CN105449504B - 激光振荡装置 - Google Patents

激光振荡装置 Download PDF

Info

Publication number
CN105449504B
CN105449504B CN201510596577.8A CN201510596577A CN105449504B CN 105449504 B CN105449504 B CN 105449504B CN 201510596577 A CN201510596577 A CN 201510596577A CN 105449504 B CN105449504 B CN 105449504B
Authority
CN
China
Prior art keywords
laser
laser medium
laser beam
holder
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510596577.8A
Other languages
English (en)
Other versions
CN105449504A (zh
Inventor
江野泰造
桐生德康
吉村雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOP Co
Original Assignee
TOP Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOP Co filed Critical TOP Co
Publication of CN105449504A publication Critical patent/CN105449504A/zh
Application granted granted Critical
Publication of CN105449504B publication Critical patent/CN105449504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06821Stabilising other output parameters than intensity or frequency, e.g. phase, polarisation or far-fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1308Stabilisation of the polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0601Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising an absorbing region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06236Controlling other output parameters than intensity or frequency controlling the polarisation, e.g. TM/TE polarisation switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

本发明涉及激光振荡装置。构成为具备:发光部,照射抽运激光光束;激光介质,吸收所述抽运激光光束,放出自然放出光;可饱和吸收体,吸收所述自然放出光,射出脉冲光;以及支架,以紧贴状态保持所述激光介质,该支架的与所述激光介质的至少一个面紧贴的部分为金属制,向所述激光介质的与所述支架紧贴的侧的缘部照射所述抽运激光光束。

Description

激光振荡装置
技术领域
本发明涉及将半导体激光器作为抽运(pump)源的激光振荡装置。
背景技术
作为在分光测量、形状测量、非线性晶体抽运等中利用的激光振荡装置,存在例如使用了Nd:YAG等各向同性激光介质的Q开关激光装置。Q开关激光装置由射出规定波长的激光光束的发光部和光谐振器构成。该光谐振器由第一电介质反射体和第二电介质反射体以及配置在第一电介质反射体与第二电介质反射体之间的激光晶体和可饱和吸收体构成。
在Q开关激光装置中,利用从发光部射出的抽运激光光束对激光晶体进行抽运,从激光晶体放出的自然放出光被可饱和吸收体吸收。伴随着自然放出光的吸收,可饱和吸收体的抽运级的电子密度逐渐增加,电子密度饱和,由此,可饱和吸收体透明化。通过可饱和吸收体透明化,从而产生激光振荡而射出脉冲光。
在进行脉冲光的波长变换或利用脉冲光进行形状测定的情况下,所射出的脉冲光的极化方向一致是优选的。然而,上述的Q开关激光装置具有脉冲光在正交的方向上交替地极化来射出的极化特性,因此,以往,通过在光谐振器内设置极化元件等来控制脉冲光的极化方向。
发明内容
本发明的目的在于提供一种能够容易地使呈脉冲状发光的激光光束的极化方向同一方向化的激光振荡装置。
为了达成上述目的,本发明的激光振荡装置构成为具备:发光部,照射抽运激光光束;激光介质,吸收所述抽运激光光束,放出自然放出光;可饱和吸收体,吸收所述自然放出光,射出脉冲光;以及支架,以紧贴状态保持所述激光介质,该支架的与所述激光介质的至少一个面紧贴的部分为金属制,向所述激光介质的与所述支架紧贴的侧的缘部照射所述抽运激光光束。
此外,本发明的激光振荡装置是,在所述支架设置有冷却单元。
进而,此外,本发明的激光振荡装置是,在所述发光部设置照射位置变更单元,能利用该照射位置变更单元来变更所述抽运激光光束相对于所述激光介质的照射位置。
根据本发明,构成为具备:发光部,照射抽运激光光束;激光介质,吸收所述抽运激光光束,放出自然放出光;可饱和吸收体,吸收所述自然放出光,射出脉冲光;以及支架,以紧贴状态保持所述激光介质,该支架的与所述激光介质的至少一个面紧贴的部分为金属制,向所述激光介质的与所述支架紧贴的侧的缘部照射所述抽运激光光束,因此,能够在所述激光介质产生大的热致双折射,而容易地使所述脉冲光的极化方向同一方向化,并且,不需要为了使该脉冲光的极化方向同一方向化而另外设置光学构件,能够谋求装置的小型化和成本的减少。
此外,根据本发明,在所述支架设置有冷却单元,因此,能够使形成在所述激光介质的热致双折射更大,从而能够使从所述发光部照射的所述抽运激光光束的输出减少。
进而,此外,根据本发明,在所述发光部设置照射位置变更单元,能利用该照射位置变更单元来变更所述抽运激光光束相对于所述激光介质的照射位置,因此,能够容易地变更所述抽运激光光束的照射位置,从而能够得到期望的极化方向的所述脉冲光。
附图说明
图1(A)示出激光介质与可饱和吸收体为分开的情况下的激光振荡装置,图1(B)示出激光介质与可饱和吸收体为一体的情况下的激光振荡装置。
图2是说明了将抽运激光光束照射到激光介质的中心部的情况下的脉冲光的极化方向的说明图。
图3是示出将抽运激光光束照射到激光介质时的该激光介质的温度分布的说明图。
图4是说明了将抽运激光光束照射到激光介质的下端部的情况下的脉冲光的极化方向的说明图。
图5(A)是说明了将抽运激光光束照射到激光介质的左侧侧端部的情况下的脉冲光的极化方向的说明图,图5(B)是说明了将抽运激光光束照射到激光介质的右侧侧端部的情况下的脉冲光的极化方向的说明图。
图6(A)~图6(L)是说明了将抽运激光光束照射到激光介质时的各种条件的说明图。
具体实施方式
以下,参照附图并说明本发明的实施例。
首先,在图1(A)、图1(B)中,对本发明的实施例的激光振荡装置进行说明。再有,作为本实施例中的激光振荡装置而使用Q开关激光装置。
在图1(A)中,1表示激光振荡装置1,该激光振荡装置1由发光部2和光谐振部3构成。在前述发光部2设置有照射位置变更单元10。此外,前述发光部2例如由半导体激光器等射出激光光束的发光器(未图示)和聚光透镜(未图示)等构成,射出规定波长的抽运激光光束4。
此外,前述光谐振部3由作为第一光学晶体的激光介质5、作为第二光学晶体的可饱和吸收体6、形成在前述激光介质5的前述发光部2侧的端面的第一谐振部反射镜7、以及设置在前述可饱和吸收体6的射出侧的第二谐振部反射镜8构成。
前述光谐振部3被配置为前述激光介质5的<111>(参照图2)轴、前述可饱和吸收体6的<100>(参照图2)轴与前述抽运激光光束4的光轴为平行,射出脉冲光9。在图1(A)中,前述激光介质5与前述可饱和吸收体6为分开。前述激光介质5例如由作为冷却单元的金属制的支架11所保持并且通过热传导性粘接剂等而被紧贴。
作为前述激光介质5,例如使用Nd3+:YAG晶体。前述激光介质5由波长808nm的前述抽运激光光束4抽运,对入射的该抽运激光光束4进行放大而放出波长1064nm的自然放出光(光子)12。
此外,作为前述可饱和吸收体6,例如使用Cr4+:YAG晶体。前述可饱和吸收体6具有吸收从前述激光介质5放出的前述自然放出光12的性质。此外,前述可饱和吸收体6具有在伴随着前述自然放出光12的吸收而透射率增加并且电子密度增大而饱和了的时候透明化的性质。通过前述可饱和吸收体6透明化,而从该可饱和吸收体6射出波长1064nm的前述脉冲光9。
前述第一谐振部反射镜7针对来自前述发光部2的前述抽运激光光束4为高透射,并针对从前述激光介质5放出的前述自然放出光12为高反射。此外,从前述第二谐振部反射镜8射出前述脉冲光9。
此外,作为前述照射位置变更单元10,存在用螺栓等调整前述发光部2的高度此外调整倾斜度的方法、或者设置弹性构件并对弹性构件施加弹性变形由此调整前述发光部2的倾斜度的方法等。利用前述照射位置变更单元10来变更前述发光部2的高度、倾斜度,由此,能够变更入射到前述激光介质5的前述抽运激光光束4的照射位置。
当从前述发光部2照射前述抽运激光光束4时,该抽运激光光束4透射前述第一谐振部反射镜7而入射到前述激光介质5。利用前述抽运激光光束4对前述激光介质5进行抽运,前述抽运激光光束4被吸收、放大而作为前述自然放出光12入射到前述可饱和吸收体6。当伴随着前述自然放出光12的吸收而前述可饱和吸收体6的电子密度增大而饱和时,该可饱和吸收体6透明化,以透射前述第二谐振部反射镜8的方式射出前述脉冲光。
此外,在图1(B)中,前述光谐振部3为前述激光介质5和前述可饱和吸收体6通过光学接触、热扩散接合等一体化后的结构。前述激光介质5和前述可饱和吸收体6由兼作冷却单元的金属制的支架13保持。前述第一谐振部反射镜7被设置在前述激光介质5的入射面,前述第二谐振部反射镜8被设置在前述可饱和吸收体6的射出面。
图1(B)的情况也与图1(A)的情况同样,当从前述发光部2照射前述抽运激光光束4时,该抽运激光光束4透射前述第一谐振部反射镜7而入射到前述激光介质5。利用前述抽运激光光束4对前述激光介质5进行抽运,此时产生的前述自然放出光(光子)12的一部分入射到前述饱和吸收体6。此外,当伴随着由该可饱和吸收体6的前述自然放出光12的吸收而前述可饱和吸收体6的电子密度增大而饱和时,该可饱和吸收体6透明化,以透射前述第二谐振部反射镜8的方式射出前述脉冲光9。
接着,在图2中,对前述脉冲光9的极化方向进行说明。再有,在图2中,示出了前述激光介质5和前述可饱和吸收体6为分开的情况。
在图2中,前述支架11由剖面L字状且金属制的下支架部14、剖面矩形且金属制的横支架部15和剖面矩形且树脂制的上支架部16构成。前述激光介质5被配置在前述下支架部14的角部,被前述横支架部15从横向按压,进而,上部被前述上支架部16闭塞,由此,被前述支架11保持。此外,前述激光介质5与前述下支架部14、前述激光介质5与前述横支架部15、前述激光介质5与前述上支架部15分别通过热传导性粘接剂粘接。
此外,图3是示出将前述抽运激光光束4照射到前述激光介质5的中心部的照射位置19a的情况(参照图2)的前述激光介质5内部的温度分布的纵剖面。
在图3中,A表示温度最高的区域,F表示温度最低的区域,从A朝向F温度逐渐变低。如图3所示那样,与金属制的下支架部14相接的下部相比于与树脂制的上支架部16相接的上部被强烈地冷却,温度急剧地降低,温度梯度(gradient)变大。因此,在前述激光介质5中,由于中心部与下部的热膨胀的差而产生热应力,产生热致双折射(thermalbirefringence)。
在该状态下,在由前述激光介质5照射的前述自然放出光12入射到前述可饱和吸收体6的情况下,如图2所示那样,从该可饱和吸收体6交替地产生P极化脉冲9a和S极化脉冲9b,前述脉冲光9的极化方向不稳定。
在本发明中,发明人等发现:通过变更照射到前述激光介质5的前述抽运激光光束4的照射位置,从而能够实现前述脉冲光9的极化方向的同一方向化。以下,在图4、图5(A)、图5(B)、图6(A)~图6(L)中,对前述脉冲光9的极化方向的同一方向化进行说明。
图4示出将前述抽运激光光束4照射到前述激光介质5的入射面的下端部的照射位置19b的情况。将前述抽运激光光束4照射到前述照射位置19b,由此,从前述可饱和吸收体6射出的前述脉冲光9全部为S极化脉冲9b,前述脉冲光9的极化方向全部同一方向化。
作为使极化方向同一化的理由,前述激光介质5的下表面与作为冷却单元的金属制的下支架部14接触,前述照射位置19变为冷却单元的附近,因此,在前述激光介质5的下端部产生与图3所示的情况相比更急剧的温度梯度。因此,考虑在前述激光介质5产生更大的热致双折射,通过该大的热致双折射使前述脉冲光9的极化方向同一方向化。
此外,图5(A)、图5(B)分别示出将前述抽运激光光束4照射到前述激光介质5的入射面的两侧端部的照射位置19c、19d的情况。在将前述抽运激光光束4照射到前述照射位置19c、19d的情况下,从前述可饱和吸收体6射出的前述脉冲光9全部为P极化脉冲9a,前述脉冲光9的极化方向全部同一方向化。
在图5(A)中,相对于前述激光介质5的纸面左侧的侧面与作为冷却单元的金属制的前述下支架部14接触,通过该下支架部14冷却前述激光介质5,产生与在图4中示出的情况同样急剧的热梯度。此外,在图5(B)中,相对于前述激光介质5的纸面右侧的侧面与作为冷却单元的金属制的前述横支架部15接触,通过该横支架部15冷却前述激光介质5,产生与在图4中示出的情况同样急剧的热梯度。
因此,如在图5(A)、图5(B)中示出的那样,即使在将前述抽运激光光束4照射到前述照射位置19c、19d的情况下,也考虑在前述激光介质5产生大的热致双折射,通过该大的热致双折射,使前述脉冲光9的极化方向同一方向化。
再有,在将前述抽运激光光束4照射到前述激光介质5的入射面的上端部的情况下,从前述可饱和吸收体6射出的前述脉冲光9的极化方向未被同一方向化。考虑这是因为:与前述激光介质5的上表面接触的前述上支架部16为树脂制,前述激光介质5的冷却效果低,因此,在该激光介质5不形成急剧的温度梯度,在该激光介质5不产生大的热致双折射。
图6(A)~图6(L)示出了在各种条件下将前述抽运激光光束4照射到前述激光介质5的情况。
再有,在图6(A)~图6(L)中,17表示形成在前述下支架部14的角部的切槽部,18表示形成在前述横支架部15的下端的切槽部。通过形成前述切槽部17、18,从而能够防止R在对前述横支架部15机械加工时残留。因此,在将前述激光介质5安装于前述支架11时,能够可靠地使该激光介质5的下表面与前述下支架部14紧贴,此外,能够可靠地使前述激光介质5的左侧面与前述下支架部14紧贴,进而,能够可靠地使前述激光介质5的右侧面与前述横支架部15紧贴。
在图6(A)~图6(C)中,使用前述激光介质5的样品5a,在图6(D)~图6(F)中,使用前述激光介质5的样品5b,在图6(G)~图6(I)中使用前述激光介质5的样品5c,在图6(J)~图6(L)中使用前述激光介质5的样品5d。
此外,在图6(A)、图6(D)、图6(G)、图6(J)中,将照射到前述样品5a~5d的前述抽运激光光束4的光点直径设为70μm,在图6(B)、图6(E)、图6(H)、图6(K)中,将照射到前述样品5a~5d的前述抽运激光光束4的光点直径设为60μm,在图6(C)、图6(F)、图6(I)、图6(L)中,将照射到前述样品5a~5d的前述抽运激光光束4的光点直径设为50μm。
进而,图6(A)~图6(L)的哪种情况都示出为了在前述激光介质5产生大的热致双折射而使前述抽运激光光束4的照射位置19为前述激光介质5的侧端部或下端部即与作为冷却单元的前述下支架部14、前述横支架部15接近之处的情况。
在上述的图6(A)~图6(L)的各条件下从前述发光部2(参照图1)照射前述抽运激光光束4的情况下,从前述可饱和吸收体6射出的前述脉冲光9全部为前述P极化脉冲9a或全部为前述S极化脉冲9b,前述脉冲光9的极化方向全部同一方向化。
因此,可知:在作为前述激光介质5而使用Nd3+:YAG晶体的情况下,不管各样品5a~5d的个体差如何,此外,不管所照射的前述抽运激光光束4的光点直径如何,前述脉冲光9的极化方向被同一化。
如上述那样,在本实施例中,向前述激光介质5的入射面的端部即与作为冷却单元的金属制的前述下支架部14、前述横支架部15紧贴的面的附近照射前述抽运激光光束4,在前述激光介质5产生急剧的热梯度而产生大的热致双折射,由此,能够使从前述可饱和吸收体6射出的前述脉冲光9的极化方向同一方向化。
因此,只要通过前述照射位置变更单元10使前述发光部2倾斜并选择前述抽运激光光束4相对于前述激光介质5的前述照射位置19,就能够容易地进行前述脉冲光9的极化方向的同一方向化、极化方向的切换,从而能够得到期望的极化方向的前述脉冲光9。
此外,不需要为了使该脉冲光9的极化方向同一方向化而在前述光谐振部3另外设置光学构件,因此,能够谋求前述激光振荡装置1的小型化,并且,谋求成本的减少。
此外,越使前述激光介质5冷却,形成在该激光介质5的热梯度越大,热致双折射越大。在前述支架11另外设置珀耳帖(Peltier)元件等冷却单元,通过该冷却单元进一步冷却前述支架11,由此,能够使形成在前述激光介质5的热梯度、热致双折射更大。
再有,在本实施例中,将该抽运激光光束4照射到前述激光介质5的下部或两侧部,但是,在将前述上支架部16做成金属制的情况下,也可以将前述抽运激光光束4照射到前述激光介质5的上部。此外,为了在该激光介质5产生热致双折射,只要向该激光介质5的与金属的接触面附近照射前述抽运激光光束4即可,因此,也可以仅使前述支架11的与前述激光介质5的任一面紧贴的部分为金属制。即,只要前述支架11的与前述激光介质5的至少一个面紧贴的部分为金属制即可。
此外,在本实施例中,作为前述可饱和吸收体6而使用Cr4+:YAG晶体,但是,也可以使用V3+:YAG晶体、GaAs(砷化镓)来作为可饱和吸收体。

Claims (3)

1.一种激光振荡装置,其中,构成为具备:发光部,照射抽运激光光束;激光介质,吸收所述抽运激光光束,放出自然放出光;可饱和吸收体,吸收所述自然放出光,射出脉冲光;以及支架,以紧贴状态保持所述激光介质,该支架的与所述激光介质的至少一个面紧贴的部分为金属制,向所述激光介质的与所述支架紧贴的侧的缘部且使射出的所述激光光束的极化方向同一方向化的位置照射所述抽运激光光束。
2.根据权利要求1所述的激光振荡装置,其中,在所述支架设置有冷却单元。
3.根据权利要求1或权利要求2所述的激光振荡装置,其中,在所述发光部设置照射位置变更单元,能利用该照射位置变更单元来变更所述抽运激光光束相对于所述激光介质的照射位置。
CN201510596577.8A 2014-09-18 2015-09-18 激光振荡装置 Active CN105449504B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014189674A JP6456080B2 (ja) 2014-09-18 2014-09-18 レーザ発振装置
JP2014-189674 2014-09-18

Publications (2)

Publication Number Publication Date
CN105449504A CN105449504A (zh) 2016-03-30
CN105449504B true CN105449504B (zh) 2019-12-24

Family

ID=53886951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510596577.8A Active CN105449504B (zh) 2014-09-18 2015-09-18 激光振荡装置

Country Status (6)

Country Link
US (1) US9379519B2 (zh)
EP (1) EP3016217B1 (zh)
JP (1) JP6456080B2 (zh)
KR (1) KR20160033593A (zh)
CN (1) CN105449504B (zh)
RU (1) RU2015139691A (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116568B2 (ja) * 2018-03-27 2022-08-10 株式会社トプコン レーザ媒質の選別方法及び照射位置検出装置
JP7116567B2 (ja) * 2018-03-27 2022-08-10 株式会社トプコン 照射位置検出装置
US10622780B2 (en) * 2018-06-22 2020-04-14 Candela Corporation Handpiece with a microchip laser
US11881676B2 (en) * 2019-01-31 2024-01-23 L3Harris Technologies, Inc. End-pumped Q-switched laser
CN109818246B (zh) * 2019-04-10 2020-03-13 中国科学院国家天文台长春人造卫星观测站 一种制冷型可饱和吸收体器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222869B1 (en) * 1998-06-03 2001-04-24 Iridex Corporation Aspheric lensing control for high power butt-coupled end-pumped laser
JP2005093624A (ja) * 2003-09-17 2005-04-07 Showa Optronics Co Ltd 半導体レーザ励起固体レーザ
US6950449B2 (en) * 2001-09-10 2005-09-27 Hamamatsu Photonics K.K. Passively Q-switched laser
CN103811989A (zh) * 2014-01-24 2014-05-21 深圳市创鑫激光技术有限公司 用于大功率脉冲光纤激光器的光纤耦合声光q开关

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209132A (ja) * 1992-08-20 1994-07-26 Fuji Photo Film Co Ltd 固体レーザー
JP4407039B2 (ja) * 2000-11-02 2010-02-03 三菱電機株式会社 固体レーザ装置および固体レーザ装置システム
JP2003158325A (ja) * 2001-09-10 2003-05-30 Hamamatsu Photonics Kk 受動qスイッチレーザ
JP3585891B2 (ja) 2002-02-01 2004-11-04 独立行政法人 科学技術振興機構 レーザー素子
JP4530348B2 (ja) * 2004-09-06 2010-08-25 大学共同利用機関法人自然科学研究機構 受動qスイッチレーザ装置
JP2006310743A (ja) * 2005-03-31 2006-11-09 Topcon Corp レーザ発振装置
JP2006286735A (ja) 2005-03-31 2006-10-19 Topcon Corp 固体レーザ発振装置
DE102007041531A1 (de) * 2007-08-31 2009-03-05 Robert Bosch Gmbh Lasereinrichtung und Betriebsverfahren hierfür
CN102349203B (zh) * 2010-01-12 2014-01-08 松下电器产业株式会社 激光光源、波长转换激光光源及图像显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222869B1 (en) * 1998-06-03 2001-04-24 Iridex Corporation Aspheric lensing control for high power butt-coupled end-pumped laser
US6950449B2 (en) * 2001-09-10 2005-09-27 Hamamatsu Photonics K.K. Passively Q-switched laser
JP2005093624A (ja) * 2003-09-17 2005-04-07 Showa Optronics Co Ltd 半導体レーザ励起固体レーザ
CN103811989A (zh) * 2014-01-24 2014-05-21 深圳市创鑫激光技术有限公司 用于大功率脉冲光纤激光器的光纤耦合声光q开关

Also Published As

Publication number Publication date
RU2015139691A (ru) 2017-03-22
EP3016217A1 (en) 2016-05-04
EP3016217B1 (en) 2019-12-25
JP2016063063A (ja) 2016-04-25
US20160087403A1 (en) 2016-03-24
KR20160033593A (ko) 2016-03-28
US9379519B2 (en) 2016-06-28
CN105449504A (zh) 2016-03-30
JP6456080B2 (ja) 2019-01-23

Similar Documents

Publication Publication Date Title
CN105449504B (zh) 激光振荡装置
US10283928B2 (en) Compact mode-locked laser module
JP2014003262A (ja) 異方性レーザー結晶を用いたレーザー装置
TWI791017B (zh) 被動q開關脈衝雷射裝置、加工裝置及醫療裝置
JP2015084390A (ja) Qスイッチレーザー装置
CN113423529A (zh) 激光加工机、加工方法和激光光源
WO2020137136A1 (ja) レーザ装置
JP2015109356A (ja) レーザ装置、レーザ装置の製造方法、レーザ加工機及び表示装置
JP2019062229A (ja) レーザ発振装置
Gaponenko et al. Passively $ Q $-Switched Thulium Microchip Laser
US10056730B2 (en) Selective amplifier
US8315283B2 (en) Wavelength selectable laser systems and related methods
CN111313214A (zh) 输出脉宽可调激光器及其设置方法
CN110311292B (zh) 照射位置检测装置
KR102310237B1 (ko) 의료용 펄스 레이저 발생기
US5381433A (en) 1.94 μm laser apparatus, system and method using a thulium-doped yttrium-lithium-fluoride laser crystal pumped with a diode laser
JP6332055B2 (ja) パルスレーザ装置
CN211743655U (zh) 输出脉宽可调激光器
KR102436507B1 (ko) 편광 포화 흡수체 및 그를 포함하는 펄스 레이저 장치
JP6919287B2 (ja) 固体レーザ装置
WO2019208658A1 (ja) 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法
JP2007316206A (ja) 半導体可飽和吸収体ミラー、半導体可飽和吸収体ミラーの製造方法、レーザ光発生装置およびレーザ光応用システム
Barbet et al. LED side-pumped Nd3+: YVO4 laser at room temperature
JP2015119012A (ja) 固体レーザ装置およびそれを用いた非線形計測装置
JP6308389B2 (ja) レーザ媒体、レーザ装置、レーザ加工機、表示装置及びレーザ媒体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant