CN105175985B - 一种纳米石墨片导电薄膜及其制备方法 - Google Patents

一种纳米石墨片导电薄膜及其制备方法 Download PDF

Info

Publication number
CN105175985B
CN105175985B CN201510539634.9A CN201510539634A CN105175985B CN 105175985 B CN105175985 B CN 105175985B CN 201510539634 A CN201510539634 A CN 201510539634A CN 105175985 B CN105175985 B CN 105175985B
Authority
CN
China
Prior art keywords
parts
film
graphite flakes
conductive film
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510539634.9A
Other languages
English (en)
Other versions
CN105175985A (zh
Inventor
吴海华
郭辉
熊盼
吴朝
王从军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
China Three Gorges University CTGU
Original Assignee
Huazhong University of Science and Technology
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, China Three Gorges University CTGU filed Critical Huazhong University of Science and Technology
Priority to CN201510539634.9A priority Critical patent/CN105175985B/zh
Publication of CN105175985A publication Critical patent/CN105175985A/zh
Application granted granted Critical
Publication of CN105175985B publication Critical patent/CN105175985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种纳米石墨片导电薄膜及其制备方法。纳米石墨片导电薄膜是以纳米石墨片为填料、成膜物质为基体膜材的一种复合导电薄膜。制备时,首先,将稀释剂和助剂与成膜物质混合均匀获得基体膜材浆料,然后用流延成型的方法成膜,加热干燥以调整基体膜材薄膜的硬度,再采用微粉喷射成型方法将纳米石墨片精确嵌入到基体膜材中,加热固化,获得纳米石墨片导电薄膜。本发明可实现纳米石墨片导电薄膜的可控制备,保证了纳米石墨片在基体膜材内的分散范围和效果,避免导电填料分散不均匀问题,所制备的纳米石墨片导电薄膜具有强度高、不易破损、形状任意可控、导电性能稳定等优点,且导电效果得到明显提高。

Description

一种纳米石墨片导电薄膜及其制备方法
技术领域
本发明涉及含有炭系导电填料的导电薄膜,特别是涉及一种纳米石墨片导电薄膜及其制作方法。
背景技术
导电薄膜主要用于传导电流和排除静电,厚度一般为0.1~1mm,在抗静电、电磁屏蔽、电加热、防腐导电、电子电路等许多方面都有着很重要的应用。
导电薄膜按照其内部组成和导电机理的不同有结构型导电薄膜和复合型导电薄膜之分。结构型导电薄膜,因其制备工艺比较复杂,不易制取所以在实际应用中较为广泛的是复合型导电薄膜;复合型导电薄膜,是将具有导电功能的有机或者无机的导电填料通过一定的工艺方法混入不具有导电功能的基体树脂,然后利用所得到的浆料制备得到。因此,复合型导电薄膜的性能受到多种因素的影响,主要有包括导电填料、成膜树脂、相关助剂的选择,成膜方法等。
导电填料对导电薄膜的导电性能影响重大,填料含量的多少、填料种类、填料粒径大小、填料形状等因素都会影响导电薄膜的导电性。通常所用的导电填料有金、银、铜粉及氧化物等,但是存在着价格较高、比较笨重的缺点,后来又引入了碳系填料碳黑、碳纤维和石墨,碳系填料的优点是价格较低,易于得到,但是又存在着均一性较差、易团聚,所得到的导电薄膜强度低,易破损等缺点。我国制备的导电薄膜也以无机填料为主,如碳系填料等。然而,以碳系填料制备导电薄膜时因为其工艺包括混料和成形两大关键工艺环节,混料和成形效果的好坏直接影响涂层性能及其稳定性。混料工艺分为干混和湿混两种,干混是将纳米石墨片与有机物通过直接混合或者熔融混合的方式混合在一起,其主要缺点是纳米石墨片容易团聚、混合不均匀且耗时较长;湿混是将纳米石墨片混入有机溶剂中制成相应的涂料,其主要缺点是溶剂较易挥发,对环境污染严重且耗时耗能;成形工艺则分为共挤挤压法和流延成型法,这两种方法均对成形浆料的流动性能有着特殊要求,即浆料的流动性要好。
因此,针对现在技术的不足,有必要选用一种新的碳系填料,并针对现有导电薄膜成型工艺的不足,提出一种新的导电薄膜及其制备方法。有效解决碳系填料易团聚、不易分散、均一性差、分散范围和分散效果不可控的问题。
发明内容
为了克服上述现有技术的不足,本发明提供了一种纳米石墨片导电薄膜及其制作方法。本发明通过下述技术方案来实现:一种纳米石墨片导电薄膜,其特征在于:该导电薄膜以纳米石墨片为导电填料,成膜物质为基体膜材。
所述的纳米石墨片厚度为1-20 nm,高度为0.05-100 um,宽度为0.01-5 um,相邻纳米片间距为0.01-5 um。
所述的成膜物质为酚醛树脂、环氧树脂和聚氨酯树脂中的一种。
一种纳米石墨片导电薄膜的制备方法,至少包括以下步骤:
a.将纳米石墨片在60℃烘箱内烘干24小时,然后取出密封保存待用;
b.按所需制备导电薄膜的大小,准备合适尺寸的耐高温分离膜,并用胶带固定于基带上;
c.将成膜物质、稀释剂和助剂按照一定的比例混合,在100-200 r/min搅拌速度下,将混合浆料搅拌50-120min以保证其充分混合,然后将混合浆料转移至真空搅拌罐中,并添加除泡剂,在搅拌速度为150-250 r/min时继续搅拌30-90 min,同时辅以真空除气,此时,真空搅拌罐内的真空度为-0.5~-2 MPa,最终得到混合基体膜材浆料;
d.利用得到的混合基体膜材浆料,装入流延成型装置的料斗中,采用流延成型的方法,在准备的耐高温分离膜上按照所设计的导电薄膜形状制成一厚度为0.2mm的基体膜材薄膜;
e.将基体膜材薄膜连同耐高温分离膜一起置于烘箱内,在60-90℃温度条件下,加热干燥5-20 min,以调整基体膜材薄膜的固化程度,取出待用;
f.将基体膜材薄膜连同耐高温分离膜一起转移、固定于微喷射成型的实验台上,采用微粉喷射打印成形的方法,对所产生的高压、高速气流进行精确控制,最终纳米石墨片颗粒在高压气流的作用下将纳米石墨片加速,达到其临界速度,同时,通过对打印喷头X/Y方向运动的精确控制,实现纳米石墨片在基体膜材上按照所需的形状精确分散、嵌入到基体膜材中,形成一层致密的导电薄膜;
g.将基体膜材薄膜连同耐高温分离膜一起取出,在60-90℃温度条件下,加热固化30-60 min。
h.去除固定胶带、并将导电薄膜从耐高温分离膜上剥离,得到纳米石墨片导电薄膜。
所述的稀释剂为丙酮、无水乙醇的一种。
所述的助剂有偶联剂、消泡剂、流平剂。
所述的偶联剂为γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560),消泡剂为有机硅氧烷,流平剂为聚醚硅氧烷共聚物。
所述的纳米石墨片导电薄膜的制作方法,其特征在于:按质量分数计,酚醛树脂20-40份、聚醚硅氧烷共聚物1.5-3.0份、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)0.6-3.2份、无水乙醇40-60份。
所述基体膜材薄膜的成型方法为流延法。
所述微粉喷射打印成形的方法,喷射压力0.4-1MPa,送粉量0.0001-0.005 kg/s,喷射距离10-30mm,所要求达到的最低速度为300m/s。
与现有技术相比,本发明的有益效果是:
1)选用的导电填料为纳米石墨片,其具有着超高的比表积和良好的导电性能、机械强度高,而且制备成本低,生产量大,是制备导电薄膜的理想功能材料。
2)针对碳系填料在树脂基体内易团聚、分散性不好,工艺复杂的问题,首次将微粉喷射成型的方法引入到导电薄膜的制备中,首先,酚醛树脂、稀释剂、固化剂和助剂按照一定的比例配制成基体膜材浆料,然后利用微粉喷射成型的方法将纳米石墨片加速,纳米石墨片冲击精确嵌入到基体膜材薄膜中,在基体膜材薄膜中形成一层致密的导电薄膜薄膜,可以实现对纳米石墨片的分散效果的控制,有效的解决了碳系填料在基体膜材内易团聚,分散性不好的问题。
3)微粉喷射打印成型的方法,具有成型效率高、成膜效果好、对导电填料的分散范围和分散效果精确可控的优点,相对于传统的成膜工艺来说,有效的简化了工艺步骤。
附图说明
图1为实施例1的“蜂窝状”导电薄膜示意图。
图2为实施例1的“蜂窝状”导电薄膜不同测试点电导率。
图3“中国结状”导电薄膜不同打印方案。
图4为实施例3的“心形”导电薄膜示意图。
具体实施方式
实施例1
一)纳米石墨片前处理
配制100ml的无水乙醇,将纳米石墨片放入其中,用超声波分散的方式分散40分钟,然后在常温下搅拌24小时,过滤悬浊液,并用无水乙醇反复洗涤4-6次,然后将所得到的产物置于烘箱内在60℃条件下干燥24小时,取出密封待用。
二)耐高温分离膜准备
按所需要制备的“蜂窝状”导电薄膜的形状,准备一大小为50×50mm的耐高温分离膜,然后用乙醇擦洗干净,置于室温下风干,然后将其用胶带固定于流延成型装置的基带之上。
三)基体膜材浆料的配制
按质量分数计,称取酚醛树脂34份、聚醚硅氧烷共聚物3.0份、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)2.0份、无水乙醇60份、有机硅氧烷1.0份。按照上述比例,在200r/min 的搅拌速度下,加酚醛树脂加入无水乙醇中,搅拌20min,然后加入聚醚硅氧烷共聚物、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)继续搅拌10min,以利于基体膜材各组分之间的充分混合,最后加入有机硅氧烷在真空度为-0.6MPa的真空搅拌罐中进行搅拌,搅拌速度为200r/min,以去除基体膜材浆料中的空气,搅拌30min,最终得到基体膜材浆料。
四)导电薄膜微粉喷射打印成型
将所得到的基体膜材浆料采用流延成型的方法,在耐高温分离膜上,按照所需要的导电薄膜的“蜂窝状”形成0.2mm厚的薄膜,刮平,将耐高温分离膜和所得到的基体膜材薄膜一起置于烘箱内在60℃条件下烘干30分钟,以调整薄膜的干燥程度,取出待用;将耐高温分离膜和所得到的基体膜材薄膜一起固定在微喷射成型的实验台之上,采用微粉喷射打印成形的方法在喷射压力0.6MPa,温度为300K,送粉量0.0001kg/s,喷射距离10mm的条件下,对所产生的高压、高速气流进行精确控制,最终纳米石墨片颗粒在高压气流的作用下将纳米石墨片加速,达到其临界速度,同时,通过对打印喷头X/Y方向运动的精确控制,实现纳米石墨片在基体膜材上按照所需的“蜂窝状”形状精确分散、嵌入到基体膜材中,在基体膜材中形成一层致密的薄膜;然后将耐高温分离膜连同所得到的导电薄膜一起置于烘箱内在60℃温度条件下,加热固化60min,冷却后去除固定胶带,将导电薄膜从耐高温分离膜上轻轻剥离,得到导电薄膜成品,该导电薄膜为“蜂窝状”。
五)导电薄膜性能检测
利用四探针测试仪对所得到的导电薄膜进行相应的测试,测试其不同测试点的导电性能,测试结果表明导电薄膜整体厚度为0.38mm,其中酚醛树脂厚度0.2mm,纳米石墨片层厚度为0.18mm,五个不同测试点的电导率分别为0.0476S/cm 、0.0516S/cm、0.0528S/cm、0.0520S/cm、0.0498S/cm.具体结果见图2。
实施例2
一)纳米石墨片前处理
配制100ml的无水乙醇,将纳米石墨片放入其中,用超声波分散的方式分散40分钟,然后在常温下搅拌24小时,过滤悬浊液,并用无水乙醇反复洗涤4-6次,然后将所得到的产物置于烘箱内在60℃条件下干燥24小时,取出密封待用。
二)耐高温分离膜准备
按所需要制备的“中国结状”导电薄膜的形状,准备一大小为50×50mm的耐高温分离膜,然后用乙醇擦洗干净,置于室温下风干,然后将其用胶带固定于流延成型装置的基带之上。
三)基体膜材浆料的配制
按质量分数计,称取环氧树脂33份、聚醚硅氧烷共聚物3.0份、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)3.0份、丙酮60份、有机硅氧烷1.0份。按照上述比例,在200r/min的搅拌速度下,加环氧树脂加入丙酮中,搅拌20min,然后加入聚醚硅氧烷共聚物、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)继续搅拌10min,以利于基体膜材各组分之间的充分混合,最后加入有机硅氧烷在真空度为-0.6MPa的真空搅拌罐中进行搅拌,搅拌速度为230r/min,以去除基体膜材浆料中的空气,搅拌30min,最终得到基体膜材浆料。
四)导电薄膜微粉喷射打印成型
将所得到的基体膜材浆料采用流延成型的方法,在耐高温分离膜上,按照所需要的导电薄膜的大小形成0.2mm厚的薄膜,刮平,将耐高温分离膜和所得到的基体膜材薄膜一起置于烘箱内在60℃条件下烘干30分钟,以调整薄膜的干燥程度,取出待用;将耐高温分离膜和所得到的基体膜材薄膜一起固定在微喷射成型的实验台之上,采用微粉喷射打印成形的方法在喷射压力0.8MPa,温度为300K,送粉量0.0001kg/s,喷射距离10mm的条件下,对所产生的高压、高速气流进行精确控制,最终纳米石墨片颗粒在高压气流的作用下将纳米石墨片加速,达到其临界速度,同时,通过对打印喷头X/Y方向运动的精确控制,首先打印出不同形状的导电通路,然后再重复打印,最终实现纳米石墨片在基体膜材上按照所需的“中国结”形状精确分散、嵌入到基体膜材中,在基体膜材中形成一层致密的导电薄膜;然后将耐高温分离膜连同所得到的导电薄膜一起置于烘箱内在60℃温度条件下,加热固化60min,冷却后去除固定胶带,将导电薄膜从耐高温分离膜上轻轻剥离,得到导电薄膜成品,该导电薄膜为“中国结状”。
五)导电薄膜成品检测
测试结果表明导电薄膜整体厚度为0.43mm,其中酚醛树脂厚度0.2mm,纳米石墨片层厚度为0.23mm,单个测试点的电导率为0.0657S/cm。
实施例3
一)纳米石墨片前处理
配制100ml的无水乙醇,将纳米石墨片放入其中,用超声波分散的方式分散40分钟,然后在常温下搅拌24小时,过滤悬浊液,并用无水乙醇反复洗涤4-6次,然后将所得到的产物置于烘箱内在60℃条件下干燥24小时,取出密封待用。
二)耐高温分离膜准备
按所需要制备的“心形”导电薄膜的形状,准备一大小为50×50mm的耐高温分离膜,然后用无水乙醇擦洗干净,置于室温下晾干,然后将其用胶带固定于流延成型装置的基带之上。
三)基体膜材浆料的配制
按质量分数计,称取聚氨酯35份、聚醚硅氧烷共聚物2.0份、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)3.0份、丙酮59份、有机硅氧烷1.0份。按照上述比例,在210r/min 的搅拌速度下,将聚氨酯加入丙酮中,搅拌20min,然后加入聚醚硅氧烷共聚物、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)继续搅拌10min,以利于基体膜材各组分之间的充分混合,最后加入有机硅氧烷在真空度为-0.6MPa的真空搅拌罐中进行搅拌,搅拌速度为230r/min,以去除基体膜材浆料中的空气,搅拌30min,最终得到基体膜材浆料。
四)导电薄膜微粉喷射打印成型
将所得到的基体膜材浆料采用流延成型的方法,在耐高温分离膜上,按照所需要的导电薄膜的大小形成0.2mm厚的薄膜,刮平,将耐高温分离膜和所得到的基体膜材薄膜一起置于烘箱内在60℃条件下烘干30分钟,以调整薄膜的干燥程度,取出待用;将耐高温分离膜和所得到的基体膜材薄膜一起固定在微喷射成型的实验台之上,采用微粉喷射打印成形的方法在喷射压力0.6MPa,温度为300K,送粉量0.0001kg/s,喷射距离10mm的条件下,对所产生的高压、高速气流进行精确控制,最终纳米石墨片颗粒在高压气流的作用下将纳米石墨片加速,达到其临界速度,同时,通过对打印喷头X/Y方向运动的精确控制,首先打印出不同形状的导电通路,然后再重复打印,最终实现纳米石墨片在基体膜材上按照所需的“心形”形状精确分散、嵌入到基体膜材中,在基体膜材中形成一层致密的导电薄膜;然后将耐高温分离膜连同所得到的导电薄膜一起置于烘箱内在60℃温度条件下,加热固化60min,冷却后去除固定胶带,将导电薄膜从耐高温分离膜上轻轻剥离,得到导电薄膜成品,该导电薄膜为“心形”。
五)导电薄膜成品检测
测试结果表明导电薄膜整体厚度为0.44mm,其中酚醛树脂厚度0.2mm,纳米石墨片层厚度为0.25mm,单个测试点的电导率为0.0568S/cm。

Claims (6)

1.一种纳米石墨片导电薄膜,其特征在于,该导电薄膜包括以纳米石墨片及成膜物质,其中,纳米石墨片为导电填料,成膜物质为基体膜材;所述的成膜物质为酚醛树脂、环氧树脂和聚氨酯树脂中的一种,所述的纳米石墨片厚度为1-20 nm,高度为0.05-100 um,宽度为0.01-5 um,相邻纳米片间距为0.01-5 um,其制备方法包括以下步骤:
(1)将纳米石墨片置于无水乙醇中,经超声分散及反复洗涤后于60℃烘箱内烘干24小时,然后取出密封保存待用;
(2)按所需制备导电薄膜的大小,准备合适尺寸的耐高温分离膜,并用将耐高温分离膜胶带固定于流延成型装置的基带上;
(3)将成膜物质、稀释剂和助剂按照一定的比例混合,在100-200 r/min搅拌速度下,将混合浆料搅拌50-120min以保证其充分混合,然后将混合浆料转移至真空搅拌罐中,并添加除泡剂,在搅拌速度为150-250 r/min时继续搅拌30-90 min,同时辅以真空除气,此时,真空搅拌罐内的真空度控制为-0.5~-2 KPa,最终得到混合基体膜材浆料;
(4)利用得到的混合基体膜材浆料,装入流延成型装置的料斗中,采用流延成型的方法,在准备的耐高温分离膜上按照所设计的导电薄膜形状制成厚度为0.2mm的基体膜材薄膜;
(5)将基体膜材薄膜连同耐高温分离膜一起置于烘箱内,在60-90℃温度条件下,加热干燥5-20 min,以调整基体膜材薄膜的固化程度,取出待用;
(6)将基体膜材薄膜连同耐高温分离膜一起转移、固定于微喷射成型的实验台上,采用微粉喷射打印成形的方法在喷射压力0.4-1MPa,送粉量0.0001-0.005 kg/s,喷射距离10-30mm,所要求达到的最低速度为300m/s的条件下,对所产生的高压、高速气流进行精确控制,最终纳米石墨片颗粒在高压气流的作用下将纳米石墨片加速,达到其临界速度,同时,通过对打印喷头X/Y方向运动的精确控制,实现纳米石墨片在基体膜材上按照所需的形状精确分散、嵌入到基体膜材中,形成一层致密的导电薄膜;
(7)将基体膜材薄膜连同耐高温分离膜一起取出,在60-90℃温度条件下,加热固化30-60 min;
(8)去除固定胶带、并将导电薄膜从耐高温分离膜上剥离,得到纳米石墨片导电薄膜。
2.根据权利要求1所述的纳米石墨片导电薄膜,其特征在于,所述的稀释剂为丙酮、无水乙醇的一种;所述的助剂有偶联剂、消泡剂、流平剂;其中,偶联剂为γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560),消泡剂为有机硅氧烷,流平剂为聚醚硅氧烷共聚物。
3.根据权利要求2所述的纳米石墨片导电薄膜,其特征在于,按质量分数计,成膜物质20-40份、流平剂1.5-3.0份、偶联剂0.6-3.2份、稀释剂40-60份、消泡剂0.5-1.5份。
4.根据权利要求2所述的纳米石墨片导电薄膜,其特征在于,按质量分数计,成膜物质34份、流平剂3.0份、偶联剂2.0份、稀释剂60份、消泡剂1.0份。
5.根据权利要求2所述的纳米石墨片导电薄膜,其特征在于,按质量分数计,成膜物质33份、流平剂3.0份、偶联剂3.0份、稀释剂60份、消泡剂1.0份。
6.根据权利要求2所述的纳米石墨片导电薄膜,其特征在于,按质量分数计,成膜物质35份、流平剂2.0份、偶联剂3.0份、稀释剂59份、消泡剂1.0份。
CN201510539634.9A 2015-08-28 2015-08-28 一种纳米石墨片导电薄膜及其制备方法 Active CN105175985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510539634.9A CN105175985B (zh) 2015-08-28 2015-08-28 一种纳米石墨片导电薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510539634.9A CN105175985B (zh) 2015-08-28 2015-08-28 一种纳米石墨片导电薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105175985A CN105175985A (zh) 2015-12-23
CN105175985B true CN105175985B (zh) 2017-05-03

Family

ID=54898451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510539634.9A Active CN105175985B (zh) 2015-08-28 2015-08-28 一种纳米石墨片导电薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN105175985B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107815114A (zh) * 2017-10-11 2018-03-20 上海阿莱德实业股份有限公司 一种具备高热传导性能的柔性复合石墨基材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100516136C (zh) * 2006-07-12 2009-07-22 扬州大学 聚酯/石墨纳米导电复合材料及其制备方法
CN101974207B (zh) * 2010-10-20 2012-12-12 中国工程物理研究院化工材料研究所 一种基于纳米石墨片的高导电率复合材料及其制备方法
CN103897337A (zh) * 2012-12-24 2014-07-02 北京有色金属研究总院 纳米石墨片增强形状记忆复合材料及其制备方法
CN103436099B (zh) * 2013-09-11 2016-03-09 中国科学院宁波材料技术与工程研究所 一种复合导电油墨
CN103963398B (zh) * 2014-04-29 2016-05-04 中国航空工业集团公司北京航空材料研究院 一种双功能插层材料及制品
CN203858874U (zh) * 2014-05-12 2014-10-01 三峡大学 一种具有分形导电通路的石墨复合板
CN104553177B (zh) * 2014-12-15 2017-01-04 中航复合材料有限责任公司 一种阻燃改性碳纤维预浸料和复合材料制品

Also Published As

Publication number Publication date
CN105175985A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN103146147B (zh) 一种增韧环氧树脂/玻璃纤维预浸料及制备方法
CN102146196B (zh) 一种高阻尼环氧树脂复合材料的制备方法
CN104098290B (zh) 一种球型陶瓷粉体为填料的微波复合介质基板制备工艺
CN105001641A (zh) 一种炭黑填充压敏导电硅橡胶复合材料及其制备方法
CN104788102A (zh) 激光烧结3d打印技术用纳米氮化硅粉末的制备
CN109627689A (zh) 一种石墨烯-环氧树脂复合材料的制备方法
CN104269564B (zh) 全钒液流电池用双极板的制备方法
CN103627101A (zh) 一种热固性酚醛树脂包覆空心玻璃微珠的制备方法及应用
CN105175985B (zh) 一种纳米石墨片导电薄膜及其制备方法
CN104987659A (zh) 一种耐高温抗静电的导电聚合物复合材料及其制备方法和应用
CN101891936B (zh) 基于环氧树脂和膦腈纳米管的复合材料的制备方法
CN105504814B (zh) 一种用于三维打印的聚苯砜组合物及其制备方法
CN108084484A (zh) 一种轻量化导电隔热复合材料及其制备方法、系统
CN110343368A (zh) 一种导电环氧树脂及其制备方法
CN106751534A (zh) 一种覆铜板用含聚醚胺的耐热型环氧树脂复合材料及其制备方法
CN108929521B (zh) 一种高导热高导电石墨烯基复合材料及其制备方法
CN110256848A (zh) 一种电磁复合材料及其制备方法
CN109836557A (zh) 一种增韧疏水环氧树脂及其制备方法
CN108165007A (zh) 一种pcb用石墨烯包覆铜粉填充的高导热绝缘基板材料的制备方法
CN111440511B (zh) 一种高导热的纳米Al2O3改性环氧树脂超疏水涂层及其制法
CN106398122B (zh) 一种石墨烯环氧树脂复合泡沫材料及其制备方法
CN105062211A (zh) 一种无卤镜面油墨及其制备方法
CN110527246A (zh) 低导热系数的聚醚醚酮改性造粒材料及其应用
CN108366499B (zh) 一种电路基板的树脂塞孔方法
CN106928656B (zh) 纳米二氧化硅改性rfi用环氧树脂膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant