CN105322003A - 绝缘栅双极型晶体管及其制备方法 - Google Patents
绝缘栅双极型晶体管及其制备方法 Download PDFInfo
- Publication number
- CN105322003A CN105322003A CN201510636248.1A CN201510636248A CN105322003A CN 105322003 A CN105322003 A CN 105322003A CN 201510636248 A CN201510636248 A CN 201510636248A CN 105322003 A CN105322003 A CN 105322003A
- Authority
- CN
- China
- Prior art keywords
- semiconductor substrate
- bipolar transistor
- insulated gate
- gate bipolar
- type dopant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 239000004065 semiconductor Substances 0.000 claims abstract description 28
- 239000002019 doping agent Substances 0.000 claims abstract description 26
- 238000005530 etching Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- -1 boron ion Chemical class 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 claims description 3
- 238000001459 lithography Methods 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 3
- 229920005591 polysilicon Polymers 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 230000005684 electric field Effects 0.000 abstract description 6
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Thyristors (AREA)
Abstract
本发明公开了一种绝缘栅双极型晶体管及其制备方法,所述绝缘栅双极型晶体管包括半导体衬底,在所述半导体衬底的正面外延生长成的N-漂移区;在上述N-漂移区上制备形成栅极和发射极的上部端子;在所述半导体衬底的背面形成集电极的下部端子;在半导体衬底表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层。本发明公开的绝缘栅双极型晶体管通过在栅极的下方加入一个P型屏蔽层,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
Description
技术领域
本发明涉及晶体管技术领域,具体涉及一种绝缘栅双极型晶体管及其制备方法。
背景技术
绝缘栅双极型晶体管(Insulated-GateBipolarTransistor:IGBT)是广泛应用于逆变器、电机驱动等高电压大电流领域的电力元器件,应具有关断时的阻断电压,即击穿电压(breakdownvoltage)高,导通压降低的特点。
图1所示的是现有技术中的IGBT结构剖面图,为了图纸的简洁明了,图1所示的剖面仅为左侧,右侧是与左侧对称的;如图1所示,为了具备高击穿电压的性能,现有技术中采用了延伸N-漂移区的物理长度或采用低浓度晶圆(衬底)的方法,但是,这会导致N-漂移区的电阻增加,从而出现导通压降增大,电力损耗加大等问题;
为了解决导通压降增大问题,通常采用的方法是减小P基区(P-base)之间的结型场效应管(JunctionField-EffectTransistor,JFET)中的电阻,但是这会导致关断(OFF)时凹入式栅极(recessedgate)出现电场增强效应(Fieldenhancementeffect)(即P基区和N-漂移区的曲面电场增强),从而导致击穿电压降低的副作用。
发明内容
针对现有技术中存在的上述缺陷,本发明公开了一种绝缘栅双极型晶体管及其制备方法,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
本发明的技术方案如下:
一种绝缘栅双极型晶体管,包括半导体衬底,在所述半导体衬底的正面外延生长成的N-漂移区;在上述N-漂移区上制备形成栅极和发射极的上部端子;在所述半导体衬底的背面形成集电极的下部端子;在半导体衬底表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层。
作为优选,所述P型屏蔽层的厚度为0.1μm~10μm;所述P型屏蔽层的浓度为1011cm-3至1019cm-3。
本发明还公开了上述绝缘栅双极型晶体管的制备方法,包括如下步骤:
S1、准备半导体衬底,在所述半导体衬底上外延生长形成预定厚度的N-漂移区,在所述半导体衬底的背面形成集电极的下部端子;
S2、对半导体衬底上表面上预定形成栅极的部分进行沟槽刻蚀,在刻蚀处内注入P型掺杂剂;
S3、在刻蚀的所述沟槽内壁上形成绝缘膜,在所述绝缘膜的表面形成由导体构成的导电栅极;
S4、在预定形成基区的部位刻蚀掉导体,并在该刻蚀部位注入P型掺杂剂;
S5、对步骤S2注入的P型掺杂剂及步骤S4注入的P型掺杂剂进行热处理,使其扩散,形成P型屏蔽层和基区;
S6、在所述N-漂移区上进行光刻加工,在光刻处注入N型掺杂物,引出形成发射极。
进一步的,所述P型掺杂剂为+3价的硼离子,通过扩散或离子注入工艺注入所述沟槽的刻蚀处。
作为优选,所述绝缘膜由可以采用二氧化硅、氧氮化硅、氮化硅、氧化铪材料中的一种或多种制成。
作为优选,所述构成导电栅极的导体由多晶硅、钨、铝中的一种或上述物质的化合物制成。
本发明公开的绝缘栅双极型晶体管通过在栅极的下方加入一个P型屏蔽层,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
附图说明
图1为现有技术中的绝缘栅双极型晶体管的剖面图;
图2为本发明的绝缘栅双极型晶体管在一实施例中的剖面图;
图3为本发明在一实施例中的工艺流程图。
具体实施方式
下面结合附图对本发明的具体实施方式做详细阐述。
如图2所示,本发明公开了一种绝缘栅双极型晶体管,包括半导体衬底2,在所述半导体衬底2的正面外延生长成的N-漂移区3;在上述N-漂移区3上制备形成栅极6和发射极7的上部端子;在所述半导体衬底2的背面形成集电极的下部端子;在半导体衬底2表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层9;
作为优选,所述P型屏蔽层9的厚度为0.1μm~10μm;所述P型屏蔽层的浓度为1011cm-3至1019cm-3,0.1μm和10μm是考虑实际IGBT实施例的尺寸和栅极的大小选择的最小厚度和最大厚度,实际上,小于0.1μm的P型屏蔽层难以实现,大于10μm的P型屏蔽层也难以通过硅的扩散实现。
本发明公开的绝缘栅双极型晶体管通过在栅极的下方加入一个P型屏蔽层,能缓解现有的IGBT导通压降大的问题,并消除关断时P型基区和N-漂移区的曲面发生的电场集中,从而能提高击穿电压,确保IGBT工作过程中的可靠性。
本发明还公开了上述绝缘栅双极型晶体管的制备方法,包括如下步骤:
S1、准备半导体衬底2,在所述半导体衬底上外延生长形成预定厚度的N-漂移区3,在所述半导体衬底2的背面形成集电极1的下部端子;
S2、对半导体衬底2上表面上预定形成栅极6的部分进行沟槽刻蚀,在刻蚀处内注入P型掺杂剂,在具体实施中,此时注入的P型掺杂剂可为+3价的硼离子,通过扩散或离子注入工艺来实现;
S3、在刻蚀的所述沟槽内壁上形成绝缘膜,在所述绝缘膜的表面形成由导体构成的导电栅极;所述绝缘膜就是栅极氧化膜,可以采用二氧化硅、氧氮化硅、氮化硅、氧化铪等材料中的一种或多种制成;所述构成导电栅极的导体由多晶硅、钨、铝中的一种或这些物质的化合物制成;
S4、在预定形成基区的部位刻蚀掉导体,并在该刻蚀部位注入P型掺杂剂,形成P型掺杂区;
S5、对步骤S2注入的P型掺杂剂及步骤S4注入的P型掺杂剂进行热处理,使其扩散,形成P型屏蔽层9和基区4;热处理工序是为了基区和P型屏蔽层的退火而进行的;
S6、在所述N-漂移区上进行光刻加工,在光刻处注入N型掺杂物,在N型掺杂区5引出形成发射极7。
如上述工艺步骤所示,本发明与现有技术公开的述绝缘栅双极型晶体管的制备方法的IGBT不同,在栅极下方插入P型屏蔽层,而且在形成栅极前,先进行沟槽蚀刻工序,蚀刻后立即注入P型掺杂物,无需使用掩膜,而且屏蔽层的形成是与热加工形成基区4同时进行的,因此能节省热预算。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。
Claims (7)
1.一种绝缘栅双极型晶体管,其特征在于:包括半导体衬底,在所述半导体衬底的正面外延生长成的N-漂移区;在上述N-漂移区上制备形成的栅极和发射极的上部端子;在所述半导体衬底的背面形成包括集电极的下部端子;在半导体衬底表面形成栅极结构处设有刻蚀沟槽,在所述刻蚀沟槽内注入P型掺杂剂,P型掺杂剂扩散形成P型屏蔽层。
2.如权利要求1所述的绝缘栅双极型晶体管,其特征在于:所述P型屏蔽层的厚度为0.1μm~10μm。
3.如权利要求1或2所述的绝缘栅双极型晶体管,其特征在于:所述P型屏蔽层的浓度为1011cm-3至1019cm-3。
4.如权利要求1~3中任一项所述的绝缘栅双极型晶体管的制备方法,其特征在于,包括步骤:
S1、准备半导体衬底,在所述半导体衬底上外延生长形成预定厚度的N-漂移区,在所述半导体衬底的背面形成集电极的下部端子;
S2、对半导体衬底上表面上预定形成栅极的部分进行沟槽刻蚀,在刻蚀处内注入P型掺杂剂;
S3、在刻蚀的所述沟槽内壁上形成绝缘膜,在所述绝缘膜的表面形成由导体构成的导电栅极;
S4、在预定形成基区的部位刻蚀掉导体,并在该刻蚀部位注入P型掺杂剂;
S5、对步骤S2注入的P型掺杂剂及步骤S4注入的P型掺杂剂进行热处理,使其扩散,形成P型屏蔽层和基区;
S6、在所述N-漂移区上进行光刻加工,在光刻处注入N型掺杂物,引出形成发射极。
5.如权利要求4所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述P型掺杂剂为+3价的硼离子,通过扩散或离子注入工艺注入所述沟槽的刻蚀处。
6.如权利要求4所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述绝缘膜由可以采用二氧化硅、氧氮化硅、氮化硅、氧化铪材料中的一种或多种制成。
7.如权利要求4所述的绝缘栅双极型晶体管的制备方法,其特征在于:所述构成导电栅极的导体由多晶硅、钨、铝中的一种或上述物质的化合物制成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510636248.1A CN105322003A (zh) | 2015-09-30 | 2015-09-30 | 绝缘栅双极型晶体管及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510636248.1A CN105322003A (zh) | 2015-09-30 | 2015-09-30 | 绝缘栅双极型晶体管及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105322003A true CN105322003A (zh) | 2016-02-10 |
Family
ID=55249023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510636248.1A Pending CN105322003A (zh) | 2015-09-30 | 2015-09-30 | 绝缘栅双极型晶体管及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105322003A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113270492A (zh) * | 2021-05-13 | 2021-08-17 | 重庆邮电大学 | 一种沟槽型GaN绝缘栅双极型晶体管 |
CN113540224A (zh) * | 2021-07-19 | 2021-10-22 | 重庆邮电大学 | 一种N衬底沟槽型GaN绝缘栅双极型晶体管 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5488236A (en) * | 1994-05-26 | 1996-01-30 | North Carolina State University | Latch-up resistant bipolar transistor with trench IGFET and buried collector |
JPH08102538A (ja) * | 1994-08-01 | 1996-04-16 | Toyota Motor Corp | 電界効果型半導体装置 |
EP0893830A1 (en) * | 1996-12-11 | 1999-01-27 | The Kansai Electric Power Co., Inc. | Insulated gate semiconductor device |
CN102254944A (zh) * | 2010-05-21 | 2011-11-23 | 上海新进半导体制造有限公司 | 一种沟槽mosfet功率整流器件及制造方法 |
-
2015
- 2015-09-30 CN CN201510636248.1A patent/CN105322003A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5488236A (en) * | 1994-05-26 | 1996-01-30 | North Carolina State University | Latch-up resistant bipolar transistor with trench IGFET and buried collector |
JPH08102538A (ja) * | 1994-08-01 | 1996-04-16 | Toyota Motor Corp | 電界効果型半導体装置 |
EP0893830A1 (en) * | 1996-12-11 | 1999-01-27 | The Kansai Electric Power Co., Inc. | Insulated gate semiconductor device |
CN102254944A (zh) * | 2010-05-21 | 2011-11-23 | 上海新进半导体制造有限公司 | 一种沟槽mosfet功率整流器件及制造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113270492A (zh) * | 2021-05-13 | 2021-08-17 | 重庆邮电大学 | 一种沟槽型GaN绝缘栅双极型晶体管 |
CN113540224A (zh) * | 2021-07-19 | 2021-10-22 | 重庆邮电大学 | 一种N衬底沟槽型GaN绝缘栅双极型晶体管 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11837629B2 (en) | Power semiconductor devices having gate trenches and buried edge terminations and related methods | |
US20200373418A1 (en) | Semiconductor device and manufacturing method of semiconductor device | |
CN107799582B (zh) | 一种沟槽栅电荷储存型绝缘栅双极型晶体管及其制造方法 | |
JP6756376B2 (ja) | 半導体装置 | |
US9620630B2 (en) | Injection control in semiconductor power devices | |
TWI534902B (zh) | 功率半導體裝置及形成功率半導體裝置之方法 | |
CN104637821B (zh) | 超级结器件的制造方法 | |
CN107731898B (zh) | 一种cstbt器件及其制造方法 | |
TWI388011B (zh) | 半導體裝置及其形成方法 | |
JP7432071B2 (ja) | 半導体装置およびその製造方法 | |
CN107251198B (zh) | 绝缘栅功率半导体装置以及用于制造这种装置的方法 | |
JPWO2016051970A1 (ja) | 半導体装置および半導体装置の製造方法 | |
US20140306284A1 (en) | Semiconductor Device and Method for Producing the Same | |
US11605732B2 (en) | Power device with graded channel | |
KR20130118306A (ko) | 바이폴라 넌-펀치-쓰루 전력 반도체 디바이스 | |
CN113838914A (zh) | 具有分离栅结构的ret igbt器件结构及制作方法 | |
JP2019514215A (ja) | 絶縁ゲートパワー半導体デバイスおよびその製造方法 | |
JP5473398B2 (ja) | 半導体装置およびその製造方法 | |
CN108155230B (zh) | 一种横向rc-igbt器件及其制备方法 | |
JPH1140808A (ja) | 半導体装置およびその製造方法 | |
CN105322003A (zh) | 绝缘栅双极型晶体管及其制备方法 | |
US11069769B2 (en) | Semiconductor device | |
JP7361634B2 (ja) | 半導体装置及び半導体装置の製造方法 | |
KR101928395B1 (ko) | 전력 반도체 소자 및 그 제조 방법 | |
JP2023076986A (ja) | 半導体装置とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160210 |