CN105322003A - 绝缘栅双极型晶体管及其制备方法 - Google Patents

绝缘栅双极型晶体管及其制备方法 Download PDF

Info

Publication number
CN105322003A
CN105322003A CN201510636248.1A CN201510636248A CN105322003A CN 105322003 A CN105322003 A CN 105322003A CN 201510636248 A CN201510636248 A CN 201510636248A CN 105322003 A CN105322003 A CN 105322003A
Authority
CN
China
Prior art keywords
semiconductor substrate
bipolar transistor
insulated gate
gate bipolar
type dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510636248.1A
Other languages
English (en)
Inventor
赵喜高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd filed Critical SHENZHEN KIA SEMICONDUCTOR TECHNOLOGY Co Ltd
Priority to CN201510636248.1A priority Critical patent/CN105322003A/zh
Publication of CN105322003A publication Critical patent/CN105322003A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thyristors (AREA)

Abstract

本发明公开了一种绝缘栅双极型晶体管及其制备方法,所述绝缘栅双极型晶体管包括半导体衬底,在所述半导体衬底的正面外延生长成的N-漂移区;在上述N-漂移区上制备形成栅极和发射极的上部端子;在所述半导体衬底的背面形成集电极的下部端子;在半导体衬底表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层。本发明公开的绝缘栅双极型晶体管通过在栅极的下方加入一个P型屏蔽层,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。

Description

绝缘栅双极型晶体管及其制备方法
技术领域
本发明涉及晶体管技术领域,具体涉及一种绝缘栅双极型晶体管及其制备方法。
背景技术
绝缘栅双极型晶体管(Insulated-GateBipolarTransistor:IGBT)是广泛应用于逆变器、电机驱动等高电压大电流领域的电力元器件,应具有关断时的阻断电压,即击穿电压(breakdownvoltage)高,导通压降低的特点。
图1所示的是现有技术中的IGBT结构剖面图,为了图纸的简洁明了,图1所示的剖面仅为左侧,右侧是与左侧对称的;如图1所示,为了具备高击穿电压的性能,现有技术中采用了延伸N-漂移区的物理长度或采用低浓度晶圆(衬底)的方法,但是,这会导致N-漂移区的电阻增加,从而出现导通压降增大,电力损耗加大等问题;
为了解决导通压降增大问题,通常采用的方法是减小P基区(P-base)之间的结型场效应管(JunctionField-EffectTransistor,JFET)中的电阻,但是这会导致关断(OFF)时凹入式栅极(recessedgate)出现电场增强效应(Fieldenhancementeffect)(即P基区和N-漂移区的曲面电场增强),从而导致击穿电压降低的副作用。
发明内容
针对现有技术中存在的上述缺陷,本发明公开了一种绝缘栅双极型晶体管及其制备方法,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
本发明的技术方案如下:
一种绝缘栅双极型晶体管,包括半导体衬底,在所述半导体衬底的正面外延生长成的N-漂移区;在上述N-漂移区上制备形成栅极和发射极的上部端子;在所述半导体衬底的背面形成集电极的下部端子;在半导体衬底表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层。
作为优选,所述P型屏蔽层的厚度为0.1μm~10μm;所述P型屏蔽层的浓度为1011cm-3至1019cm-3
本发明还公开了上述绝缘栅双极型晶体管的制备方法,包括如下步骤:
S1、准备半导体衬底,在所述半导体衬底上外延生长形成预定厚度的N-漂移区,在所述半导体衬底的背面形成集电极的下部端子;
S2、对半导体衬底上表面上预定形成栅极的部分进行沟槽刻蚀,在刻蚀处内注入P型掺杂剂;
S3、在刻蚀的所述沟槽内壁上形成绝缘膜,在所述绝缘膜的表面形成由导体构成的导电栅极;
S4、在预定形成基区的部位刻蚀掉导体,并在该刻蚀部位注入P型掺杂剂;
S5、对步骤S2注入的P型掺杂剂及步骤S4注入的P型掺杂剂进行热处理,使其扩散,形成P型屏蔽层和基区;
S6、在所述N-漂移区上进行光刻加工,在光刻处注入N型掺杂物,引出形成发射极。
进一步的,所述P型掺杂剂为+3价的硼离子,通过扩散或离子注入工艺注入所述沟槽的刻蚀处。
作为优选,所述绝缘膜由可以采用二氧化硅、氧氮化硅、氮化硅、氧化铪材料中的一种或多种制成。
作为优选,所述构成导电栅极的导体由多晶硅、钨、铝中的一种或上述物质的化合物制成。
本发明公开的绝缘栅双极型晶体管通过在栅极的下方加入一个P型屏蔽层,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
附图说明
图1为现有技术中的绝缘栅双极型晶体管的剖面图;
图2为本发明的绝缘栅双极型晶体管在一实施例中的剖面图;
图3为本发明在一实施例中的工艺流程图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细阐述。
如图2所示,本发明公开了一种绝缘栅双极型晶体管,包括半导体衬底2,在所述半导体衬底2的正面外延生长成的N-漂移区3;在上述N-漂移区3上制备形成栅极6和发射极7的上部端子;在所述半导体衬底2的背面形成集电极的下部端子;在半导体衬底2表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层9;
作为优选,所述P型屏蔽层9的厚度为0.1μm~10μm;所述P型屏蔽层的浓度为1011cm-3至1019cm-3,0.1μm和10μm是考虑实际IGBT实施例的尺寸和栅极的大小选择的最小厚度和最大厚度,实际上,小于0.1μm的P型屏蔽层难以实现,大于10μm的P型屏蔽层也难以通过硅的扩散实现。
本发明公开的绝缘栅双极型晶体管通过在栅极的下方加入一个P型屏蔽层,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
本发明还公开了上述绝缘栅双极型晶体管的制备方法,包括如下步骤:
S1、准备半导体衬底2,在所述半导体衬底上外延生长形成预定厚度的N-漂移区3,在所述半导体衬底2的背面形成集电极1的下部端子;
S2、对半导体衬底2上表面上预定形成栅极6的部分进行沟槽刻蚀,在刻蚀处内注入P型掺杂剂,在具体实施中,此时注入的P型掺杂剂可为+3价的硼离子,通过扩散或离子注入工艺来实现;
S3、在刻蚀的所述沟槽内壁上形成绝缘膜,在所述绝缘膜的表面形成由导体构成的导电栅极;所述绝缘膜就是栅极氧化膜,可以采用二氧化硅、氧氮化硅、氮化硅、氧化铪等材料中的一种或多种制成;所述构成导电栅极的导体由多晶硅、钨、铝中的一种或这些物质的化合物制成;
S4、在预定形成基区的部位刻蚀掉导体,并在该刻蚀部位注入P型掺杂剂,形成P型掺杂区;
S5、对步骤S2注入的P型掺杂剂及步骤S4注入的P型掺杂剂进行热处理,使其扩散,形成P型屏蔽层9和基区4;热处理工序是为了基区和P型屏蔽层的退火而进行的;
S6、在所述N-漂移区上进行光刻加工,在光刻处注入N型掺杂物,在N型掺杂区5引出形成发射极7。
如上述工艺步骤所示,本发明与现有技术公开的述绝缘栅双极型晶体管的制备方法的IGBT不同,在栅极下方插入P型屏蔽层,而且在形成栅极前,先进行沟槽蚀刻工序,蚀刻后立即注入P型掺杂物,无需使用掩膜,而且屏蔽层的形成是与热加工形成基区4同时进行的,因此能节省热预算。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (7)

1.一种绝缘栅双极型晶体管,其特征在于:包括半导体衬底,在所述半导体衬底的正面外延生长成的N-漂移区;在上述N-漂移区上制备形成的栅极和发射极的上部端子;在所述半导体衬底的背面形成包括集电极的下部端子;在半导体衬底表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层。
2.如权利要求1所述的绝缘栅双极型晶体管,其特征在于:所述P型屏蔽层的厚度为0.1μm~10μm。
3.如权利要求1或2所述的绝缘栅双极型晶体管,其特征在于:所述P型屏蔽层的浓度为1011cm-3至1019cm-3
4.如权利要求1~3中任一项所述的绝缘栅双极型晶体管的制备方法,其特征在于,包括步骤:
S1、准备半导体衬底,在所述半导体衬底上外延生长形成预定厚度的N-漂移区,在所述半导体衬底的背面形成集电极的下部端子;
S2、对半导体衬底上表面上预定形成栅极的部分进行沟槽刻蚀,在刻蚀处内注入P型掺杂剂;
S3、在刻蚀的所述沟槽内壁上形成绝缘膜,在所述绝缘膜的表面形成由导体构成的导电栅极;
S4、在预定形成基区的部位刻蚀掉导体,并在该刻蚀部位注入P型掺杂剂;
S5、对步骤S2注入的P型掺杂剂及步骤S4注入的P型掺杂剂进行热处理,使其扩散,形成P型屏蔽层和基区;
S6、在所述N-漂移区上进行光刻加工,在光刻处注入N型掺杂物,引出形成发射极。
5.如权利要求4所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述P型掺杂剂为+3价的硼离子,通过扩散或离子注入工艺注入所述沟槽的刻蚀处。
6.如权利要求4所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述绝缘膜由可以采用二氧化硅、氧氮化硅、氮化硅、氧化铪材料中的一种或多种制成。
7.如权利要求4所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述构成导电栅极的导体由多晶硅、钨、铝中的一种或上述物质的化合物制成。
CN201510636248.1A 2015-09-30 2015-09-30 绝缘栅双极型晶体管及其制备方法 Pending CN105322003A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510636248.1A CN105322003A (zh) 2015-09-30 2015-09-30 绝缘栅双极型晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510636248.1A CN105322003A (zh) 2015-09-30 2015-09-30 绝缘栅双极型晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN105322003A true CN105322003A (zh) 2016-02-10

Family

ID=55249023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510636248.1A Pending CN105322003A (zh) 2015-09-30 2015-09-30 绝缘栅双极型晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN105322003A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270492A (zh) * 2021-05-13 2021-08-17 重庆邮电大学 一种沟槽型GaN绝缘栅双极型晶体管
CN113540224A (zh) * 2021-07-19 2021-10-22 重庆邮电大学 一种N衬底沟槽型GaN绝缘栅双极型晶体管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
JPH08102538A (ja) * 1994-08-01 1996-04-16 Toyota Motor Corp 電界効果型半導体装置
EP0893830A1 (en) * 1996-12-11 1999-01-27 The Kansai Electric Power Co., Inc. Insulated gate semiconductor device
CN102254944A (zh) * 2010-05-21 2011-11-23 上海新进半导体制造有限公司 一种沟槽mosfet功率整流器件及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488236A (en) * 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
JPH08102538A (ja) * 1994-08-01 1996-04-16 Toyota Motor Corp 電界効果型半導体装置
EP0893830A1 (en) * 1996-12-11 1999-01-27 The Kansai Electric Power Co., Inc. Insulated gate semiconductor device
CN102254944A (zh) * 2010-05-21 2011-11-23 上海新进半导体制造有限公司 一种沟槽mosfet功率整流器件及制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270492A (zh) * 2021-05-13 2021-08-17 重庆邮电大学 一种沟槽型GaN绝缘栅双极型晶体管
CN113540224A (zh) * 2021-07-19 2021-10-22 重庆邮电大学 一种N衬底沟槽型GaN绝缘栅双极型晶体管

Similar Documents

Publication Publication Date Title
US11837629B2 (en) Power semiconductor devices having gate trenches and buried edge terminations and related methods
US20200373418A1 (en) Semiconductor device and manufacturing method of semiconductor device
CN107799582B (zh) 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法
JP6756376B2 (ja) 半導体装置
US9620630B2 (en) Injection control in semiconductor power devices
TWI534902B (zh) 功率半導體裝置及形成功率半導體裝置之方法
CN104637821B (zh) 超级结器件的制造方法
CN107731898B (zh) 一种cstbt器件及其制造方法
TWI388011B (zh) 半導體裝置及其形成方法
JP7432071B2 (ja) 半導体装置およびその製造方法
CN107251198B (zh) 绝缘栅功率半导体装置以及用于制造这种装置的方法
JPWO2016051970A1 (ja) 半導体装置および半導体装置の製造方法
US20140306284A1 (en) Semiconductor Device and Method for Producing the Same
US11605732B2 (en) Power device with graded channel
KR20130118306A (ko) 바이폴라 넌-펀치-쓰루 전력 반도체 디바이스
CN113838914A (zh) 具有分离栅结构的ret igbt器件结构及制作方法
JP2019514215A (ja) 絶縁ゲートパワー半導体デバイスおよびその製造方法
JP5473398B2 (ja) 半導体装置およびその製造方法
CN108155230B (zh) 一种横向rc-igbt器件及其制备方法
JPH1140808A (ja) 半導体装置およびその製造方法
CN105322003A (zh) 绝缘栅双极型晶体管及其制备方法
US11069769B2 (en) Semiconductor device
JP7361634B2 (ja) 半導体装置及び半導体装置の製造方法
KR101928395B1 (ko) 전력 반도체 소자 및 그 제조 방법
JP2023076986A (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160210