CN105319445A - 一种基于随机解调器的阻抗测量装置及方法 - Google Patents

一种基于随机解调器的阻抗测量装置及方法 Download PDF

Info

Publication number
CN105319445A
CN105319445A CN201510893981.1A CN201510893981A CN105319445A CN 105319445 A CN105319445 A CN 105319445A CN 201510893981 A CN201510893981 A CN 201510893981A CN 105319445 A CN105319445 A CN 105319445A
Authority
CN
China
Prior art keywords
signal
low
voltage
random
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510893981.1A
Other languages
English (en)
Other versions
CN105319445B (zh
Inventor
曹章
任迎
徐立军
孙世杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201510893981.1A priority Critical patent/CN105319445B/zh
Publication of CN105319445A publication Critical patent/CN105319445A/zh
Application granted granted Critical
Publication of CN105319445B publication Critical patent/CN105319445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明涉及一种基于随机解调器的阻抗测量装置及方法,其特征在于包括以下过程:对待测阻抗元件施加正弦电压激励,通过电流-电压转换电路将通过阻抗元件的电流信号转换为电压信号;该电压信号通过两路开关被随机调制,经过低通滤波器后,由A/D转换器进行低速采样,得到低速采样序列;利用该低速采样序列在上位机上进行信号重建,得到电流-电压转换电路输出的电压信号的功率谱信息,进而得到信号幅值、相位和元件阻抗值,实现基于随机解调器的阻抗测量。上述方法实现了当ADC采样频率低于被采样信号频率时的阻抗测量,不需要乘法器,仅需要电子开关、低速模数转换器等低功耗器件,具有成本低、功耗低、资源消耗少、实现简单的特点,具有广阔的应用前景。

Description

一种基于随机解调器的阻抗测量装置及方法
技术领域
一种基于随机解调器的阻抗测量装置及方法,属于分布参数测量领域。
背景技术
阻抗是元器件和材料的固有属性,也是与电路相联系的基本参数。阻抗测量不仅本身是电测领域的重要内容,而且通过对阻抗参数的测量往往可以间接实现对其他许多物理量的快速测量;如工程中常用的位移、温度、压力、速度、流量等传感器,其原始信号大多是电容、电阻或电感等阻抗参量。
随着新检测技术的快速发展,从上世纪80年代开始,阻抗测量技术被迅速扩展到生物医学、电化学、电力控制、大规模集成电路制造、空间技术等领域。如目前生物医学领域,利用生物组织与器官的电特性及其变化规律提取人体生理、病理状况等(SegalKR,BurasteroS,ChunA,etal.Estimationofextracellularandtotalbodywaterbymultiple-frequencybioelectrical-impedancemeasurement[J].TheAmericanjournalofclinicalnutrition,1991,54(1):26-29);在电化学领域,通过测量材料或装置的阻抗对其进行损伤监测研究等(WenzlTG,MoroderC,TrachternaM,etal.EsophagealpHmonitoringandimpedancemeasurement:acomparisonoftwodiagnostictestsforgastroesophagealreflux[J].Journalofpediatricgastroenterologyandnutrition,2002,34(5):519-523.);在电力控制领域,通过快速测量电力线的输入阻抗、调节有源滤波器,可防止电网发生振荡,保证电力传输的质量等(YangL,RuanC,LiY.DetectionofviableSalmonellatyphimuriumbyimpedancemeasurementofelectrodecapacitanceandmediumresistance[J].BiosensorsandBioelectronics,2003,19(5):495-502.);而在工业自动化检测领域,阻抗测量系统不仅要求具有高精度、宽量程、宽频带测量的能力,还要求设备体积小、功耗低、操作方便,同时要具有毫秒级的测量速度、快速构成自动测量系统的能力(YorkT.Statusofelectricaltomographyinindustrialapplications[J].JournalofElectronicImaging,2001,10(3):608-619.)。
传统的阻抗测量方法包括交流电桥法、谐振法和电压电流法等。AgilentTechnologies,Inc.在其2006年获得的专利“Impedanceanalyzer”中(USPatant:7,161,358),阐述了一种阻抗分析仪的构造方法。其研制的阻抗分析仪器具有较高的测量精度,但结构复杂,不适于与具体工业过程结合并应用;Coster等在其2007年获得的专利“Systemforcompleximpedancemeasurement”(USPatant:8,519,719)阐述了一种复阻抗参数测量系统;Drimusz等在其2008年获得的专利“Impedancemeasurementsystemandmethod”(USPatant:8,242,792)阐述了一种开关切换式直流激励测量阻抗系统和方法;Pinter等在其2009年获得的专利“Impedancemeasurementcircuitandmethod”(USPatant:8,831,898)中阐述了一种由激励电流源、电压测量装置和处理器组成的阻抗测量电路;MortaraInstrument,Inc.在其2013年获得的专利“Impedancemeasurementsystem”(USPatant:9,113,805)中,阐述了一种用于监测生物阻抗测量电极状态的阻抗测量系统与方法。可以看到,阻抗测量方法在各个领域都受到了很大的重视,但均未能实现简单有效的宽频阻抗测量。
阻抗测量属于先激励再解调的测量方式,正弦信号的幅值相位解调是交流阻抗测量方法的重要过程,根据信号解调方法的不同又可以分为模拟式和数字式。D.P.Blair等人在1975年发表于JournalofPhysicsE:ScientificInstruments杂志,第8期,第8卷,第621页,题为“Phasesensitivedetectionasameanstorecoversignalsburiedinnoise”的论文,介绍了模拟解调方法。其主要利用模拟乘法器实现测量信号与参考信号的乘积运算,利用模拟低通滤波器实现二倍频交流分量的滤除,利用低速直流耦合方式模拟--数字转换器(AnalogtoDigitalConverter,ADC)来实现直流最终解调信号的采集。MikeL.Meade在其1983年发表的专著“Lock-inamplifiers:principlesandapplications”中进一步阐述了模拟解调方法。W.Q.Yang在1999年发表于MeasurementScienceandTechnology杂志,第3期,第7卷,第225-232页,题为“Hardwaredesignofelectricalcapacitancetomographysystems”的论文中,将模拟信号解调方法应用于电容测量中。
对于模拟解调技术来说,由于低通滤波器响应时间的限制,为了得到更加稳定的解调结果,整个解调过程往往需要很长的时间来达到稳定状态(一般需要数十个完整信号周期以上)。近年来,随着数字信号处理器技术和微电子技术的发展,数字相敏解调技术受到了越来越广泛的关注。与模拟相敏解调不同,数字相敏解调利用高速ADC直接对调理后的测量信号进行采样,之后利用先进的数字信号处理方法在数字器件中实现信号的解调。ZiqiangCui等人在2011年发表于MeasurementScienceandTechnology杂志,第5期,第22卷,题为“Ahigh-performancedigitalsystemforelectricalcapacitancetomography”的论文中,以及Haili,Zhou等人在2013年发表于MeasurementScienceandTechnology杂志,第7期,第24卷,题为“Acomplexprogrammablelogicdevice-basedhigh-precisionelectricalcapacitancetomographysystem”的论文中,分别将数字式测量方法应用与电容测量中,取得了良好的效果。
传统的模拟解调技术实现硬件结构复杂,解调速度慢。数字式解调方法虽然结构简单,但是需要用到高速ADC进行数据采集。根据香农采样定律,需要使用信号带宽2倍以上的采样率进行采样,才能获得该信号的全部信息。因此上述测量技术存在难以实现宽频测量、采样速率要求高、数据存储空间要求大等缺点,愈来愈难以适应当今科技及社会发展对阻抗测量系统具有更高的测量精度、更大的测量量程及更宽的工作频带等要求。由于受到高速ADC器件的限制,奈奎斯特采样理论受到了越来越严峻的挑战。
近几年来,数字信号处理领域的专家提出一种全新的信息获取方法(能够绕过ADC的采样速率瓶颈问题),称为压缩感知(CompressiveSensing,CS,又叫压缩采样),为解决上述问题开启了新的思路。由压缩采样理论可知:只要信号本身或者在其某一变换域上是稀疏的,可以利用与变换矩阵非相干的测量矩阵将变换系数线性投影为低维观测向量,且投影保持了重建信号所需的信息,通过求解稀疏最优化问题就能够从低维观测向量精确地或高概率精确地重建原始高维信号。压缩感知理论利用信号的稀疏性对压缩后的信号直接采样,可以在减少釆样数据的同时降低采样速率。基于CS理论的采样方法不但可以降低采样速率,而且不需要其他先验信息,适合应用于实际采样过程中,在宽频阻抗测量方面具有很重要的研究价值。
基于传统奈奎斯特采样理论进行信号釆样的硬件称之为模拟数字转换器(AnalogtoDigitalConverter,ADC),而基于CS理论进行的信号采样硬件一般称之为模拟信息转换器(AnalogtoInformationConverter,AIC)。从根本上来说,CS理论是一种采样理论,将其推向实际应用的关键技术是硬件采样系统的设计。在压缩感知采样过程中,测量矩阵需要满足约束等距性条件才能确保原始信号重构的鲁棒性。因此实际CS采样系统的设计也必须满足这个条件。目前已有几种不同的AIC系统架构,如随机解调器架构(RandomDemodulator,RD)(JoelTropp,JasonN.Laska,MarcoF.Duarteetal.BeyondNyquist:Efficientsamplingofsparsebandlimitedsignals[J].InformationTheory,IEEETransactionson.2010.56(1):520-544)、调制宽带转换架构(ModulatedWidebandConverter,MWC)(MosheMishali,YoninaC.Eldar.Fromtheorytopractice:Sub-Nyquistsamplingofsparsewidebandanalogsignals[J].SelectedTopicsinSignalProcessing,IEEEJournalof.2010.4(2):375-391)、随机卷积架构(RandomConvolution)(JustinRomberg.Compressivesensingbyrandomconvolution[J].SIAMJournalonImagingSciences.2009.2(4):1098-1128)、随机滤波架构(RandomFiltering)(RichardG.Baraniuk,MichaelWakin,MarcoF.Duarteetal.Randomfiltersforcompressivesamplingandreconstruction[J].2006)等等,可以将CS理论应用于实际模拟信号的采样过程中。
其中随机解调器架构由于结构简单且处理的信号类型为多谐波稀疏信号,使得其适合于阻抗测量方面的应用。随机解调器架构首先由Tropp等人在2010年发表于IEEETransactionsonInformationTheory的56卷1期,第520–544页,题为“BeyondNyquist:Efficientsamplingofsparsebandlimitedsignals”,Tropp在文中对随机解调器的原理进行了详细的叙述,通过仿真验证了随机解调器的性能。
随后有一系列文献对随机解调器架构中进行了进一步研究,例如A.Harms等人在2011年发表于IEEEInternationalConferenceonAcoustics,SpeechandSignalProcessing(ICASSP)会议,第5968-5971页,题为“BeatingNyquistthroughcorrelations:Aconstrainedrandomdemodulatorforsamplingofsparsebandlimitedsignals”的论文,在Tropp的基础上,提出了一种扩展版的随机解调架构,并进行了仿真研究;Y.Massoud等人在2011年发表于IEEEBiomedicalCircuitsandSystemsConference(BioCAS)会议,第133-136页,题为“Efficientrealizationofrandomdemodulator-basedanalogtoinformationconverters”的论文,提出了一种基于随机解调器架构的模拟信息转换器,并应用与无线接收器。可以看出,目前的随机解调器架构的应用领域主要集中于频谱测量、无线电等,未见其在阻抗测量中的应用。在这些提出的随机解调器架构中,均采用乘法器结构设计,实现时硬件结构相对复杂。
国内在近两年也展开了相关研究,例如黄海峰在2013年发表于《电子世界》的17期,第93-94页,题为“基于多通道随机解调系统的多带信号性能分析”的论文,根据多带信号块结构稀疏特性提出了一种多通道随机解调(multi-channelrandomdemodul-ator,MCRD)结构的压缩采样系统;王挺等在2014年发表于《中国电子科学研究院学报》的06期,第582-585页,题为“认知无线电中随机解调器压缩采样重构确认的改进方法”的论文,提出了一种随机解调器压缩采样重构成败判定的改进方法;莫禹钧等在2014年发表于《南阳理工学院学报》的03期,第24-27页,题为“基于随机解调器的射电天文信号的采样与恢复算法”的论文,在Matlab上进行了采样与恢复算法仿真分析;罗昌林等在2014年发表于《中国电子科学研究院学报》的03期,第300-303页,题为“基于随机解调器压缩采样的宽带频谱检测方法”的论文,研究了基于随机解调器压缩采样的宽带频谱检测方法,该方法能够以低于Nyquist采样率的速率完成对宽频段的采样,降低了ADC的负担,并进行了仿真研究;程艳合等在2015年发表于《电讯技术》的05期,第472-478页,题为“宽带直扩信号的随机解调压缩采样方法”的论文,提出了基于压缩感知的直扩信号随机解调压缩采样方法,并进行了仿真研究。可以看到,上述研究成果同样主要集中于理论和仿真研究,应用与无线电等领域。
在硬件电路方面,江建军等在2014年发表于《仪器仪表学报》的03期,第709-713页,题为“基于随机解调器的宽带雷达信号探测”的论文,基于压缩感知理论与随机解调器,设计了雷达信号频谱检测系统的硬件电路。实验结果表明,该系统可以以远低于奈奎斯特速率的采样速率准确获取原始信号的频谱信息。该方法解决了宽带雷达信号处理中数据量大、实时性差等问题,在雷达系统中具有广阔的发展前景及应用价值。作者在文中对随机解调器架构进行了硬件实现,并应用于宽带雷达信号探测。但该论文中硬件采用乘法器实现信号混频,功耗较大,且主要获得频谱信息,与本发明的应用方向不同。
在已经申请的相关专利中,郑仕链等在2013年公开了一种判断随机解调器压缩采样重构成败的方法(公开号:CN103248368A),付宁等在同年公开了一种获取随机解调硬件系统的感知矩阵的方法(公开号:CN103344849A),未见到对随机解调器的硬件优化和在阻抗测量中的应用。
在阻抗测量系统中,所用的测量源一般为正弦信号,在傅里叶变换基上是稀疏的,符合压缩感知的应用条件,而需要得到的是所测正弦信号的幅值信息。本发明将随机解调器架构应用与阻抗测量系统中的幅值测量中,实现一种于随机解调的欠采样宽频阻抗测量方法,首先将电容-电压转换器的输出信号与一个随机波形相乘;之后对相乘后的信号使用低通滤波器进行滤波操作;最后对滤波后的信号进行低速采样,得到最终的采样向量。本发明引入电子开关设计,简化了电路结构,具有成本低、功耗低、资源消耗少、实现简单的特点,有广阔的应用前景。
发明内容
本发明的目的在于提供一种基于随机解调器的阻抗测量装置及方法,具有成本低、功耗低、资源消耗少、实现简单的特点。
本发明包括下列步骤:
步骤一、利用由DDS数字波形合成器、D/A转换器和低通滤波器组成的信号源发生器,产生正弦激励信号Vi(t);
如图1所示,利用DDS数字波形合成器101在FPGA芯片内合成数字波,经过D/A转换器102把数字波转变成模拟波后,通过低通滤波器103滤除杂波,得到稳定的正弦电压激励信号Vi(t);
步骤二、对所测阻抗元件施加正弦电压激励,通过电流-电压转换电路将通过阻抗元件的电流信号转换为电压信号;
如图2所示,对待测阻抗元件的一端施加正弦电压激励,另一端接入一个由交流自平衡桥电路构成的电流-电压转换电路。其中Zx为待测阻抗,Rf为反馈电阻,运算放大器的反相端为虚地。可以得到待测阻抗的计算公式:
Z x = - V i V o R f - - - ( 14 )
其中,Vi和Vo均为相同频率但是不同幅值和相位的正弦信号。假设:
其中,f为激励频率,Ai为Vi的幅值和相位,Ao为Vo的幅值和相位。则待测阻抗的幅值和相位为:
由于激励电压和反馈电阻已知,只要测量得到电流-电压电路转换电路输出电压,即可得到待测阻抗的幅值和相位。
步骤二、对电流-电压转换电路的输出信号x(t)进行压缩采样;
如图3所示,基于开关结构的随机解调器硬件部分对信号的处理主要包括三个过程:(1)通过开关切换实现对电流-电压转换器输出信号x(t)的随机调制;(2)对调制输出信号x(t)p(t)进行低通滤波;(3)对低通滤波器输出信号进行低速采样。
下面从数学的角度对系统的压缩采样原理进行分析:
首先,为了便于分析,将x(t)写成其傅里叶展开形式,因为x(t)是正弦信号,符合多谐波信号模型,因此可写为:
x ( t ) = Σ n = - N / 2 + 1 N / 2 s n · e j 2 π T n t , t ∈ [ 0 , T ) - - - ( 18 )
其中sn表示原始信号x(t)的第n个频率分量的傅里叶系数,即第n个频率分量的幅值;是傅里叶逆变换的基向量。因为x(t)是多谐波信号,所以s中只有K个值不为0,其余的均为0,K即为原始信号x(t)的稀度。
(1)通过两路开关的随机切换,实现对x(t)的随机调制。这两路开关时刻保持相反的通断状态,且每路均有两个状态相同的开关构成,对x(t)的随机调制过程为:当第I路开关打开,第II路开关断开时,x(t)通过第I路开关后无改变地输出,等效于和+1信号相乘;当第II路开关打开,第I路开关断开时,x(t)通过第II路开关和反相器,被反相输出,等效于和-1信号相乘;伪随机序列发生器产生的两路控制信号分别为pc1(t)和pc2(t),当其值为0时,开关断开,当其值为1时,开关打开,其中pc1(t)可表示为:
pc1(t)=0或1, t ∈ [ n W T , n + 1 W T ) , n = 0 , 1 , ... , W - 1 - - - ( 19 )
其中,W为伪随机序列pc(t)的切换频率,并且W大于等于原始信号x(t)的最大频率的2倍以上,T为总测量时间;
则x(t)通过两路开关的随机调制后,输出信号y1(t)为:
y1(t)=x(t)p(t)(20)
其中p(t)为
p ( t ) = ± 1 , t ∈ [ n W T , n + 1 W T ) , n = 0 , 1 , ... , W - 1 - - - ( 21 )
p(t)和pc1(t)的关系为pc1(t)为1时,p(t)也为1,当pc1(t)为0时,p(t)为-1;
相应地,伪随机序列p(t)的傅里叶展开式为
p ( t ) = Σ n = - ∞ ∞ p ( n ) e j 2 π T n t , t ∈ [ 0 , T ) - - - ( 22 )
其中p(n)表示伪随机序列p(t)的第n个频率分量的傅里叶系数。
因此,y1(t)的傅里叶展开式为
Y 1 ( f ) = ∫ - ∞ + ∞ x ( t ) p ( t ) e - j 2 π f t d t = ∫ - ∞ + ∞ ( Σ n = - N / 2 + 1 N / 2 s n e j 2 π T n t ) p ( t ) e - j 2 π f t d t = Σ n = 1 N / 2 s n P ( f - lf p ) - - - ( 23 )
这里P(f)是伪随机序列p(t)的频谱,fp为原始信号的基波频率。
(2)对调制输出信号y1(t)进行低通滤波,输出信号y2(t)为:
y 2 ( t ) = ( x ( t ) p ( t ) * h ( t ) ) = ∫ 0 T x ( τ ) p ( τ ) h ( t - τ ) d τ = Σ n = - N / 2 + 1 N / 2 s n ∫ 0 T ψ n ( τ ) p ( τ ) h ( t - τ ) d τ - - - ( 24 )
其中,h(t)为低通滤波器的冲击响应函数,表达式为:
(3)对低通滤波器输出信号进行低速采样,ADC的低速采样过程为:
y ( t ) = M ∫ m T / M ( m + 1 ) T / M y 2 ( t ) d t = Σ n = - N / 2 + 1 N / 2 s n ∫ 0 1 ψ n ( τ ) p ( τ ) h ( t - τ ) d τ | t = m Δ t - - - ( 26 )
其中Δt(Δt≥0)为采样时间间隔,M是总的采样数据的个数,
y [ m ] = Σ n = - N / 2 + 1 N / 2 s n ∫ 0 m · Δ t ψ n ( τ ) p ( τ ) h ( m · Δ t - τ ) d τ - - - ( 27 )
感知矩阵Θ的元素θm,n的表达式为:
θ m , n = θ n ( m · Δ t ) = ∫ 0 m · Δ t ψ n ( τ ) p ( τ ) h ( m · Δ t - τ ) d τ - - - ( 28 )
步骤三、将采样序列y[m]在上位机进行信号重建,并获得被测的阻抗值;
信号重建包括构造感知矩阵Θ和利用压缩感知重建算法进行信号重建这两个部分:
(1)根据稀疏变换阵Ψ、伪随机序列p(t)和低通滤波器的响应函数h(t),构造感知矩阵;
对于多谐波信号,稀疏变换矩阵Ψ为傅里叶正交反变换矩阵,而测量矩阵Φ是由低通滤波器的冲击响应h(t)和伪随机序列p(t)共同决定的,根据式(28)对冲击响应h(t)和伪随机序列p(t)求积分计算感知矩阵的每一个元素是十分繁杂且困难的,然而h(t)、p(t)、ψn(t)的离散表示都很容易求出,离散化的速率为伪随机序列的切换速率W。
根据理想积分器的冲击响应的表达式h(t),得到h(t)的离散化的表达形式为:
其中R定义为压缩率,是重建数据的个数N除以测量数据y[m]的个数M的比值,即R=N/M。
伪随机序列p(t)的数学表达式,得到p(t)的离散化形式为
其中,εi=±1。
因此,测量矩阵Φ为
感知矩阵Θ=ΦΨ,至此,即可得到感知矩阵Θ的表示式为Θ=HPΨ;
(2)通过信号重建算法,以感知矩阵Θ为参数从采样序列中重构这里采用正交匹配追踪算法进行信号重建,它以贪婪迭代的方法选择Θ的列,使得在每次迭代中所选择的列与当前的冗余向量最大程度地相关,从测量向量中减去相关部分并反复迭代,直到迭代次数达到稀疏度2K,强制迭代停止。
匹配追踪类算法通过求余量r与感知矩阵Θ中各个原子θj之间内积的绝对值,来计算相关系数u:
u={uj|uj=|〈r,θj〉|,j=1,2,…,N}(32)
并采用最小二乘法进行信号逼近及余量更新:
正交匹配追踪算法的具体步骤如下:
(1)初始余量r0=y,迭代次数n=1,索引值集合
(2)计算相关系数u,并将u中最大值对应的索引值存入J中;
(3)更新支撑集ΘΛ,其中Λ=Λ∪J0
(4)应用式(33)得到同时用式(34)对余量进行更新;
(5)若||rnew-r||≥ε,令r=rnew,n=n+1,转第(2)步;否则,停止迭代。
直到迭代次数为n=2K,迭代结束,得到电流-电压转换电路的输出电压信号x(t)的重建信号根据公式(14),得到被测阻抗Cx
本发明与现有技术相比的优点在于:本发明降低了采样速率,而且不需要其他先验信息,适合应用于实际采样过程中,在宽频阻抗测量方面具有很重要的研究价值;硬件结构简单,并且使用多谐波稀疏信号模型进行信号表征,和标准压缩感知理论切合度高,可以使用标准的压缩感知重构算法进行信号重构;不需要乘法器,仅需要电子开关,低速模数转换器等低功耗器件,具有成本低、功耗低、资源消耗少、实现简单的特点。
附图说明
图1为基于随机解调器的阻抗测量方法结构框图;
图2为阻抗测量原理图;
图3为基于开关结构的随机解调器原理图;
图4为激励信号波形图;
图5为电容测量原理图;
图6为电流-电压转换器输出电压波形;
图7为随机序列的波形;
图8为采样得到的波形;
图9为重建的频谱;
图10为重建信号的时域波形;
图11为不同电容值测量误差。
图12为C/V转换电路的基本参数设置;
图13为激励源信号模块机构图;
图14为AD9754及其外围电路;
图15为AD9244及其外围电路;
具体实施方式
本发明,即一种基于随机解调器的阻抗测量装置及方法,以电容测量为例,其包括下列步骤:
步骤一、对所测电容元件施加正弦电压激励,通过电流-电压转换电路将通过电容元件的电流信号转换为电压信号;
具体实现方法:
在信号检测电路中,选择合适的运放大器至关重要。为了使信号在放大时不失真,会要求运放的增益带宽积较宽,交流特性较好。经过对比选择的精密高速低漂移运放OPA637能够很好的满足设计要求。该电流-电压转换电路的基本参数如图12所示。
OPA637的增益带宽积80MHz,与反馈电阻Rf相并联的Cf是反馈电容,它的作用是减少运放噪声,保证足够的带宽。
激励电压为峰峰值20V,激励频率200kHz的正弦信号,其波形如图4所示。如图5所示,对待测电容元件的一端施加正弦电压激励,另一端接入一个由交流自平衡桥电路构成的电流-电压转换电路。其中Cx为待测电容,Cs1和Cs2为杂散电容,Rf为反馈电阻,Cf为反馈电容,电流-电压转换电路的输出电压为:
V 0 ( t ) = jωC x R f jωC f R f + 1 · V i ( t ) - - - ( 35 )
其中反馈电阻Rf和反馈电容Cf分别为33kΩ和4.7pF,当被测电容的标称值为1pF时,电流-电压转换器输出电压波形如图6所示。
步骤二、对电容-电压转换电路的输出信号通过随机解调器进行压缩采样,得到低速采样序列。
具体实现方法:
压缩采样过程需要一个可以进行高速处理计算,且具有足够的数据线和逻辑单元的器件作为核心控制芯片,实现包括对底层电路的逻辑控制、激励源和伪随机序列的产生、数据传输、FIFO数据缓存以及通过USB接口实现数据传输等在内的一系列功能。本系统采用现场可编程门阵列(FieldProgrammableGateArray,FPGA)作为主控芯片,这里的FPGA芯片选择CycloneIII系列的型号为EP3C25Q240C8N。
下面对压缩采样过程的每个模块分别做详细的介绍。
(1)激励源信号模块
激励源信号模块的功能是产生一个正弦信号源去激励被测元件,然后通过测量输出电压值电压来获取被测元件的阻抗信息,这里采用直接数字频率合成技术(DirectDigitalFrequencySynthesizer,DDS),DDS模块是由FPGA内部实现的。
所采用的激励源信号模块是由FPGA中的DDS模块、14位高速D/A芯片AD9754及其外围电路和低通滤波电路组成。其具体结构如图13所示:
数模转换电路是基于AD9754来实现的,其外围电路如图14所示,其电路最后输出IOUTA与IOUTB,并将两个信号送入运算放大器AD797转化成交流电压信号,最后通过低通滤波器得到正弦激励信号。
(2)伪随机序列产生及混频模块
伪随机序列产生模块的核心功能是产生四路开关的控制信号,用来调制C/V转换器的输出信号。这里采用最长线性反馈移位寄存器序列(又称为m序列)作为开关的控制信号,并使用FPGA芯片内的逻辑单元构成,其输出多项式方程为f(x)=1+x7+x9+…+x12,寄存器的初始状态为010010101011。
m序列用于控制四个开关,以实现对C/V转换电路输出信号的随机调制,从而完成信号的混频,其中开关的型号选择的是ADG412。
(3)低通滤波和数据采集
采用二阶低通滤波器实现滤波器的功能,截止频率设为25kHz,由运放AD823配合外围电路构成。C/V转换器的输出信号经过随机调制和低通滤波后被送到A/D模数转换电路进行数据采集,将模拟信号转换为数字信号,接着将采集到的数字信号通过USB传输到上位机,进行信号重建,根据重建信号计算出被测阻抗值。这里A/D芯片选为具有65MHz采样率和14位分辨率的AD9244,由AD9244配合外围电路组成的信号采集电路的具体参数设定如图15,其中ADC的采样频率设定为50kHz。
如图3所示,基于开关结构的随机解调器主要包括三个过程:(1)电流-电压转换器输出信号x(t)和随机序列pc(t)相乘;(2)对乘法器输出信号x(t)pc(t)进行积分;(3)对积分器输出信号进行低速采样。
这里随机波用12位最大长度移位寄存器产生的伪随机序列来控制开关,其线性反馈移位寄存器的初始种子为101001010011,开关的切换频率W=500kHz,得到的随机序列的波形如图7所示。图1中低通滤波器的截止频率为fc=25kHz,ADC的采样频率为fADC=50kHz,测量时间为T=4ms,即ADC采样得到数据的个数M=T×fADC=200,重建得到的数据个数N=T×W=2000(等效于C/V转换器的输出信号被频率为500kHz的ADC采样4ms得到的采样数据)。采样得到的波形如图8所示。
步骤三、通过信号重建算法,以感知矩阵Θ为参数从采样序列中重构这个过程主要包括两个步骤:(1)根据伪随机序列和低通滤波器的响应函数,构造感知矩阵;(2)通过信号重建算法,以感知矩阵为参数从采样序列中重构出电流-电压转换电路输出信号。得到信号的幅值和相角信息,进而提高计算得到元件阻抗值。
具体实现方法:
这里采用正交匹配追踪算法进行信号重建,它以贪婪迭代的方法选择Θ的列,使得在每次迭代中所选择的列与当前的冗余向量最大程度地相关,从测量向量中减去相关部分并反复迭代,直到迭代次数达到稀疏度2K,强制迭代停止。
匹配追踪类算法通过求余量r与感知矩阵Θ中各个原子θj之间内积的绝对值,来计算相关系数u:
u={uj|uj=|〈r,θj〉|,j=1,2,…,N}(36)
并采用最小二乘法进行信号逼近及余量更新:
正交匹配追踪算法的具体步骤如下:
(1)初始余量r0=y,迭代次数n=1,索引值集合
(2)计算相关系数u,并将u中最大值对应的索引值存入J中;
(3)更新支撑集ΘΛ,其中Λ=Λ∪J0
(4)应用式(37)得到同时用式(38)对余量进行更新;
(5)若||rnew-r||≥ε,令r=rnew,n=n+1,转到(2);否则,停止迭代。
直到迭代次数为n=2K,迭代结束,得到电流-电压转换电路的输出电压信号x(t)的重建信号根据公式(35),得到被测阻抗Cx
最后得到信号的重建频谱及时域波形图9和图10所示。从图10中可以得出重建得到的电压幅值为0.802V,计算得出被测电容的理论值为1.972pF,通过阻抗分析仪对被测电容进行标定,得到标定值为1.992pF,测量误差为-0.020pF。按照上述步骤,依次对标称值为1-5pF的电容进行测量,得到的测量误差如图11所示,即当系统的激励频率为200kHz时,系统的电容测量结果的绝对误差在-0.112pF至0.050pF之间,标准差在0.003pF至0.017pF之间分布。从上述结果可知,通过压缩采样的方法,可以进行电容的测量,并且测量系统的有良好稳定性及测量精度。
以上对本发明及其实施方式的描述,并不局限于此,附图中所示仅是本发明的实施方式之一。在不脱离本发明创造宗旨的情况下,不经创造性地设计出与该技术方案类似的结构或实施例,均属本发明保护范围。

Claims (1)

1.一种基于随机解调器的阻抗测量装置及方法,其特征在于包括下列步骤:
A.利用由DDS数字波形合成器101、D/A转换器102和低通滤波器103组成的信号源发生器1,产生正弦激励信号Vi(t);
利用DDS数字波形合成器101在FPGA芯片内合成数字波,经过D/A转换器102把数字波转变成模拟波后,通过低通滤波器103滤除杂波,得到稳定的正弦电压激励信号Vi(t);
B.利用电流-电压转换电路202,获得与待测阻抗元件201的值成比例的电压信号x(t);
对待测阻抗元件201施加正弦电压激励信号Vi(t),通过电流-电压转换电路202将经过待测阻抗元件201的电流信号转换为电压信号x(t),计算公式为:
式(1)中,Cx为被测电容,Rf和Cf分别代表反馈电阻和反馈电容,ω代表正弦激励信号Vi(t)的角频率,t为时间;
C.对电流-电压转换电路202输出的电压信号x(t)利用随机解调器3进行压缩采样,获得采样序列y[m],其硬件电路对信号的操作包括以下三个部分;
首先,在FPGA芯片内的伪随机序列发生器301控制两路开关302(包括第I路和第II路)的随机切换,实现对电流-电压转换电路202输出的电压信号x(t)的随机调制,这两路开关时刻保持相反的通断状态,且每路均有两个状态相同的开关构成,对x(t)的随机调制过程为:当第I路开关打开,第II路开关断开时,x(t)通过第I路开关后无改变地输出,等效于和+1信号相乘;当第II路开关打开,第I路开关断开时,x(t)通过第II路开关和反相器,被反相输出,等效于和-1信号相乘;伪随机序列发生器301产生的两路控制信号分别为pc1(t)和pc2(t),当控制信号的值为0时,开关断开,当控制信号的值为1时,开关打开,第I路的控制信号pc1(t)表示为:
pc1(t)=0或1,
式(2)中,W为开关的切换频率,且大于x(t)的Nyquist采样频率,T为总测量时间;
x(t)经过两路开关302的随机调制后,输出信号y1(t)为:
y1(t)=x(t)p(t)(3)
式(3)中的伪随机序列p(t)为
p(t)和pc1(t)的关系为pc1(t)为1时,p(t)也为1,当pc1(t)为0时,p(t)为-1;
然后,对调制输出信号y1(t)经过低通滤波器303进行低通滤波,输出信号y2(t)为:
y2(t)=x(t)p(t)*h(t)(5)
式(5)中,*代表卷积运算,h(t)为低通滤波器的冲击响应函数,表达式为:
式(6)中,M为在测量时间T内得到的采样序列的个数;
最后,对低通滤波器303的输出信号y2(t)通过A/D转换器304进行低速采样,获得的低速采样序列y[m]为:
D.利用采样序列y[m]在上位机305进行信号重建,得到重建信号为并计算出待测阻抗元件201的阻抗值;
所述信号重建包括构造感知矩阵Θ和利用压缩感知重建算法进行信号重建两个部分;首先,根据上面所述的随机解调器的测量过程和可知,感知矩阵Θ由稀疏变换矩阵Ψ、伪随机序列p(t)和低通滤波器303的冲击响应函数h(t)共同决定,因为x(t)在频域具有稀疏性,所以稀疏变换矩阵Ψ选则傅里叶正交反变换矩阵:
根据伪随机序列信号p(t)的数学表达式(4),得到p(t)的离散化矩阵形式为
式(9)中,εi=±1;
根据低通滤波器303的冲击响应函数h(t)的数学表达式(6),得到h(t)的离散化矩阵形式为
式(10)中,R=N/M为压缩率;
至此,得到测量矩阵Φ=HP,而感知矩阵Θ是由测量矩阵Φ和稀疏变换矩阵Ψ相乘得到的,因此感知矩阵Θ=ΦΨ=HPΨ;
其次,以感知矩阵Θ为参数从采样序列y[m]中,利用匹配追踪算法重建电容-电压转换器202的输出信号x(t),得到重建结果为并且等效为x(t)以WHz的频率进行采样得到的离散序列,该采样过程满足Nyquist采样定理;这里采用正交匹配追踪算法进行信号重建,它以贪婪迭代的方式选择Θ的列,使得在每次迭代中所选择的列与当前的冗余向量最大程度地相关,从采样序列y[m]中减去相关部分并反复迭代,直到迭代次数达到稀疏度2K,强制迭代停止;匹配追踪算法通过求余量r与感知矩阵Θ中各个原子θj之间内积的绝对值,来计算相关系数u:
u={uj|uj=|<r,θj>|,j=1,2,...,N}(11)
并采用最小二乘法进行信号逼近及余量更新:
正交匹配追踪算法的具体步骤如下:
(1)初始余量r0=y,迭代次数n=1,给定误差δ=δ0,索引值集合
(2)计算相关系数u,并将u中最大值对应的索引值存入J中;
(3)更新支撑集ΘΛ,其中Λ=Λ∪J0
(4)应用式(12)得到同时用式(13)对余量进行更新;
(5)若||rnew-r||≥δ0,令r=rnew,n=n+1,转到(2);否则,停止迭代;
直到迭代次数为n=2K,迭代结束,得到电流-电压转换电路202的输出电压信号x(t)的重建信号根据公式(1)得到待测阻抗元件201的阻抗值。
CN201510893981.1A 2015-12-08 2015-12-08 一种基于随机解调器的阻抗测量方法 Active CN105319445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510893981.1A CN105319445B (zh) 2015-12-08 2015-12-08 一种基于随机解调器的阻抗测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510893981.1A CN105319445B (zh) 2015-12-08 2015-12-08 一种基于随机解调器的阻抗测量方法

Publications (2)

Publication Number Publication Date
CN105319445A true CN105319445A (zh) 2016-02-10
CN105319445B CN105319445B (zh) 2018-11-09

Family

ID=55247274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510893981.1A Active CN105319445B (zh) 2015-12-08 2015-12-08 一种基于随机解调器的阻抗测量方法

Country Status (1)

Country Link
CN (1) CN105319445B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866545A (zh) * 2016-05-18 2016-08-17 武汉精测电子技术股份有限公司 一种ito线路阻抗量测装置、方法及模拟信号发生器
CN106154048A (zh) * 2016-08-12 2016-11-23 浙江大学 基于数字相敏解调和虚拟电感技术的非接触式流体电阻抗测量装置及方法
CN106850473A (zh) * 2016-12-27 2017-06-13 电子科技大学 一种基于随机解调的宽带压缩采样系统
CN107561367A (zh) * 2017-08-15 2018-01-09 北京航空航天大学 一种基于压缩感知理论的宽频谱阻抗测量装置及方法
CN107864347A (zh) * 2017-10-27 2018-03-30 天津津航技术物理研究所 一种红外tdi探测器预处理电路噪声的统计方法
CN110243871A (zh) * 2018-03-09 2019-09-17 苏州宝时得电动工具有限公司 植被识别系统、方法和割草机
CN110346641A (zh) * 2018-04-08 2019-10-18 上海汽车集团股份有限公司 一种绝缘电阻检测系统及方法
CN111458626A (zh) * 2020-05-27 2020-07-28 南京信息工程大学 基于共生多元泛函计算的电路系统信号分析与处理方法
CN111736016A (zh) * 2020-07-31 2020-10-02 上海巨微集成电路有限公司 一种交流传输特性检测电路
CN112269061A (zh) * 2020-09-14 2021-01-26 中国南方电网有限责任公司超高压输电公司广州局 一种阀段模块元件阻抗测量系统
WO2021238808A1 (zh) * 2020-05-28 2021-12-02 微泰医疗器械(杭州)有限公司 一种检测物浓度监测电路、系统及终端设备
US11272854B1 (en) 2020-09-02 2022-03-15 Analog Devices International Unlimited Company Noise cancellation in impedance measurement circuits
CN114487971A (zh) * 2022-04-02 2022-05-13 武汉地震工程研究院有限公司 一种改进的微型阻抗测量自校准算法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143786A1 (en) * 2006-06-16 2007-12-21 Inphaze Pty Ltd A system for complex impedance measurement
WO2010051313A1 (en) * 2008-10-30 2010-05-06 Bose Corporation Impedance measurement system and method
CN103248368A (zh) * 2013-04-23 2013-08-14 中国电子科技集团公司第三十六研究所 一种判断随机解调器压缩采样重构成败的方法
CN103344849A (zh) * 2013-05-31 2013-10-09 哈尔滨工业大学 一种获取随机解调硬件系统的感知矩阵的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007143786A1 (en) * 2006-06-16 2007-12-21 Inphaze Pty Ltd A system for complex impedance measurement
WO2010051313A1 (en) * 2008-10-30 2010-05-06 Bose Corporation Impedance measurement system and method
CN103248368A (zh) * 2013-04-23 2013-08-14 中国电子科技集团公司第三十六研究所 一种判断随机解调器压缩采样重构成败的方法
CN103344849A (zh) * 2013-05-31 2013-10-09 哈尔滨工业大学 一种获取随机解调硬件系统的感知矩阵的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
江建军等: "基于随机解调器的宽带雷达信号探测", 《仪器仪表学报》 *
程艳合等: "宽带直扩信号的随机解调压缩采样方法", 《电讯技术》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866545A (zh) * 2016-05-18 2016-08-17 武汉精测电子技术股份有限公司 一种ito线路阻抗量测装置、方法及模拟信号发生器
CN106154048A (zh) * 2016-08-12 2016-11-23 浙江大学 基于数字相敏解调和虚拟电感技术的非接触式流体电阻抗测量装置及方法
CN106850473A (zh) * 2016-12-27 2017-06-13 电子科技大学 一种基于随机解调的宽带压缩采样系统
CN106850473B (zh) * 2016-12-27 2019-09-24 电子科技大学 一种基于随机解调的宽带压缩采样系统
CN107561367B (zh) * 2017-08-15 2020-10-16 北京航空航天大学 一种基于压缩感知理论的宽频谱阻抗测量方法
CN107561367A (zh) * 2017-08-15 2018-01-09 北京航空航天大学 一种基于压缩感知理论的宽频谱阻抗测量装置及方法
CN107864347A (zh) * 2017-10-27 2018-03-30 天津津航技术物理研究所 一种红外tdi探测器预处理电路噪声的统计方法
CN110243871A (zh) * 2018-03-09 2019-09-17 苏州宝时得电动工具有限公司 植被识别系统、方法和割草机
CN110346641A (zh) * 2018-04-08 2019-10-18 上海汽车集团股份有限公司 一种绝缘电阻检测系统及方法
CN110346641B (zh) * 2018-04-08 2021-12-07 上海汽车集团股份有限公司 一种绝缘电阻检测系统及方法
CN111458626A (zh) * 2020-05-27 2020-07-28 南京信息工程大学 基于共生多元泛函计算的电路系统信号分析与处理方法
CN111458626B (zh) * 2020-05-27 2022-07-12 南京信息工程大学 基于共生多元泛函计算的电路系统信号分析与处理方法
WO2021238808A1 (zh) * 2020-05-28 2021-12-02 微泰医疗器械(杭州)有限公司 一种检测物浓度监测电路、系统及终端设备
CN111736016A (zh) * 2020-07-31 2020-10-02 上海巨微集成电路有限公司 一种交流传输特性检测电路
US11272854B1 (en) 2020-09-02 2022-03-15 Analog Devices International Unlimited Company Noise cancellation in impedance measurement circuits
CN112269061A (zh) * 2020-09-14 2021-01-26 中国南方电网有限责任公司超高压输电公司广州局 一种阀段模块元件阻抗测量系统
CN114487971A (zh) * 2022-04-02 2022-05-13 武汉地震工程研究院有限公司 一种改进的微型阻抗测量自校准算法和装置

Also Published As

Publication number Publication date
CN105319445B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN105319445A (zh) 一种基于随机解调器的阻抗测量装置及方法
CN107561367A (zh) 一种基于压缩感知理论的宽频谱阻抗测量装置及方法
CN103178853B (zh) 基于压缩感知的稀疏信号欠采样方法
CN103983850A (zh) 基于压缩感知的电力系统谐波压缩信号重构与检测方法
CN108257044A (zh) 一种基于稳态电流模型的非侵入式负荷分解方法
CN103457603B (zh) 一种基于平均频谱测试adc动态参数的方法
CN101867387A (zh) 低于奈奎斯特速率采样下信号重构技术方案
CN103616652B (zh) 一种电容分压器的误差测量方法、系统及应用
CN103257271A (zh) 一种基于stm32f107vct6的微电网谐波与间谐波检测装置及检测方法
CN107122511B (zh) 一种超级电容分数阶模型参数识别方法
Marks Antennas and wave propagation
Sanchez et al. An FPGA-based frequency response analyzer for multisine and stepped sine measurements on stationary and time-varying impedance
CN102955068A (zh) 一种基于压缩采样正交匹配追踪的谐波检测方法
CN103391099B (zh) 适用于一维缓变信号的随机采样器
Cui et al. A specific data acquisition scheme for electrical tomography
CN103036576A (zh) 基于压缩传感理论的一种二值稀疏信号重构算法
CN103926550A (zh) 一种基于虚拟仪器校验电力互感器的装置及方法
CN206292324U (zh) 一种频率特性测试仪
CN104883192B (zh) 基于混合压缩采样的非合作超宽带信号的重构方法
CN208224473U (zh) 一种电容型设备相对介损测试带电检测装置
CN105471525A (zh) 一种矢量网络分析仪的四通道压缩感知数字接收机信号处理方法
Wang et al. Hardware for multi-superconducting qubit control and readout
CN104270209B (zh) 基于不同校准平面的rru驻波比的检测方法和装置
CN203502449U (zh) 一种波形合成装置
CN106685423A (zh) 模数转换器静态参数正弦波测试方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant