CN105304689A - 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法 - Google Patents

基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法 Download PDF

Info

Publication number
CN105304689A
CN105304689A CN201510772384.3A CN201510772384A CN105304689A CN 105304689 A CN105304689 A CN 105304689A CN 201510772384 A CN201510772384 A CN 201510772384A CN 105304689 A CN105304689 A CN 105304689A
Authority
CN
China
Prior art keywords
algan
graphene
layer
fluorinated graphene
passivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510772384.3A
Other languages
English (en)
Other versions
CN105304689B (zh
Inventor
程新红
沈玲燕
王中健
曹铎
郑理
王谦
张栋梁
李静杰
俞跃辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201510772384.3A priority Critical patent/CN105304689B/zh
Publication of CN105304689A publication Critical patent/CN105304689A/zh
Priority to PCT/CN2016/075635 priority patent/WO2017080126A1/zh
Priority to US15/772,033 priority patent/US10770556B2/en
Application granted granted Critical
Publication of CN105304689B publication Critical patent/CN105304689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2229/00Indexing scheme for semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, for details of semiconductor bodies or of electrodes thereof, or for multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明的基于氟化石墨烯钝化的AlGaN/GaN?HEMT器件及其制作方法,将单层石墨烯转移到AlGaN表面,经过氟离子处理后绝缘,以此替代常规氮化物钝化层。然后在石墨烯上生长高k材料,两者共同作为栅介质,制备AlGaN/GaN金属-绝缘层-半导体(MIS)HEMT器件。石墨烯相比于传统钝化结构,具有物理厚度薄(亚纳米量级),附加阈值电压小的优点。同时,单层石墨烯也具有很好的隔离性能,防止生长高k材料的过程中,AlGaN表面被氧化而产生表面陷阱,以达到钝化的效果。另外,氟化过程能使石墨烯中引入负电荷,有利于HEMT器件的阈值电压正向移动,为实现增强型器件提供可能。本发明结构和方法简单,效果显著,在微电子与固体电子学技术领域具有广泛的应用前景。

Description

基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
技术领域
本发明属于微电子与固体电子学技术领域,特别是涉及一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件及制作方法。
背景技术
高电子迁移率晶体管HEMT(HighElectronMobilityTransistor)是一种异质结场效应晶体管,又称为调制掺杂场效应晶体管(MODFET)、二维电子气场效应晶体管(2-DEGFET)、选择掺杂异质结晶体管(SDHT)等。这种器件及其集成电路都能够工作于超高频(毫米波)、超高速领域,原因就在于它是利用具有很高迁移率的所谓二维电子气来工作的。
HEMT的基本结构就是一个调制掺杂异质结。高迁移率的二维电子气(2-DEG)存在于调制掺杂的异质结中,这种2-DEG不仅迁移率很高,而且在极低温度下也不“冻结”,则HEMT有很好的低温性能,可用于低温研究工作(如分数量子Hall效应)中。HEMT是电压控制器件,栅极电压Vg可控制异质结势阱的深度,则可控制势阱中2-DEG的面密度,从而控制着器件的工作电流。对于GaAs体系的HEMT,通常其中的n-AlxGa1-xAs控制层应该是耗尽的(厚度一般为数百nm,掺杂浓度为107~108/cm3)。若n-AlxGa1-xAs层厚度较大、掺杂浓度又高,则在Vg=0时就存在有2-DEG,为耗尽型器件,反之则为增强型器件(Vg=0时Schottky耗尽层即延伸到i-GaAs层内部);但该层如果厚度过大、掺杂浓度过高,则工作时就不能耗尽,而且还将出现与S-D并联的漏电电阻。总之,对于HEMT,主要是要控制好宽禁带半导体层—控制层的掺杂浓度和厚度,特别是厚度。在考虑HEMT中的2-DEG面密度Ns时,通常只需要考虑异质结势阱中的两个二维子能带(i=0和1)即可。2-DEG面电荷密度Ns将受到栅极电压Vg的控制。
AlGaN/GaNHEMT良好的高频高功率性能使其在微波功率放大器和高温数字电路领域颇具竞争力。AlGaN/GaN异质结由于较强的自发极化和压电极化,在AlGaN/GaN界面处存在高浓度的二维电子气。与Si基及GaAs基器件相比,AlGaN/GaNHEMT输出功率密度表现出了一个量级的提高。
然而,由于表面电子陷阱的存在,未钝化的AlGaN/GaNHEMT器件常表现出严重的电流崩塌现象,输出性能大幅下降。
基于以上所述,提供一种能够有效抑制电流崩塌效应的AlGaN/GaNHEMT器件及其制作方法实属必要。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件及制作方法,用于解决现有技术中AlGaN/GaNHEMT器件具有比较严重电流崩塌效应的问题。
为实现上述目的及其他相关目的,本发明提供一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,所述HEMT器件包括:基底;GaN层,位于所述基底之上;AlGaN层,结合于所述GaN层,且与所述GaN层之间的界面形成二维电子气面;源极及漏极,形成于所述AlGaN层上;绝缘的石墨烯钝化层,结合于所述AlGaN层表面;栅介质层,结合于所述绝缘的石墨烯钝化层表面;以及栅金属层,结合于所述栅介质层表面。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的一种优选方案,所述基底与GaN层之间具有缓冲层。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的一种优选方案,所述基底包括(111)晶向的硅衬底。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的一种优选方案,所述缓冲层的厚度范围为2~10μm。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的一种优选方案,所述栅介质层为高K栅介质层。
本发明还提供一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,包括步骤:1)提供一基底,于所述基底表面依次形成GaN层及AlGaN层,所述GaN层与AlGaN层之间的界面形成二维电子气面;2)于所述AlGaN层上形成源欧姆接触以及漏欧姆接触;3)于所述AlGaN层表面形成石墨烯,并对所述石墨烯进行氟化处理形成绝缘的石墨烯钝化层;4)于所述绝缘的石墨烯钝化层表面形成栅介质层,并于所述栅介质层表面形成栅金属层。5)对器件区域进行台面隔离;6)于器件表面沉积隔离层;7)于所述隔离层中刻蚀出与源欧姆接触、漏欧姆接触及栅金属层对应的窗口;8)基于各窗口制作金属引出电极。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法的一种优选方案,步骤1)还包括在所述基底与GaN层之间形成缓冲层的步骤。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法的一种优选方案,步骤3)于所述AlGaN层表面覆盖石墨烯的方法有两种:a、于Cu基底上生长石墨烯,然后将生长在Cu基底上的石墨烯转移到所述AlGaN层表面;或者b、直接在AlGaN表面生长石墨烯。作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法的一种优选方案,步骤3)对所述石墨烯进行氟化处理包括步骤:采用SF6等离子体对所述石墨烯进行处理,处理时间为60~120s。
作为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法的一种优选方案,所述栅介质层为高K栅介质层。
如上所述,本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件及其制作方法,具有以下有益效果:本发明将单层石墨烯转移到AlGaN表面,经过氟离子处理后绝缘,以此替代常规氮化物钝化层。然后在石墨烯上生长高k材料,两者共同作为栅介质,制备AlGaN/GaN金属-绝缘层-半导体(MIS)HEMT器件。石墨烯相比于传统钝化结构,具有物理厚度薄(亚纳米量级),附加阈值电压小的优点。同时,单层石墨烯也具有很好的隔离性能,防止生长高k材料的过程中,AlGaN表面被氧化而产生表面陷阱,以达到钝化的效果。另外,氟化过程能使石墨烯中引入负电荷,有利于HEMT器件的阈值电压正向移动,为实现增强型器件提供可能。本发明结构和方法简单,效果显著,在微电子与固体电子学技术领域具有广泛的应用前景。
附图说明
图1显示为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法步骤流程示意图。
图2~图5显示为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法各步骤所呈现的结构示意图。
图6及图7显示为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件与无石墨烯钝化的HEMT器件的I-V性能曲线对比图。
元件标号说明
101基底
102缓冲层
103GaN层
104二维电子气面
105AlGaN层
106源极
107漏极
108绝缘的石墨烯钝化层
109栅介质层
110栅金属层
S11~S18步骤1)~步骤8)
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1~图7。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
如图5所示,本实施例提供一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,所述HEMT器件包括:基底101;GaN层103,位于所述基底101之上;AlGaN层104,结合于所述GaN层103,且与所述GaN层103之间的界面形成二维电子气面;源极106及漏极107,形成于所述AlGaN层104两端;绝缘的石墨烯钝化层108,结合于所述AlGaN层104表面;栅介质层109,结合于所述绝缘的石墨烯钝化层108表面;以及栅金属层110,结合于所述栅介质层109表面。
如图5所示,作为示例,所述基底101与GaN层103之间具有缓冲层102。所述缓冲层102可以有效地缓冲基底101与GaN层103之间的应力失配以及晶格失配,从而大大提高GaN层103生长的质量。
作为示例,所述基底101包括(111)晶向的硅衬底。当然,在其它的实施例中,所述基底101也可以为SiC衬底等,并不限于此处所列举的示例。
作为示例,所述缓冲层102的厚度范围为2~10μm。在本实施例中,所述缓冲层102的厚度为3.9μm。
作为示例,所述栅介质层109为高K栅介质层109。所述高K栅介质层109可以为Al2O3、HfO2等,且并不限于此处所列举的示例。
本发明以绝缘的石墨烯钝化层108替代常规氮化物钝化层,然后在绝缘的石墨烯钝化层108上生长高k材料,两者可以共同作为栅介质,形成AlGaN/GaN金属-绝缘层-半导体(MIS)HEMT。石墨烯相比于传统钝化结构,具有物理厚度薄(亚纳米量级),附加阈值电压小的优点。同时,单层石墨烯也具有很好的隔离性能,防止生长高k材料过程中,AlGaN表面被氧化而产生表面陷阱,以达到钝化的效果。另外,氟化过程能使石墨烯中引入负电荷,有利于MISHEMT器件的阈值电压正向移动,为实现增强型器件提供可能。
如图1~图5所示,本实施例还提供一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,包括步骤:
如图1及图2所示,首先进行步骤1)S11,提供一基底101,于所述基底101表面依次形成GaN层103及AlGaN层104,所述GaN层103与AlGaN层104之间的界面形成二维电子气面。
在本实施例中,还包括在所述基底101与GaN层103之间形成缓冲层102的步骤。所述缓冲层102可以有效地缓冲基底101与GaN层103之间的应力失配以及晶格失配,从而大大提高GaN层103生长的质量。
如图1及图3所示,然后进行步骤2)S12,于所述AlGaN层104上形成源欧姆接触以及漏欧姆接触。
具体地,先制作光刻胶图形,然后采用电子束蒸发Ti/Al/Ni/Au金属叠层(其厚度分别为20/100/50/100nm),然后采用lift-off工艺去除多余的金属叠层,退火后于所述AlGaN层104上形成源欧姆接触以及漏欧姆接触。
如图1及图4所示,接着进行步骤3)S13,于所述AlGaN层104表面形成石墨烯,并对所述石墨烯进行氟化处理形成绝缘的石墨烯钝化层108;
作为示例,于所述AlGaN层104表面形成石墨烯包括步骤:于Cu基底101上生长石墨烯;然后将生长在Cu基底101上的石墨烯转移到所述AlGaN层104表面。
作为示例,对所述石墨烯进行氟化处理包括步骤:采用SF6等离子体对所述石墨烯进行处理,处理时间为60~120s。在本实施例中,处理时间选用为90s。
如图1及图5所示,然后进行步骤4)S14,于所述绝缘的石墨烯钝化层108表面形成栅介质层109,并于所述栅介质层109表面形成栅金属层110。
作为示例,所述栅介质层109为高K栅介质层109。所述高K栅介质层109可以为Al2O3、HfO2等,且并不限于此处所列举的示例。具体地,在本实施例中,先用热法ALD(原子层沉积技术)沉积Al2O3至一定厚度,然后采用等离子增强原子层沉积技术继续沉积Al2O3,总共沉积厚度为14nm的Al2O3层,与所述绝缘的石墨烯钝化层108一起作为栅介质层109。
作为示例,于所述栅介质层109表面形成栅金属层110包括步骤:先制作光刻胶图形,然后采用电子束蒸发Ni/Au金属叠层(其厚度分别为30/100nm),最后采用lift-off工艺去除多余的金属叠层,以完成栅金属层110的制备。
如图1所示,接着进行步骤5)S15,对器件区域进行台面隔离。
具体地,采用PECVD工艺淀积SiO2作为掩膜,其厚度为300nm,然后采用ICP刻蚀非器件区域,刻蚀深度为350nm,以完成对器件区域进行台面隔离。
如图1所示,然后进行步骤6)S16,于器件表面沉积隔离层。
作为示例,采用PECVD工艺淀积SiO2薄膜作为隔离层,其厚度为100nm。
如图1所示,接着进行步骤7)S17,于所述隔离层中刻蚀出与源欧姆接触、漏欧姆接触及栅金属层110对应的窗口。
具体地,首先采用RIE刻蚀法刻蚀欧姆接触及栅金属电极上的SiO2薄膜,再采用湿法刻蚀源欧姆接触及漏欧姆接触上的Al2O3层,以于所述隔离层中刻蚀出与源欧姆接触、漏欧姆接触及栅金属层110对应的窗口。
如图1所示,最后进行步骤8)S18,基于各窗口制作金属引出电极。
具体地,先制作光刻胶图形,然后采用电子束蒸发Ti/Au金属叠层(其厚度分别为20/200nm),最后采用lift-off工艺去除多余的金属叠层,以基于各窗口制作金属引出电极,并完成基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作。
图6及图7显示为本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件与无石墨烯钝化的HEMT器件的I-V性能曲线对比图,图6中将有无石墨烯钝化的MISHEMT器件转移特性于本发明的HEMT器件进行比较,发现经石墨烯钝化的器件关态电流减小了3个数量级,并且阈值电压正向移动了3.4V,如图7所示,由图6~图7可以看出,本发明的HEMT器件性能有明显改善。
如上所述,本发明的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件及其制作方法,具有以下有益效果:本发明将单层石墨烯转移到AlGaN表面,经过氟离子处理后绝缘,以此替代常规氮化物钝化层。然后在石墨烯上生长高k材料,两者共同作为栅介质,制备AlGaN/GaN金属-绝缘层-半导体(MIS)HEMT器件。石墨烯相比于传统钝化结构,具有物理厚度薄(亚纳米量级),附加阈值电压小的优点。同时,单层石墨烯也具有很好的隔离性能,防止生长高k过程中,AlGaN表面被氧化而产生表面陷阱,以达到钝化的效果。另外,氟化过程能使石墨烯中引入负电荷,有利于HEMT器件的阈值电压正向移动,为实现增强型器件提供可能。本发明结构和方法简单,效果显著,在微电子与固体电子学技术领域具有广泛的应用前景。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (11)

1.一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,其特征在于,所述HEMT器件包括:
基底;
GaN层,位于所述基底之上;
AlGaN层,结合于所述GaN层,且与所述GaN层之间的界面形成二维电子气面;
源极及漏极,形成于所述AlGaN层两端;
绝缘的石墨烯钝化层,结合于所述AlGaN层表面;
栅介质层,结合于所述绝缘的石墨烯钝化层表面;
栅金属层,结合于所述栅介质层表面。
2.根据权利要求1所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,其特征在于:所述基底与GaN层之间具有缓冲层。
3.根据权利要求2所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,其特征在于:所述缓冲层的厚度范围为2~10μm。
4.根据权利要求1所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,其特征在于:所述基底包括(111)晶向的硅衬底。
5.根据权利要求1所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件,其特征在于:所述栅介质层为高K栅介质层。
6.一种基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,其特征在于,包括步骤:
1)提供一基底,于所述基底表面依次形成GaN层及AlGaN层,所述GaN层与AlGaN层之间的界面形成二维电子气面;
2)于所述AlGaN层形成源欧姆接触以及漏欧姆接触;
3)于所述AlGaN层表面覆盖石墨烯,并对所述石墨烯进行氟化处理形成绝缘的石墨烯钝化层;
4)于所述绝缘的石墨烯钝化层表面形成栅介质层,并于所述栅介质层表面形成栅金属层。
7.根据权利要求6所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,其特征在于,还包括步骤:
5)对器件区域进行台面隔离;
6)于器件表面沉积隔离层;
7)于所述隔离层中刻蚀出与源欧姆接触、漏欧姆接触及栅金属层对应的窗口;
8)基于各窗口制作金属引出电极。
8.根据权利要求6所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,其特征在于:步骤1)还包括在所述基底与GaN层之间形成缓冲层的步骤。
9.根据权利要求6所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,其特征在于:步骤3)于所述AlGaN层表面覆盖石墨烯的方法有两种:a、于Cu基底上生长石墨烯,然后将生长在Cu基底上的石墨烯转移到所述AlGaN层表面;或者b、直接在AlGaN表面生长石墨烯。
10.根据权利要求6所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,其特征在于:步骤3)对所述石墨烯进行氟化处理包括步骤:采用SF6等离子体对所述石墨烯进行处理,处理时间为60~120s。
11.根据权利要求6所述的基于氟化石墨烯钝化的AlGaN/GaNHEMT器件的制作方法,其特征在于:所述栅介质层为高K栅介质层。
CN201510772384.3A 2015-11-12 2015-11-12 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法 Active CN105304689B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510772384.3A CN105304689B (zh) 2015-11-12 2015-11-12 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
PCT/CN2016/075635 WO2017080126A1 (zh) 2015-11-12 2016-03-04 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
US15/772,033 US10770556B2 (en) 2015-11-12 2016-03-04 Fluorinated graphene passivated AlGaN/GaN-based HEMT device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510772384.3A CN105304689B (zh) 2015-11-12 2015-11-12 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法

Publications (2)

Publication Number Publication Date
CN105304689A true CN105304689A (zh) 2016-02-03
CN105304689B CN105304689B (zh) 2018-09-25

Family

ID=55201714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510772384.3A Active CN105304689B (zh) 2015-11-12 2015-11-12 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法

Country Status (3)

Country Link
US (1) US10770556B2 (zh)
CN (1) CN105304689B (zh)
WO (1) WO2017080126A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080126A1 (zh) * 2015-11-12 2017-05-18 中国科学院上海微系统与信息技术研究所 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
CN107195674A (zh) * 2017-05-22 2017-09-22 北京华进创威电子有限公司 具有石墨烯掩埋源极和纵向栅极的GaNHEMT元胞结构及制备方法
CN107425051A (zh) * 2017-07-19 2017-12-01 苏州能讯高能半导体有限公司 一种半导体器件及其制备方法
CN110061124A (zh) * 2019-04-25 2019-07-26 中国科学技术大学 鲁棒石墨烯量子霍尔器件及其制备方法
CN111446289A (zh) * 2020-04-09 2020-07-24 浙江大学 基于石墨烯覆盖层的氮化镓器件结构及其制备方法
CN111554573A (zh) * 2020-04-26 2020-08-18 上海师范大学 一种氟化石墨烯/高k介质复合结构的制备方法
CN111653478A (zh) * 2020-03-13 2020-09-11 厦门市三安集成电路有限公司 一种制作增强型氮化镓功率器件的方法
CN113594037A (zh) * 2021-08-03 2021-11-02 中国科学院苏州纳米技术与纳米仿生研究所 GaN MISHEMT器件及其制作方法
CN114883396A (zh) * 2022-07-11 2022-08-09 成都功成半导体有限公司 一种凹陷式Fin-JFET栅结构HEMT及制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734537B2 (en) 2017-11-08 2020-08-04 Wisconsin Alumni Research Foundation High performance, high electron mobility transistors with graphene hole extraction contacts
CN108269913B (zh) * 2018-02-28 2024-03-26 北京航空航天大学青岛研究院 霍尔器件及其制备方法与电子设备
TWI826172B (zh) * 2022-12-08 2023-12-11 台亞半導體股份有限公司 高電子遷移率電晶體
CN116705605B (zh) * 2023-06-20 2024-06-18 中国科学院上海微系统与信息技术研究所 一种硅基氮化镓hemt器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030020092A1 (en) * 2001-07-24 2003-01-30 Primit Parikh Insulating gate AlGaN/GaN HEMT
CN103208425A (zh) * 2013-03-22 2013-07-17 中国科学院上海微系统与信息技术研究所 一种石墨烯调制的高K金属栅Ge基MOS器件的制作方法
US20140353722A1 (en) * 2013-05-31 2014-12-04 Stmicroelectronics, Inc. Graphene capped hemt device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032697C5 (de) * 2009-07-09 2020-03-05 Ovd Kinegram Ag Mehrschichtkörper
CN103247689A (zh) 2012-02-04 2013-08-14 李德杰 石墨烯场效应晶体管
US9685513B2 (en) * 2012-10-24 2017-06-20 The United States Of America, As Represented By The Secretary Of The Navy Semiconductor structure or device integrated with diamond
CN105304689B (zh) 2015-11-12 2018-09-25 中国科学院上海微系统与信息技术研究所 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
WO2019195428A1 (en) * 2018-04-04 2019-10-10 Qorvo Us, Inc. Gallium-nitride-based module with enhanced electrical performance and process for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030020092A1 (en) * 2001-07-24 2003-01-30 Primit Parikh Insulating gate AlGaN/GaN HEMT
CN103208425A (zh) * 2013-03-22 2013-07-17 中国科学院上海微系统与信息技术研究所 一种石墨烯调制的高K金属栅Ge基MOS器件的制作方法
US20140353722A1 (en) * 2013-05-31 2014-12-04 Stmicroelectronics, Inc. Graphene capped hemt device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10770556B2 (en) 2015-11-12 2020-09-08 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science Fluorinated graphene passivated AlGaN/GaN-based HEMT device and manufacturing method
WO2017080126A1 (zh) * 2015-11-12 2017-05-18 中国科学院上海微系统与信息技术研究所 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
CN107195674A (zh) * 2017-05-22 2017-09-22 北京华进创威电子有限公司 具有石墨烯掩埋源极和纵向栅极的GaNHEMT元胞结构及制备方法
CN107195674B (zh) * 2017-05-22 2024-02-02 北京星云联众科技有限公司 具有石墨烯掩埋源极和纵向栅极的GaN HEMT元胞结构及制备方法
CN107425051A (zh) * 2017-07-19 2017-12-01 苏州能讯高能半导体有限公司 一种半导体器件及其制备方法
CN107425051B (zh) * 2017-07-19 2020-10-02 苏州能讯高能半导体有限公司 一种半导体器件及其制备方法
CN110061124A (zh) * 2019-04-25 2019-07-26 中国科学技术大学 鲁棒石墨烯量子霍尔器件及其制备方法
CN111653478A (zh) * 2020-03-13 2020-09-11 厦门市三安集成电路有限公司 一种制作增强型氮化镓功率器件的方法
CN111653478B (zh) * 2020-03-13 2022-06-28 厦门市三安集成电路有限公司 一种制作增强型氮化镓功率器件的方法
CN111446289B (zh) * 2020-04-09 2020-11-20 浙江大学 基于石墨烯覆盖层的氮化镓器件结构及其制备方法
CN111446289A (zh) * 2020-04-09 2020-07-24 浙江大学 基于石墨烯覆盖层的氮化镓器件结构及其制备方法
CN111554573A (zh) * 2020-04-26 2020-08-18 上海师范大学 一种氟化石墨烯/高k介质复合结构的制备方法
CN113594037A (zh) * 2021-08-03 2021-11-02 中国科学院苏州纳米技术与纳米仿生研究所 GaN MISHEMT器件及其制作方法
CN114883396A (zh) * 2022-07-11 2022-08-09 成都功成半导体有限公司 一种凹陷式Fin-JFET栅结构HEMT及制作方法

Also Published As

Publication number Publication date
CN105304689B (zh) 2018-09-25
WO2017080126A1 (zh) 2017-05-18
US10770556B2 (en) 2020-09-08
US20190035901A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
CN105304689A (zh) 基于氟化石墨烯钝化的AlGaN/GaN HEMT器件及制作方法
JP6373509B2 (ja) 半導体デバイス、及び半導体デバイスの製造方法
US9064847B2 (en) Heterojunction semiconductor device with conductive barrier portion and manufacturing method
JP2016139781A (ja) エンハンスメント型高電子移動度トランジスタおよびその製作方法
CN104201104A (zh) 一种氮化镓基增强型器件的制造方法
CN109873034B (zh) 沉积多晶AlN的常关型HEMT功率器件及其制备方法
TW201205806A (en) Enhancement-mode high-electron-mobility transistor and the manufacturing method thereof
CN102184943A (zh) 一种增强型AlGaN/GaN HEMT器件及其制备方法
WO2020107754A1 (zh) 一种提高GaN增强型MOSFET阈值电压的外延层结构及器件制备
CN104299999A (zh) 一种具有复合栅介质层的氮化镓基异质结场效应晶体管
Morgan et al. Enhancement-mode insulating-gate AlInN/AlN/GaN heterostructure field-effect transistors with threshold voltage in excess of+ 1.5 V
CN109888013A (zh) 镁掺杂制备的增强型GaN基HEMT器件及其制备方法
CN113193038A (zh) p型沟道的III-V族材料异质结构和HEMT器件及制备方法
Kim et al. Normally-off GaN MOSFETs on insulating substrate
CN111933708B (zh) 一种氮化镓mis-hemt钝化设计及其制备方法
Mao et al. Development and characteristic analysis of a field-plated Al2O3/AlInN/GaN MOS—HEMT
Son et al. Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching
CN105609551B (zh) 立体多槽栅增强型hemt器件及其制备方法
CN102709322B (zh) 高阈值电压氮化镓增强型晶体管结构及制备方法
CN109742144B (zh) 一种槽栅增强型mishemt器件及其制作方法
CN111739801A (zh) 一种SOI基p-GaN增强型GaN功率开关器件的制备方法
CN111739800B (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN103904112A (zh) 耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
CN110676166B (zh) P-GaN帽层的FinFET增强型器件及制作方法
CN108695383B (zh) 实现高频mis-hemt的方法及mis-hemt器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant