CN105386026B - 多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法 - Google Patents

多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法 Download PDF

Info

Publication number
CN105386026B
CN105386026B CN201510750950.0A CN201510750950A CN105386026B CN 105386026 B CN105386026 B CN 105386026B CN 201510750950 A CN201510750950 A CN 201510750950A CN 105386026 B CN105386026 B CN 105386026B
Authority
CN
China
Prior art keywords
porous
powder
nano
prepared
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510750950.0A
Other languages
English (en)
Other versions
CN105386026A (zh
Inventor
林均品
王帆
梁永锋
孙大洋
郝国建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201510750950.0A priority Critical patent/CN105386026B/zh
Publication of CN105386026A publication Critical patent/CN105386026A/zh
Application granted granted Critical
Publication of CN105386026B publication Critical patent/CN105386026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/64Treatment of refractory metals or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种在多孔合金骨架表面制备γ‑Al2O3纳米多孔层的方法,属于材料制备工艺技术领域。本发明的目的在于提供一种新的纳米多孔制备方法,在高Nb‑TiAl多孔合金骨架表面生成纳米多孔层,节省成本,降低能耗,减少污染。方法:一、制备Ti‑(40‑50)Al‑(5‑10)Nb多孔合金材料;二、配制KOH溶液;三、将多孔合金浸泡在KOH溶液中;四、取出材料真空干燥。本发明制备的纳米多孔层厚度200nm,孔径60±10nm,增加了多孔合金材料的比表面积,增强了过滤、吸附性和耐腐蚀性能,对高Nb‑TiAl多孔合金的实际应用具有重要的意义。

Description

多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法
所属技术领域
本发明涉及一种在多孔合金骨架表面制备γ-Al2O3纳米多孔层的方法,属于材料制备工艺技术领域。
背景技术
高Nb-TiAl多孔合金结合了高Nb-TiAl合金的耐高温、高比强度、抗氧化、抗酸碱腐蚀的优点,同时多孔的结构增加该材料应用于过滤、吸附、催化载体等领域的可能性。目前采用粉末冶金法制备高Nb-TiAl多孔合金的技术较为成熟。
目前对于纳米多孔的制备方法主要有溶胶凝胶法、电化学腐蚀法、化学合成法等,制备的纳米多孔材料主要为有机高分子材料,金属氧化物材料等,在Ti-Al合金上制备纳米多孔结构还没有相关报道。杨帆等人在Materials Letters上发表的文章《Innovativefabrication of Ti-48Al-6Nb porous coating by cold gas spraying and reactivesintering》(Materials Letters,2012,76:190-193)通过冷喷涂的方法在高Nb-TiAl多孔合金表面制备了孔径为1.8μm的多孔层已经是最接近纳米尺寸的研究报道了,因此在高Nb-TiAl多孔合金骨架表面制备纳米多孔层具有重要创新意义。
另外,目前对于纳米多孔的制备方法具有能耗高,工艺复杂,设备要求高,污染环境等问题,本发明采用在室温下通过KOH溶液浸泡制备纳米多孔层,制备工艺简单,节约能源,设备要求低,腐蚀后的盐溶液对环境危害小。基于以上优点,该发明具有重要的实际应用价值。
发明内容
本发明的目的在于提供一种新的纳米多孔制备方法,在高Nb-TiAl多孔合金骨架表面生成纳米多孔层,节省成本,降低能耗,减少污染。
本发明通过KOH溶液的浸泡,利用高Nb-TiAl多孔合金骨架的结构特点,在成分为Ti-(40-50)Al-(5-10)Nb(at%)多孔合金骨架表面生成γ-Al2O3纳米多孔层,具体步骤如下:
一、制备Ti-(40-50)Al-(5-10)Nb多孔合金:称取Ti粉、Al粉、Nb粉放入SFM-11实验室小型V型混料机,混合均匀得到混合粉末;称取混合粉末在压片机下压制成圆饼状压坯,在真空钽烧结炉中烧结得到Ti-(40-50)Al-(5-10)Nb多孔合金材料。
步骤一中所述的Ti粉、Al粉、Nb粉纯度为99.9%,粒度为100-300目,成分按照Ti-(40-50)Al-(5-10)Nb(at%)称量;所述的混料条件是20rpm转速下混合12-24小时;所述的压坯是在200MPa压力下压制成型的;所述的真空钽烧结炉真空度达到10-3Pa以上。
二、配制碱性溶液:所述的碱性溶液为KOH、氨水、小苏打。以KOH溶液为例,量取0.28-0.56g的纯度为95%以上的KOH颗粒,放入烧杯中,加入100ml去离子水,用玻璃棒充分搅拌溶解,静置,得到KOH溶液。
三、将制备的Ti-(40-50)Al-(5-10)Nb多孔合金材料放入配制好的KOH溶液中,浸泡。
步骤三中浸泡的时间为5-10小时。
四、取出浸泡好的多孔合金材料,超声波清洗后放入YZF-6020台式电热真空干燥箱中干燥,得到具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料。所述的干燥温度100℃,真空度10-1Pa左右,干燥时间为1-2小时。
本发明优点:
一、本发明通过简单方法得到具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料,纳米多孔层厚度约200nm,孔径60±10nm;
二、本发明对实验设备要求低、工艺简单、能耗少、无污染;
三、具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料,在原有多孔合金的基础上,增加了多孔材料的比表面积,增强了多孔合金的吸附、过滤性及耐腐蚀性能。
附图说明
图1为Ti-(40-50)Al-(5-10)Nb粉末压坯在真空钽烧结炉中烧结的工艺曲线;
图2为γ-Al2O3纳米多孔层的X射线衍射图谱;
图3为浸泡之前多孔合金骨架表面形貌;
图4为腐蚀后γ-Al2O3纳米多孔层形貌;
图5为γ-Al2O3纳米多孔层放大图;
图6为γ-Al2O3纳米多孔层横截面图;
图7为具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料的孔径-比表面积分布曲线。
具体实施方式
具体实施方式一:
本实施方式通过KOH的浸泡,利用高Nb-TiAl多孔合金骨架的结构特点,在成分为Ti-(40-50)Al-(5-10)Nb(at%)多孔合金骨架表面生成γ-Al2O3纳米多孔层,具体步骤如下:
一、制备Ti-(40-50)Al-(5-10)Nb多孔合金:称取Ti粉、Al粉、Nb粉放入SFM-11实验室小型V型混料机,混合均匀得到混合粉末;称取4g混合粉末在FYD-20电动台式压片机下压制成h=2mm的圆饼状压坯,在真空钽烧结炉中烧结得到Ti-(40-50)Al-(5-10)Nb多孔合金材料;
步骤一中所述的Ti粉、Al粉、Nb粉纯度为99.9%,粒度为100-300目,成分按照Ti-(40-50)Al-(5-10)Nb(at%)称量;所述的混料条件是20rpm转速下混合12-24小时;所述的压坯是在200MPa压力下压制成型的;所述的真空钽烧结炉真空度达到10-3Pa以上。
二、配制碱性溶液:以KOH溶液为例,量取0.28-0.56g的KOH颗粒,放入烧杯中,加入100ml去离子水,用玻璃棒充分搅拌溶解,静置,得到KOH溶液;所述的KOH颗粒纯度为95%以上;
步骤二中得到的KOH溶液浓度为0.00266g-0.00532g/ml;
三、将制备的Ti-(40-50)Al-(5-10)Nb多孔合金材料放入配制好的KOH溶液中浸泡;浸泡的时间为5-10小时;
四、取出浸泡好的多孔合金材料,超声波清洗后放入YZF-6020台式电热真空干燥箱中干燥,得到具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料;所述的干燥温度100℃,真空度10-1Pa左右,干燥时间为1-2小时。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤二所用的KOH溶液浓度为0.000532g/ml,其他步骤与具体实施方式一相同;降低KOH溶液的浓度,仍然可以得到纳米多孔层,但是相比实施方式一的0.00266g/ml KOH,该浓度得到的纳米多孔层孔的深度较浅,孔结构不完整。
具体实施方式三:本实施方式与具体实施方式一不同点是:步骤二所用的KOH溶液浓度为0.0266g/ml,其他步骤与具体实施方式一相同;增加KOH溶液的浓度,仍然可以得到纳米多孔层,但是出现大量纳米尺寸腐蚀产物堵塞纳米孔,降低比表面积,影响纳米孔的性能。
具体实施方式四:本实施方式与具体实施方式一不同点是:步骤三中浸泡的时间为1-2小时,其他步骤与实施方式一相同;缩短浸泡的时间得到的纳米多孔层结构不完整,局部区域出现平整γ-Al2O3层向纳米多孔结构转化的过程。
采用实施方式二、三和四后得知,改变KOH的浓度和浸泡的时间都可以得到γ-Al2O3纳米多孔层,但是纳米孔的结构和形貌并不理想,说明只有在0.00266g-0.00532g/ml的KOH溶液中浸泡5-10小时得到理想的纳米多孔结构。
图1为Ti-(40-50)Al-(5-10)Nb粉末压坯在真空钽烧结炉中烧结的工艺曲线,120℃保温是为了去除压坯中空气和水蒸气,600℃是Ti-Al反应生成TiAl3相的温度,900℃是TiAl3相向TiAl相转化的温度,1350℃是TiAl相向Ti3Al相转化的温度;
图2为γ-Al2O3纳米多孔层的X射线衍射图谱;
图3为浸泡之前多孔合金骨架表面形貌;
图4为腐蚀后γ-Al2O3纳米多孔层形貌;
图5为γ-Al2O3纳米多孔层放大图;
图6为γ-Al2O3纳米多孔层横截面图,浸泡前骨架表面光滑平整,腐蚀后生成了200nm厚的纳米多孔层,孔形状不规则,孔径为60±10nm;
图7为具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料的孔径-比表面积分布曲线,由于纳米孔的出现使得多孔合金的比表面积增加到0.24m2/g。

Claims (1)

1.一种多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法,其特征在于包括如下步骤:
1)、制备Ti-(40-50)Al-(5-10)Nb多孔合金:称取Ti粉、Al粉、Nb粉放入混料机混合均匀得到混合粉末;称取混合粉末在FYD-20电动台式压片机下压制成圆饼状压坯,在真空钽烧结炉中烧结得到Ti-(40-50)Al-(5-10)Nb多孔合金材料;
2)、配制碱性溶液;
3)、将制备的Ti-(40-50)Al-(5-10)Nb多孔合金材料放入配制好的碱性溶液中浸泡;
4)、取出浸泡好的多孔合金材料,超声波清洗后放入YZF-6020台式电热真空干燥箱中干燥,得到具有γ-Al2O3纳米多孔层的Ti-(40-50)Al-(5-10)Nb多孔合金材料;
其中,纳米多孔层厚度约200nm,孔径60±10nm;
步骤1)中所述的Ti粉、Al粉、Nb粉纯度为99.9%,粒度为100-300目,成分按照Ti-(40-50)Al-(5-10)Nb(at%)称量;混料条件是20rpm转速下混合12-24小时;所述的压坯是在200MPa压力下压制成型的;所述的真空钽烧结炉真空度达到10-3Pa以上;
所述的碱性溶液为KOH,量取0.28-0.56g纯度为95%以上的KOH颗粒,放入烧杯中,加入100ml去离子水,用玻璃棒充分搅拌溶解,静置,得到KOH溶液;KOH溶液浓度为0.00266g-0.00532g/ml;
步骤3)中所述的浸泡的时间为5-10小时;
步骤4)中所述的干燥的温度为100℃,干燥时间1-2小时,真空度为10-1Pa。
CN201510750950.0A 2015-11-05 2015-11-05 多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法 Active CN105386026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510750950.0A CN105386026B (zh) 2015-11-05 2015-11-05 多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510750950.0A CN105386026B (zh) 2015-11-05 2015-11-05 多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法

Publications (2)

Publication Number Publication Date
CN105386026A CN105386026A (zh) 2016-03-09
CN105386026B true CN105386026B (zh) 2018-06-12

Family

ID=55418785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510750950.0A Active CN105386026B (zh) 2015-11-05 2015-11-05 多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法

Country Status (1)

Country Link
CN (1) CN105386026B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163903B (zh) * 2018-03-19 2019-10-22 浙江大学 基于多孔镍骨架一步制备球形交叉氢氧化镍纳米片的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089209A (zh) * 2007-07-12 2007-12-19 北京科技大学 一种制备高铌钛铝多孔材料的方法
CN103182249A (zh) * 2011-12-30 2013-07-03 财团法人工业技术研究院 多孔基材的修饰方法及经修饰的多孔基材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727596B2 (en) * 2004-07-21 2010-06-01 Worcester Polytechnic Institute Method for fabricating a composite gas separation module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089209A (zh) * 2007-07-12 2007-12-19 北京科技大学 一种制备高铌钛铝多孔材料的方法
CN103182249A (zh) * 2011-12-30 2013-07-03 财团法人工业技术研究院 多孔基材的修饰方法及经修饰的多孔基材

Also Published As

Publication number Publication date
CN105386026A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
Wang et al. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors
CN105499576A (zh) 一种粉末冶金制备多孔钛铝合金的方法
CN105200260B (zh) 一种二氧化钛原位还原制备多孔钛的方法
CN106279033B (zh) 片状交叉zif-l及其制备方法
CN100465311C (zh) 一种制备高铌钛铝多孔材料的方法
Zhao et al. Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors
CN103752831A (zh) 一种多孔金属膜的制备方法
CN104130004B (zh) 高强度块状多孔氧化铝纳米陶瓷的制备方法
CN108212035A (zh) 一种多孔核壳纳米复合材料及其制备方法
CN104986791A (zh) 一种纳米孔结构铜/氧化亚铜/氧化铜复合材料的制备方法
CN107385269B (zh) 一种利用微波制备碳纳米管增强铜基复合材料的方法
CN111020329B (zh) 一种基于W-Fe-C体系腐蚀法制备多孔钨材料的方法
CN106994512A (zh) 一种复合孔径铜烧结多孔材料及其制备方法和应用
CN103864032B (zh) 一种纳米材料的制备方法
CN106587077B (zh) 一种三维有序大孔-介孔氧化物材料及其制备方法
CN105648255A (zh) 一种多孔金属及其制备方法
CN112048635A (zh) 一种微纳米分级多孔铜及其制备方法
CN105386026B (zh) 多孔合金骨架表面制备伽马三氧化二铝纳米多孔层的方法
CN102826856B (zh) 一种高纯低密度ito靶材及其制备方法
CN108405848B (zh) 一种多孔镍骨架材料及其制备方法
CN104973592A (zh) 一种新型的液相法定向制备高导电高导热的石墨烯膜的制备方法
CN106283858A (zh) 一种光致变色瓦楞纸板的制备方法
CN108115151A (zh) 一种纳米银修饰的还原氧化石墨烯杂化结构的原位还原制备方法
CN106699550A (zh) 纳米Cu‑CuBTC型金属有机骨架材料的制备方法
Zeng et al. Preparation and characterization of anode foil for aluminum electrolytic capacitors by powder additive manufacturing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant