CN105137717B - 基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法 - Google Patents

基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法 Download PDF

Info

Publication number
CN105137717B
CN105137717B CN201510474801.6A CN201510474801A CN105137717B CN 105137717 B CN105137717 B CN 105137717B CN 201510474801 A CN201510474801 A CN 201510474801A CN 105137717 B CN105137717 B CN 105137717B
Authority
CN
China
Prior art keywords
micropositioner
mask platform
parameter
mask
object function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510474801.6A
Other languages
English (en)
Other versions
CN105137717A (zh
Inventor
刘杨
陈震宇
付雪微
陈兴林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510474801.6A priority Critical patent/CN105137717B/zh
Publication of CN105137717A publication Critical patent/CN105137717A/zh
Application granted granted Critical
Publication of CN105137717B publication Critical patent/CN105137717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法,属于半导体制造装备技术领域及机械参数测量领域。为了解决现有工件台微动部分机械参数估计算法精度差的问题。所述方法包括如下步骤:步骤一:根据掩模台微动台的机械机构及其理论设计,建立微动台的理想运动学模型,确定待测机械参数,建立掩模台微动台含差模型;步骤二:给定位置输入,驱动微动台运动产生位移,将实际输出位移与通过建立的掩模台微动台含差模型计算出的输出位移值做差,作为导优的目标函数;步骤三:根据目标函数,利用Compact Differential Evolution优化学习算法确定待辨识的机械参数。它用于微动台的机械参数求取。

Description

基于Compact Differential Evolution算法的光刻机掩模台 微动台的机械参数软测量方法
技术领域
本发明属于半导体制造装备技术领域及机械参数测量领域。
背景技术
光刻机作为生产制造超大规模集成电路的重要设备,其精度方面的要求已经达到纳米级。作为其中重要组成部分的掩模台精度要求也非常之高,尤其是其中的微动台部分,它是最直接与掩模台系统精度相关的部件。作为机电系统,掩模台微动台上的电机安装及台体加工不可避免的存在机械误差,从而会导致按照理论值进行解耦控制的精度下降。因此,这些机械参数必须要被精确测量。然而微动台运动模型涉及到的机械参数很难在装配好的台体上直接测量,如台体的质心位置、电机的驱动中心等。故需要采用间接的测量手段进行测量,从而精确确定相关机械参数。
现有一种工件台微动部分机械参数估计方法。该专利用一种间接测量方法,根据已经分析出来的机械误差参数项及相应的误差模型,得到位移差方程,通过实测输入输出数据列写方程并解方程组得到相应误差参数。但是该方法在6输入6输出的情况下只能确定6个机械参数误差,远远不能满足要求,并且无法解决应用中经常出现的矩阵病态问题。
发明内容
本发明的目的是为了解决现有工件台微动部分机械参数估计算法精度差的问题,本发明提供一种基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法。
本发明的基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法,所述方法包括如下步骤:
步骤一:根据掩模台微动台的机械机构及其理论设计,建立微动台的理想运动学模型,确定待测机械参数,建立掩模台微动台含差模型;
步骤二:给定位置输入,驱动微动台运动产生位移,将实际输出位移与通过建立的掩模台微动台含差模型计算出的输出位移值做差,作为寻优的目标函数;
步骤三:根据目标函数,利用Compact Differential Evolution优化学习算法确定待辨识的机械参数。
所述步骤三包括如下步骤:
步骤三二:由PV矩阵生成随机向量elite,所述随机向量elite为机械误差参数最优值向量;
步骤三三:判断t是否等于设定的值Gm,若是,则向量elite中的参数即为待辨识的机械误差参数的估计最优值,待辨识的机械参数的估计最优值即为机械误差参数的估计最优值与相应标称值的和,若否,则转入步骤三四;
步骤三四:由PV矩阵生成三个个体xr、xs和xt,通过x′off=xt+F(xr-xs)得到一个新个体x′off,并将x′off赋值给xoff
步骤三五:生成一个均匀分布的随机数,并判断所述随机数是否大于Cr,若大于,则将xoff中的参数用最优值elite中的相应参数替换,否则,不变,所述Cr为设定的替换标准;
步骤三六:判断xoff中替换过的参数是否为n,若否,转入步骤三五,若是,则转入步骤三七;
步骤三七:将xoff与向量elite代入目标函数,将获得的函数值进行比较,若函数值f(xoff)<f(elite),则转入步骤三八,若f(elite)<f(xoff),则elite=xoff,转入步骤三八;
步骤三八:更新机械误差参数的概率分布均值μt+1[i]机械误差参数的概率分布方差σt+1[i]:
Np表示紧凑式教学优化算法虚拟人口数,loser表示目标函数得到的较差解向量,winner表示目标函数得到的较优解向量;
步骤三九:t=t+1,转入步骤三三。
本发明的有益效果在于,1、得到掩模台微动台含差模型后,应用CompactDifferential Evolution优化学习算法对各个待辨识的机械参数进行寻优,通过这种软测量的方式最终得到机械参数的精确值。
2、使用Compact Differential Evolution优化学习算法对各个待辨识的机械参数进行寻优,这种紧凑型的优化算法极大地减小了处理器存储空间的使用,便于在存储空间有限的嵌入式系统中使用。
3、仅仅使用输入输出数据、处理器及相应程序即可完成,解决了相关机械参数无法采用测量仪器直接测量的难题。
附图说明
图1为具体实施方式中所述的掩模台微动台含差模型的原理示意图。
图2为图1的侧视图。
具体实施方式
结合图1和图2说明本实施方式,本实施方式所述的基于Compact DifferentialEvolution算法的光刻机掩模台微动台的机械参数软测量方法,所述方法包括如下步骤:
步骤一:根据掩模台微动台的机械机构及其理论设计,建立微动台的理想运动学模型,确定待测机械参数,建立掩模台微动台含差模型;
所述步骤一中,建立的掩模台微动台含差模型为:
Fx为掩模台微动台X向合力;
Fy为掩模台微动台Y向合力;
Fz为掩模台微动台Z向合力;
Mrx为掩模台微动台X向转矩;
Mry为掩模台微动台Y向转矩;
Mrz为掩模台微动台Z向转矩;
fx为掩模台X向电机力;
fy1为掩模台Y向1号电机力;
fy2为掩模台Y向2号电机力;
fv1为掩模台垂向1号电机力;
fv2为掩模台垂向2号电机力;
fv3为掩模台垂向3号电机力;
表1掩模台微动台含差模型的机械参数及定义
变量 定义 变量 定义 变量 定义
cx1 Δcx1 cx2 Scx+Δcx2 cx3 -(Scx+Δcx3)
cy1 Scy1+Δcy1 cy2 Scy2+Δcy2 cy3 Scy2+Δcy3
dx1 Δdx1 dx2 Sdx2+Δdx2 dx3 -(Sdx2+Δdx3)
dy1 -(Sdy1+Δdy1) dy2 Sdx2+Δdx2 dy3 Sdy2+Δdy3
δ1 Δδ1 δ2 Δδ2 δ3 Δδ3
cy1——水平X向电机到掩模台坐标系原点的Y向实际距离;
cy2——水平Y向1号电机到掩模台坐标系原点的Y向实际距离;
cy3——水平Y向2号电机到掩模台坐标系原点的Y向实际距离;
cx1——水平X向电机到掩模台坐标系原点的X向实际距离;
cx2——水平Y向1号电机到掩模台坐标系原点的X向实际距离;
cx3——水平Y向2号电机到掩模台坐标系原点的X向实际距离;
δ1——水平X向电机与X正向的实际角度,X正方向到Y正方向为正;
δ2——水平Y向1号电机与Y正向的实际角度,Y正方向到X正方向为正;
δ3——水平Y向2号电机与Y正向的实际角度,Y正方向到X正方向为正;
dy1——垂直向1号电机到掩模台坐标系原点的Y向距离偏差;
dy2——垂直向2号音圈电机到掩模台坐标系原点的Y向实际距离;
dy3——垂直向3号音圈电机到掩模台坐标系原点的Y向实际距离;
dx1——垂直向1号音圈电机到掩模台坐标系原点的X向实际距离;
dx2——垂直向2号音圈电机到掩模台坐标系原点的X向实际距离;
dx3——垂直向3号音圈电机到掩模台坐标系原点的X向实际距离;
Scy1——X向平面电机到掩模台坐标系原点的Y向标称距离;
Scy2——Y向1号、2号平面电机到掩模台坐标系原点的Y向标称距离;
Scx——Y向1号、2号平面电机到掩模台坐标系原点的X向标称距离;
Sdy1——垂直向1号电机到掩模台坐标系原点的Y向标称距离;
Sdy2——垂直向2号电机、3号电机到掩模台坐标系原点的Y向标称距离;
Sdx2——垂直向2号电机、3号电机到掩模台坐标系原点的X向标称距离;
Δcy1——水平X向电机到掩模台坐标系原点的Y向距离偏差;
Δcy2——水平X向1号电机到掩模台坐标系原点的Y向距离偏差;
Δcy3——水平Y向2号电机到掩模台坐标系原点的Y向距离偏差;
Δcx1——水平X向电机到掩模台坐标系原点的X向距离偏差;
Δcx2——水平Y向1号电机到掩模台坐标系原点的X向距离偏差;
Δcx3——水平Y向2号电机到掩模台坐标系原点的X向距离偏差;
Δδ1——水平X向电机与X正向的角度偏差,X正方向到Y正方向为正;
Δδ2——水平Y向1号电机与Y正向的角度偏差,Y正方向到X正方向为正;
Δδ3——水平Y向2号电机与Y正向的角度偏差,Y正方向到X正方向为正;
Δdy1——垂直向1号电机到掩模台坐标系原点的Y向距离偏差;
Δdy2——垂直向2号音圈电机到掩模台坐标系原点的Y向距离偏差;
Δdy3——垂直向3号音圈电机到掩模台坐标系原点的Y向距离偏差;
Δdx1——垂直向1号音圈电机到掩模台坐标系原点的X向距离偏差;
Δdx2——垂直向2号音圈电机到掩模台坐标系原点的X向距离偏差;
Δdx3——垂直向3号音圈电机到掩模台坐标系原点的X向距离偏差;
由于掩模台台体的坐标原点被定在硅片的表面上,而微动台的重心才是台体运动的原点。而台体的重心在台体上的坐标值是未知的,因此还需要设三个未知的几何参数:
Δx为质心在掩模台坐标系的X向坐标值;
Δy为质心在掩模台坐标系的Y向坐标值;
Δz=z′+Δz′,z′为电机施力平面到掩模台坐标系XoY平面的距离,Δz′为质心在掩模台坐标系的z向坐标值。
Cr6×6为掩模台微动台待辨识的机械误差参数的含差系数矩阵。
为研究、计算方便,将转换矩阵Cr6×6分块
其中,
其中,
ar31=-cosΔδ1(Scy1+Δcy1-Δy)+sinΔδ1(Δcx1-Δx) (1-10)
ar32=-sinΔδ2(Scy2+Δcy2-Δy)+cosΔδ2(Scx2+Δcx2-Δx) (1-11)
ar33=-sinΔδ3(Scy3+Δcy3-Δy)+cosΔδ3(-Scx2-Δcx2-Δx) (1-12)
为了提高计算速度,简化系数矩阵,对系数矩阵中的正余弦项进行泰勒展开,保留到一次项。则公式可转换为:
ar31=-Scy1-Δcy1+Δy-ΔxΔδ1
ar32=Scx2+Δcx2-Δx-Scy2Δδ2+ΔyΔδ2
ar33=-Scx3-Δcx3-Δx-Scy2Δδ3+ΔyΔδ3
步骤二:给定位置输入,驱动微动台运动产生位移,将实际输出位移与通过建立的掩模台微动台含差模型计算出的输出位移值做差,作为寻优的目标函数;
可以通过选定实际工作范围内的200组输入数据测量其输出数据并给出下一步Compact Differential Evolution算法中所需要的目标函数,这里我们选用200组输出数据的实际值与估算值的误差方差作为目标函数;
选定的目标函数为:
Ci为第i组微动台测量数据代入目标函数对应的Cr6×6矩阵,为第i组微动台测量数据代入目标函数对应的 为第i组微动台测量数据代入目标函数对应的
目标函数作为优化算法中的比较标准,是优化算法中比较两个个体好坏的评价标准,目标函数值越趋于零则该个体越好。
步骤三:根据目标函数,利用Compact Differential Evolution优化学习算法确定待辨识的机械参数,包括如下步骤:
步骤三二:由PV矩阵生成随机向量elite,所述随机向量elite为机械误差参数最优值向量;
步骤三三:判断t是否等于设定的值Gm,若是,则向量elite中的参数即为待辨识的机械误差参数的估计最优值,待辨识的机械参数的估计最优值即为误差参数的估计最优值与相应规定值的和,若否,则转入步骤三四;
步骤三四:由PV矩阵生成三个个体xr、xs和xt,通过x′off=xt+F(xr-xs)得到一个新个体x′off,并将x′off赋值给xoff
步骤三五:生成一个均匀分布的随机数,并判断所述随机数是否大于Cr,若大于,则将xoff中的参数用最优值elite中的相应参数替换,否则,不变,所述Cr为设定的替换标准;
步骤三六:判断xoff中替换过的参数是否为n,若否,转入步骤三五,若是,则转入步骤三七;
步骤三七:将xoff与向量elite代入目标函数,将获得的函数值进行比较,若函数值f(xoff)<f(elite),则转入步骤三八,若f(elite)<f(xoff),则elite=xoff,转入步骤三八;
步骤三八:更新机械误差参数的概率分布均值μt+1[i]机械误差参数的概率分布方差σt+1[i]:
Np表示紧凑式教学优化算法虚拟人口数,loser表示目标函数得到的较差解向量,winner表示目标函数得到的较优解向量;
步骤三九:t=t+1,转入步骤三三。
本发明公开了一种基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法,主要用于光刻机掩模台微动台的机械参数测量。本发明包括掩模台微动台含差模型的建立、Compact Differential Evolution优化学习算法辨识参数两个部分。掩模台微动台含差模型建立部分需要根据微动台的机械构造及其理论设计,得到微动台的理论机械参数、机械参数误差构成以及微动台的含差模型。CompactDifferential Evolution优化学习算法辨识参数部分通过Compact DifferentialEvolution算法对由已经通过物理分析及解耦得到的机械参数的误差参数项进行优化学习,从而通过软测量的方式得到相应掩模台微动台的机械参数的估计最优值,从而解决了机械装配误差及台体质心位置测量难的问题。本发明通过软测量的方式实现了直接测量难以实现的光刻机掩模台微动台的机械参数测量,实现方便、简单。

Claims (1)

1.一种基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法,其特征在于,所述方法包括如下步骤:
步骤一:根据掩模台微动台的机械机构及其理论设计,建立微动台的理想运动学模型,确定待测机械参数,建立掩模台微动台含差模型;
所述步骤一中,建立的掩模台微动台含差模型为:
Fx为掩模台微动台X向合力;
Fy为掩模台微动台Y向合力;
Fz为掩模台微动台Z向合力;
Mrx为掩模台微动台X向转矩;
Mry为掩模台微动台Y向转矩;
Mrz为掩模台微动台Z向转矩;
fx为掩模台X向电机力;
fy1为掩模台Y向1号电机力;
fy2为掩模台Y向2号电机力;
fv1为掩模台垂向1号电机力;
fv2为掩模台垂向2号电机力;
fv3为掩模台垂向3号电机力;
步骤二:给定位置输入,驱动微动台运动产生位移,将实际输出位移与通过建立的掩模台微动台含差模型计算出的输出位移值做差,作为寻优的目标函数;
所述的目标函数为:
步骤三:根据目标函数,利用Compact Differential Evolution优化学习算法确定待辨识的机械参数;
所述步骤三包括如下步骤:
步骤三一:初始化计数器t=0,机械误差参数的概率分布均值初始值μt[i]=0,机械误差参数的概率分布方差初始值σt[i]=λ;i=0,…n;n为待辨识的机械误差参数的个数;构成PV矩阵的初始值PV的每一行包含高斯分布的一组均值和方差;其中t为优化学习迭代的次数;初始化每项机械误差参数的寻优范围,在生成个体时,若向上超过了所设置的寻优范围则取上边界,若向下超过了所设置的寻优范围则取下边界;
步骤三二:由PV矩阵生成随机向量elite,所述随机向量elite为机械误差参数最优值向量;
步骤三三:判断t是否等于设定的值Gm,若是,则向量elite中的参数即为待辨识的机械误差参数的估计最优值,待辨识的机械参数的估计最优值即为机械误差参数的估计最优值与相应标称值的和,若否,则转入步骤三四;
步骤三四:由PV矩阵生成三个个体xr、xs和xt,通过x′off=xt+F(xr-xs)得到一个新个体x′off,并将x′off赋值给xoff
步骤三五:生成一个均匀分布的随机数,并判断所述随机数是否大于Cr,若大于,则将xoff中的参数用最优值elite中的相应参数替换,否则,不变,所述Cr为设定的替换标准;
步骤三六:判断xoff中替换过的参数是否为n,若否,转入步骤三五,若是,则转入步骤三七;
步骤三七:将xoff与向量elite代入目标函数,将获得的函数值进行比较,若函数值f(xoff)<f(elite),则转入步骤三八,若f(elite)<f(xoff),则elite=xoff,转入步骤三八;
步骤三八:更新机械误差参数的概率分布均值μt+1[i]机械误差参数的概率分布方差σt+1[i]:
Np表示紧凑式教学优化算法虚拟人口数,loser表示目标函数得到的较差解向量,winner表示目标函数得到的较优解向量;
步骤三九:t=t+1,转入步骤三三;
Ci为第i组微动台测量数据代入目标函数对应的Cr6×6矩阵,为第i组微动台测量数据代入目标函数对应的为第i组微动台测量数据代入目标函数对应的
CN201510474801.6A 2015-08-05 2015-08-05 基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法 Active CN105137717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510474801.6A CN105137717B (zh) 2015-08-05 2015-08-05 基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510474801.6A CN105137717B (zh) 2015-08-05 2015-08-05 基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法

Publications (2)

Publication Number Publication Date
CN105137717A CN105137717A (zh) 2015-12-09
CN105137717B true CN105137717B (zh) 2018-08-24

Family

ID=54723109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510474801.6A Active CN105137717B (zh) 2015-08-05 2015-08-05 基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法

Country Status (1)

Country Link
CN (1) CN105137717B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109426152A (zh) * 2017-09-05 2019-03-05 财团法人金属工业研究发展中心 自动对位设备的系统转换参数优化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331346B (zh) * 2011-07-01 2013-11-27 重庆大学 车辆自动变速器低功耗硬件在环试验台及试验方法
US9347430B2 (en) * 2013-04-12 2016-05-24 King Fahd University Of Petroleum And Minerals Adaptive pitch control system for wind generators
WO2014195782A2 (en) * 2013-06-03 2014-12-11 Tata Consultancy Services Limited Differential evolution-based feature selection
GB2518172A (en) * 2013-09-11 2015-03-18 Epistemy Ltd Improvements in or relating to optimisation techniques
CN104239718B (zh) * 2014-09-17 2017-11-03 北京航空航天大学 一种基于“递推最小二乘‑差分进化”算法的磁轴承辨识方法

Also Published As

Publication number Publication date
CN105137717A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN110815206B (zh) 一种Stewart型并联机器人运动学标定方法
CN102230783B (zh) 一种用于工业机器人的空间立体网格精度补偿方法
CN106813638B (zh) 一种3rps并联机器人几何参数辨识方法
CN104977816B (zh) 基于Compact Particle Swarm Optimization算法的光刻机掩模台微动台的机械参数软测量方法
CN106141814A (zh) 基于LaserTRACER的数控机床平动轴几何误差检测与辨识方法
CN103234496B (zh) 一种三坐标测量机二维平台误差的高精度校正方法
CN104729481B (zh) 一种基于pnp透视模型的合作目标位姿精度测量方法
WO2002016868A1 (fr) Procede d'evaluation d'erreur de position pour dispositif mobile, et procede d'amelioration de precision de mouvement se basant sur le resultat d'evaluation
CN104308663A (zh) 一种弧面凸轮廓面加工误差虚拟测量的方法
CN103791878A (zh) 数控机床几何精度辨识方法
CN104458124A (zh) 一种质心测量方法
CN108647803B (zh) 面向装配精度的多个对称体装配工艺参数优化方法
CN103712557A (zh) 面向特大型齿轮的激光跟踪多站位定位方法
CN101639681A (zh) 一种电子装备运动机构性能参数优化方法
CN104236501A (zh) 一种二维栅格板的栅格点系统误差自校准方法
CN106671081B (zh) 一种基于单目视觉的少自由度机器人运动学标定方法
CN105574884A (zh) 一种医疗机器人dh参数标定方法
CN105137717B (zh) 基于Compact Differential Evolution算法的光刻机掩模台微动台的机械参数软测量方法
CN107066726A (zh) 一种数控机床旋转轴垂直度误差建模方法
CN104634245A (zh) 一种三维大行程精密工作台测量系统自标定方法
CN104182569A (zh) 产品装配误差累积过程的三维可视化模拟方法
CN110900608A (zh) 基于最优测量构型选择的机器人运动学标定方法
CN110532667A (zh) 一种用于提高精密机床空间几何误差模型建模精度的方法
CN113932707B (zh) 基于弹性网络算法补偿三坐标测量机几何误差的方法
CN115415853A (zh) 一种五轴数控机床摆头几何误差辨识方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Yang

Inventor after: Chen Zhenyu

Inventor after: Fu Xuewei

Inventor after: Chen Xinglin

Inventor before: Chen Xinglin

Inventor before: Chen Zhenyu

Inventor before: Liu Yang

Inventor before: Fu Xuewei

GR01 Patent grant
GR01 Patent grant