正反射率であり、Rtは波長550nmにおける膜面の乱反射を含む反射率。
乱反射比が0.3を越えると、乱反射のため白濁したようになり、透視が困難で実用ができなくなる。
実施例1
本発明の電波透過性波長選択板は次に示す手順で製造した。透明基板としてフロートガラス板を用いた。
(1)先ず、洗浄した厚さ3mmのフロートガラス板を透明基板として用い、該当明記板をDCマグネトロンスパッタリング装置内に入れ、槽内の真空度が2〜4×10−4Paに達するまで排気した。なお、ターゲットとフロートガラス板との距離は90mmにした。
(2)次に、Alターゲット(直径152mm、厚み5mm)にDC200Wの電力で印加して放電させ、光学膜厚20nmの窒化アルミニウム膜でなる透明誘電体層を成膜した。成膜中、Arと窒素の混合ガスの圧力を1Paに制御した。
(3)次に、Agターゲット(直径152mm、厚み5mm)にDC30Wの電力で印加して放電させ、膜厚12.7nmのAg膜を成膜した。成膜中、Arガスの圧力を1Paに制御した。
(4)次いで、窒化アルミニウム膜とAg膜を積層した透明基板を雰囲気温度500℃の恒温炉で5分間加熱したのち、炉外に取り出し放冷することにより、透明基板の表面に、Ag微粒子層を形成して、電波透過性波長選択板を作製した。
なお、透明基板(フロートガラス)の比誘電率は2.3であり、透明誘電体層(窒化ルミニウム)膜の比誘電率は4.0である。
実施例2
窒化アルミニウムの光学膜厚を40nmとした他は全て実施例と同様にして電波透過性波長選択板を作製した。
比較例1
窒化アルミニウムの誘電体膜を形成しないことの他は全て、実施例1と同様にして電波透過性波長選択板を作製した。
比較例2
窒化アルミニウムの光学膜厚を10nmとした他は全て実施例と同様にして電波透過性波長選択板を作製した。
実施例1、2および比較例1、2の電波透過性波長選択板を、日立製作所製U−4000型自記分光光度計を用いて波長300〜2500nmの範囲で、分光反射率、分光透過率を測定し、表1の結果を得た。
Figure 2006110807
実施例1および2では、透明誘電体層の存在により、比較例1に対して共振周波数が100nm程長波長側にシフトした。しかし、比較例2のように、透明誘電体層が10nmでは、共振波長のシフトは生じなかった。
実施例3
透明誘電体層として形成した窒化アルミニウム膜の光学膜厚を200nmとした以外は実施例1と同様にして電波透過性波長選択板を作製した。
比較例3
誘電体相を形成せずに実施例3と同様の赤外線遮蔽係数とするため、実施例1とは誘電体相を形成しないことと、Ag膜の形成とAg膜の加熱処理を繰り返してAg微粒子の形成した以外は、実施例1と同様にして電波透過性波長選択板を作製した。
Ag微粒子の形成は次のようにして行った。
(1)Agターゲット(直径152mm、厚み5mm)のエロージョン域にPdチップ(10mm×10mm×1mmの直方体)4個を等間隔に載置した。このターゲットにDC30Wの電力で印加して放電させ、膜厚13nmのAg−Pd混合膜を成膜した。成膜中、Arガスの圧力を1Paに制御した。
(2)次いで、Ag混合膜を成膜した透明基板を雰囲気温度500℃の恒温炉で5分間加熱したのち、炉外に取り出し放冷することにより、透明基板の表面に、粒状のAg合金を形成した。
(3)次いで、Agターゲット(直径152mm、厚み5mm)にDC30Wの電力で印加して放電させ、粒状のAg合金に膜厚13nmのAg膜を積層した。なお、成膜中の雰囲気は、圧力を1PaのArガスとした。
(4)次いで、Ag膜を積層したものを雰囲気温度450℃の恒温炉で5分間加熱した後、炉外に取り出し放冷することにより、基板ガラス表面にAg微粒子を作製した。
(5)次いで、(3)と(4)の工程をさらに1回繰り返して、Ag微粒子の粒径を増大させた。
実施例3と比較例4の近赤外遮蔽係数と乱反射係数は表2の様になり、透明誘電体層による共振周波数の長波長側へのシフトのある実施例3は、比較例3と比較し、乱反射比が小さく、実用に問題のない乱反射であった。比較例3は、乱反射がひどく、白濁として観察され、実用に問題があった。
Figure 2006110807
本発明の電波透過性波長選択板の構成を模式的に示す断面図である。
符号の説明
1 透明基板
2 透明誘電体層
3 Ag微粒子層
4 透明誘電体層

Claims (2)

  1. 透明基板にAg微粒子で成る層を設けてなる電波透過性波長選択板において、透明基板に該透明基板の誘電率より大きい誘電率を有する透明誘電体層が、光学膜厚み20nm〜600nmの範囲で成膜され、該誘電体層のうえにAg微粒子から成る層が形成されてなることを特徴とする電波透過性波長選択板。
  2. Ag微粒子から成る層の上層に設けた透明誘電体層の光学膜厚が20nm〜200nmの範囲であることを特徴とする請求項1記載の電波透過性波長選択板。
JP2004299250A 2004-10-13 2004-10-13 電波透過性波長選択板 Pending JP2006110807A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299250A JP2006110807A (ja) 2004-10-13 2004-10-13 電波透過性波長選択板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299250A JP2006110807A (ja) 2004-10-13 2004-10-13 電波透過性波長選択板

Publications (1)

Publication Number Publication Date
JP2006110807A true JP2006110807A (ja) 2006-04-27

Family

ID=36379724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299250A Pending JP2006110807A (ja) 2004-10-13 2004-10-13 電波透過性波長選択板

Country Status (1)

Country Link
JP (1) JP2006110807A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500597A (ja) * 2013-08-20 2017-01-05 サン−ゴバン グラス フランス 不連続な金属薄層を含むコーティングを備えた基材を得るための方法
US9971077B2 (en) 2012-08-31 2018-05-15 Fujifilm Corporation Multilayer structure and laminate structure
CN112521027A (zh) * 2020-12-07 2021-03-19 魏伟兴 一种高透型低辐射镀膜玻璃及其制备工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9971077B2 (en) 2012-08-31 2018-05-15 Fujifilm Corporation Multilayer structure and laminate structure
JP2017500597A (ja) * 2013-08-20 2017-01-05 サン−ゴバン グラス フランス 不連続な金属薄層を含むコーティングを備えた基材を得るための方法
US9587303B2 (en) 2013-08-20 2017-03-07 Saint-Gobain Glass France Method for obtaining a substrate provided with a coating comprising a discontinuous thin metal layer
CN112521027A (zh) * 2020-12-07 2021-03-19 魏伟兴 一种高透型低辐射镀膜玻璃及其制备工艺
CN112521027B (zh) * 2020-12-07 2023-05-23 毕节明钧玻璃股份有限公司 一种高透型低辐射镀膜玻璃及其制备工艺

Similar Documents

Publication Publication Date Title
JP6526118B2 (ja) 銀層の熱処理方法
RU2666808C2 (ru) Окно с обработанным уф-излучением низкоэмиссионным покрытием и способ его изготовления
US20100132756A1 (en) Visible-light transmitting solar-heat reflective film
US6689256B2 (en) Frequency selective plate and method for producing same
EA017494B1 (ru) Способ нанесения тонкого слоя и получаемый с использованием этого способа продукт
JP6549044B2 (ja) 自動車用遮熱合わせガラス
CN1356563A (zh) 耐热反光层、反光层制的叠层片和带有二者之一的液晶显示器
JP4371690B2 (ja) 電波透過性波長選択板およびその作製法
JP3454422B2 (ja) 電波透過性波長選択基板およびその製造法
US20180354847A1 (en) Material comprising a functional layer made from silver, crystallised on a nickel oxide layer
EP1254871B1 (en) Frequency selective plate and method for producing same
JP2020002459A (ja) 複合タングステン酸化物膜及びその製造方法、並びに該膜を有する膜形成基材及び物品
JP2006110807A (ja) 電波透過性波長選択板
JP4097908B2 (ja) 電波透過性波長選択膜の製法
JP2006110808A (ja) 電波透過性波長選択板
JP4037135B2 (ja) 電波透過性波長選択膜の製法
JP3734376B2 (ja) 電波透過性波長選択ガラスおよびその製法
US20220221636A1 (en) Energy-efficient window coatings transmissible to wireless communication signals and methods of fabricating thereof
JPH0550548A (ja) 電波低反射特性を有する熱線反射ガラス
KR101642654B1 (ko) 저방사 기재 및 이의 제조방법
JPH07333423A (ja) 選択透過膜
KR102579825B1 (ko) 투명 적외선 선택적 방사체
JP2000344547A (ja) 電波透過性波長選択基板の製造方法
JP2007161584A (ja) 電波透過性波長選択膜の製法
JP2000344548A (ja) 電波透過性波長選択基板およびその製法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424