CN105132386A - 一种外分泌体及其制备方法和其作为肿瘤疫苗的应用 - Google Patents

一种外分泌体及其制备方法和其作为肿瘤疫苗的应用 Download PDF

Info

Publication number
CN105132386A
CN105132386A CN201510557936.9A CN201510557936A CN105132386A CN 105132386 A CN105132386 A CN 105132386A CN 201510557936 A CN201510557936 A CN 201510557936A CN 105132386 A CN105132386 A CN 105132386A
Authority
CN
China
Prior art keywords
cell
apc
preparation
external secretion
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510557936.9A
Other languages
English (en)
Other versions
CN105132386B (zh
Inventor
盖丽云
李刚毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING DOING -TIMES BIOMEDICAL TECHNOLOGY Co Ltd
Original Assignee
BEIJING DOING -TIMES BIOMEDICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING DOING -TIMES BIOMEDICAL TECHNOLOGY Co Ltd filed Critical BEIJING DOING -TIMES BIOMEDICAL TECHNOLOGY Co Ltd
Priority to CN201510557936.9A priority Critical patent/CN105132386B/zh
Publication of CN105132386A publication Critical patent/CN105132386A/zh
Application granted granted Critical
Publication of CN105132386B publication Critical patent/CN105132386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明公开了一种外分泌体及其制备方法和其作为肿瘤疫苗的应用,该方法包括以下步骤:(1)制备NDV-Ulster病毒株修饰的肿瘤细胞;(2)制备采用磷酸抗原或双膦酸盐类药物刺激活化的新型抗原递呈细胞γδT-APC;(3)制备γδT-APC和NDV-Ulser修饰的肿瘤细胞的融合细胞;(4)纯化融合细胞;(5)融合细胞的培养;(6)融合细胞外分泌体的制备,(7)疫苗制备。本发明具有如下有益效果:本发明方法能得到更多的新型抗原递呈细胞γδT-APC,γδT-APC和经过修饰的肿瘤细胞的融合率高,本发明所得外分泌体抗原结合更稳定、肿瘤抗原效价更完整、免疫源性更强,融合细胞及外分泌体肿瘤抗原负载高。

Description

一种外分泌体及其制备方法和其作为肿瘤疫苗的应用
技术领域
本发明涉及一种外分泌体及其制备方法和该外分泌体作为肿瘤疫苗的应用,尤其是涉及一种采用新型抗原递呈细胞γδT-APC和新城鸡瘟病毒株NDV-Ulser修饰的肿瘤细胞融合制备融合细胞,再用该融合细胞制备外分泌体的方法,还涉及所得外分泌体作为肿瘤疫苗的应用。
背景技术
外分泌体(Exosome)是真核细胞内多泡体膜与细胞膜融合后,释放到细胞外环境的囊泡体结构。近年研究发现,多种类型细胞均能释放外分泌体。目前用于制备肿瘤疫苗的外分泌体主要有以下来源:肿瘤细胞来源的外分泌体(以下称为Texosome)和树突状细胞(以下称为DendriticCell,DC)来源的外分泌体(以下称为Dexosome)以及DC和肿瘤融合细胞来源的外分泌体。这三种细胞来源的外分泌体均可递呈肿瘤细胞抗原。通过蛋白质组学研究,目前已获得Dexosome较为完善的蛋白分子组成,主要包括:抗原递呈和共刺激分子(包括MHC-Ⅰ类分子、MHC-Ⅱ类分子、CD1a、CD80、CD86等);免疫黏附分子(包括CD54/ICAM-1、整合素α链/Mac-1、乳黏附素/MFG-E8、Lamp-2等);信号转导相关分子(包括CD9、CD37、CD53、CD63、CD81、CD82);细胞溶质蛋白(包括Hsc73、Hsp84、G12α、syntenin、AnnexinⅠ、Ⅱ、Ⅳ、V、Ⅶ,Rab7、Rab11、rabGD1、RaplB、Galectin-3、EIF-4A-Ⅱ等);还有细胞骨架蛋白(包括肌动蛋白、cafilin、profiling、mbulin、EFlα等)。
目前在肿瘤免疫治疗领域,Texosome和Dexosome因其独特的生物学特性而引起广泛的关注,但二者作为肿瘤疫苗均具有各自的缺陷。Texosome可表达肿瘤抗原,但低表达MHC-Ⅰ、MHC-Ⅱ并缺乏共刺激分子,所以单纯Texosome疫苗效果比较差;Dexosome可表达MHCI和MHCII及共刺激分子和粘附分子,但不表达肿瘤抗原,需要负载抗原肽或事先用肿瘤抗原致敏DC,但无论是负载抗原肽还是用肿瘤抗原致敏DC,其抗原表达能力往往都比较低,其抗肿瘤免疫效果也很有限。
DC-肿瘤融合细胞来源的外分泌体可以同时直接表达MHC-Ⅰ、Ⅱ分子,共刺激分子和粘附分子并递呈全部肿瘤抗原信息,具有更强的免疫刺激活性,疫苗作用效果更强。但DC-肿瘤融合细胞来源的外分泌体的制备受DC细胞数量不能大量扩增、DC细胞纯度低的限制,因此要制备大量疗效更强的融合细胞外分泌体疫苗,必须要解决DC细胞数量少、DC细胞纯度低的问题,但目前的DC细胞制备技术手段还不能很好的解决DC细胞数量和纯度的问题。而且,制备DC-肿瘤融合细胞及外分泌体时,要求肿瘤细胞的抗原具有较强的免疫源性,免疫源性弱的肿瘤细胞抗原则不适合制备DC-肿瘤融合细胞及外分泌体。
现有技术中还有直接使用DC-肿瘤融合细胞作为肿瘤疫苗使用的,但其临床疗效也往往不是很理想,同时由于DC-肿瘤融合细胞疫苗属于活细胞疫苗,因此在其保存方面具有很大的局限性。
关于外分泌体作为疫苗使用的研究,法国的GustaveRoussyand研究所已完成外分泌体的Ⅰ期临床试验,受试者为Ⅲ/Ⅳ期恶性黑色素瘤患者,其肿瘤MAGE-3表达阳性;以MAGE-3致敏患者DC后提取Dexosome,皮下注射,每周4次、连续4周,之后病情稳定或缓解者每三周一次连续应用。所有患者均能很好的耐受;其中一位Ⅲ期患者病情稳定达24周以上。美国Duke大学用外分泌体治疗Ⅲ/Ⅳ期非小细胞型肺癌患者,发现其可延缓疾病进展。临床试验结果证明,以外分泌体为基础的肿瘤疫苗是一种安全、可行、有效的生物疗法;与DC-肿瘤融合细胞疫苗比较,外分泌体为非细胞成分,具有可长期冻存、抗原性强、稳定高效等优点,更易于临床应用。
本发明中采用的新城鸡瘟病毒(NewcastleDiseaseVirus,NDV)是一种快速生长的单链RNA病毒,具有多组织亲和性的特点,它可以不依赖于肿瘤细胞的增殖而能在其细胞质中选择性的复制,属于非致癌性的病毒;NDV可以通过其自身表面的血凝素-神经酰胺分子与广泛存在于人肿瘤细胞表面的受体唾液酸结合。
发明内容
为了克服现有技术的缺陷,本发明提供了一种外分泌体及其制备方法和所得外分泌体作为肿瘤疫苗的应用。本发明中采用新型抗原递呈细胞γδT-APC和新城鸡瘟病毒株NDV-Ulser修饰的肿瘤细胞进行融合,其中新型抗原递呈细胞γδT-APC是通过采用磷酸化抗原或双膦酸盐类药物刺激活化脐带血来源的单个核细胞细胞获得的,将所得融合细胞进行分离纯化和扩大培养,从融合细胞的培养上清液中分离纯化外分泌体并将其制备成疫苗。其中,本发明所涉及的γδT-APC、NDV-Ulser修饰的肿瘤细胞、二者的融合细胞和源自融合细胞的外分泌体都可以进行大量制备;与采用DC细胞和未经修饰的肿瘤细胞进行融合相比,本发明方法能得到更多的新型抗原递呈细胞γδT-APC,γδT-APC和经过修饰的肿瘤细胞的融合率高,本发明所得外分泌体抗原结合更稳定、肿瘤抗原效价更完整、免疫源性更强,融合细胞及外分泌体肿瘤抗原负载高。
一种外分泌体的制备方法,包括以下步骤:
(1)制备NDV-Ulster病毒株修饰的肿瘤细胞
将肿瘤细胞灭活,在灭活的肿瘤细胞中按照每(1-2)×107个灭活的肿瘤细胞中加入NDV-Ulster病毒株32个血凝单位的比例加入NDV-Ulster病毒株,得混合物,将混合物移入培养瓶中,在培养瓶中加入无血清细胞培养基并于37℃、5%CO2的条件下培养0.5-2小时,离心收集NDV-Ulster病毒株修饰后的肿瘤细胞,洗涤并进行无菌检验,无菌检验阴性为合格;
(2)制备采用磷酸抗原或双膦酸盐类药物刺激活化的新型抗原递呈细胞γδT-APC
从脐带血血库购买的或患者自己在商业机构保存的脐带血中分离单个核细胞后,用含2-10%所述脐带血血浆的无血清细胞培养基将单个核细胞稀释到1-2×106个/ml,置于培养瓶中,并向培养瓶中加入磷酸化抗原或双膦酸盐类药物,优选1-羟基-2-(咪唑-1-yl)-亚乙基-1,1-二磷酸-水化物刺激活化单个核细胞,使磷酸化抗原或双膦酸盐类药物浓度为1-10μM,将培养瓶置于37℃、5%CO2的条件下培养18-24h后,再在培养瓶中加入重组人白细胞介素-Ⅱ(即rhIL-2),使其浓度为100-1000U/ml,优选1000U/ml,每隔2-3天继续补充所述含2-10%所述脐带血血浆的无血清细胞培养基并补充重组人白细胞介素-Ⅱ,使重组人白细胞介素-Ⅱ浓度保持为100-1000U/ml,优选1000U/ml,如此总共培养7-14天,优选14天,即可获得活化的γδT-APC,离心将γδT-APC收集起来,对活化的γδT-APC细胞进行微生物、细胞活率及免疫表型的检测,微生物检测阴性,细胞活率>85%,目标免疫表型的阳性率均>80%才能用于融合细胞的制备;
(3)制备γδT-APC和NDV-Ulser修饰的肿瘤细胞的融合细胞
使用不同荧光染料标记的抗体对步骤(1)所得NDV-Ulser修饰的肿瘤细胞以及步骤(2)培养的γδT-APC进行染色,每2×105个γδT-APC加入1-2×106个NDV-Ulster修饰的肿瘤细胞(即细胞比例1:5-10)进行融合,获得融合产物;优选使用FITC标记的抗MUC1(HMPV,BDPharminggen)单克隆抗体和/或FITC标记的抗Her-2/neu(TA-1,BDPharminggen)单克隆抗体对步骤(1)所得NDV-Ulser修饰的肿瘤细胞进行染色,优选使用PE标记的抗HLA-DR(TU36,BDPharminggen)单克隆抗体和/或PE标记的抗CD86(IT2.2,BDPharminggen)单克隆抗体对步骤(2)培养的γδT-AP进行染色;
(4)纯化融合细胞
将步骤(3)所得融合产物通过流式细胞荧光分选技术(FACS)纯化获得含有步骤(3)中使用的各种抗体的融合细胞,且该步骤优选的还包括进一步确认所得融合细胞的目标免疫表型为阳性;融合细胞不仅高表达来源于γδT-APC的MHC-I、MHC-II分子、共刺激分子(CD80,CD86)、粘附分子(ICAM-I),同时还能表达来源于肿瘤细胞的特异性抗原,融合细胞能表达来源于被融合双亲的共同特征,融合前用不同的荧光抗体标记的γδT-APC和肿瘤细胞,融合后融合细胞即出现所谓的双阳性表现,流式细胞仪可以定量检测融合率;
(5)融合细胞的培养:将步骤4获得的经过纯化的融合细胞置于培养瓶中,加入所述含2-10%所述脐带血血浆的无血清细胞培养基,并加入重组人白介素-2使其浓度为100-1000U/ml,于37℃、5%CO2的条件下培养18-24h,得培养物;
(6)融合细胞外分泌体的制备:离心,优选4℃离心步骤(5)所得培养物除去融合细胞后收集上清液,再对所得上清液,优选在4℃的条件下进行逐级离心分离,得外分泌体;
(7)疫苗制备:将收集的外分泌体进行蛋白定量,滤膜,优选膜孔径0.22μm的滤膜过滤除菌。分装后于-80度冷藏备用
一种外分泌体的制备方法,其中肿瘤细胞可以为原代培养的肿瘤细胞或传代培养的肿瘤细胞株,所述原代培养和传代培养均采用现有技术。
一种外分泌体的制备方法,其中原代培养的肿瘤细胞或传代培养的肿瘤细胞株的初始来源为:取新鲜的离体肿瘤组织,冲洗干净,通过机械方法(优选为剪切或研磨)消化后制备成单细胞悬液,计量细胞数目,去除死细胞及碎片,去除肿瘤浸润淋巴细胞;其中所述消化优选为消化后过100目筛网,所述计量细胞数目优选采用台酚蓝染色法,所述去除死细胞及碎片优选采用密度梯度离心法,所述去除肿瘤浸润淋巴细胞优选采用包被好的商用免疫磁珠(德国美天旎,CD3MicroBeads)。
一种外分泌体的制备方法,其中步骤(1)中所述肿瘤细胞的灭活方式为:进行γ辐射照射或者加入丝裂霉素C,所述γ辐射照射的剂量优选为30-200Gy,所述加入丝裂霉素C的剂量优选为30-90μg/ml。
一种外分泌体的制备方法,其中步骤(2)中所述磷酸化抗原或双膦酸盐类药物还可以选自帕米膦酸二钠(二钠-氨基-1-羟基亚丙基-1,1-二膦酸五水化合物)、阿伦磷酸钠(4–氨基–(1–羟基亚丁基)–1,1–二磷酸单钠三水合物)、伊班膦酸钠([1—羟基—3—(N—甲基—N—戊胺基)亚膦酸单钠盐-水合物)和唑来膦酸(1-羟基-2-(咪唑-1-yl)-亚乙基-1,1-二磷酸一水化物)。
一种外分泌体的制备方法,其中所有步骤中所述无血清细胞培养基均为:生产厂家为Takara、商品名为GT-T551H3的无血清细胞培养基;生产厂家为Lonza、商品名为X-VIVO15的无血清细胞培养基或生产厂家为Gibco、商品名为AIM-V的无血清细胞培养基。
一种外分泌体的制备方法,其中步骤(2)中所述分离单个核细胞的方法为:将脐带血使用人淋巴细胞分离液进行分离,其中所述人淋巴细胞分离液优选为生产厂家为GE、商品名为Ficoll-paqueplus或Ficoll-paquepremium的人淋巴细胞分离液。
一种外分泌体的制备方法,其中步骤(3)中细胞融合的方法优选聚乙二醇(PEG)融合法或电融合法,其中:
所述聚乙二醇融合法的步骤为:γδT-APC和肿瘤细胞组成的混合细胞均匀混合于离心管中,吸取预热至37℃的50%PEG缓慢滴入离心管中,轻柔振荡,每1-2.5×106个混合细胞中加入0.5-1ml50%PEG,静置融合1-15分钟,然后缓慢加入预热至37℃的所述无血清细胞培养基稀释终止反应;
所述电融合技术的步骤为:γδT-APC和肿瘤细胞组成的混合细胞在融合介质中进行洗涤,所述融合介质为:含50g/L葡萄糖、0.5mmol/L醋酸镁、0.1mmol/L醋酸钙、3g/L牛血清白蛋白,pH7.2的水溶液,随后将混合细胞重悬于所述融合介质中,细胞浓度为(1-1.5)×107个/ml,融合过程由BTX公司的ECM2001电融合仪来完成,把细胞放入电融合槽中,用交流电(120V/cm)冲击细胞悬液10秒使得γδT-APC和肿瘤细胞各自排列成两排,然后立即将交流电改为直流电(1100V/cm)冲击25微秒,进行细胞融合。
一种外分泌体的制备方法,其中步骤(2)中所述目标免疫表型为HLA-DR、HLA-A、CD80、CD86和CD11c;步骤(4)中所述目标免疫表型为HLA-DR、HLA-A、CD80、CD86、CD11c和MUC1。
一种外分泌体的制备方法,其中步骤(6)中所述逐级离心包括:4℃、300g离心上清液10min弃沉淀留取上清液1,再4℃、2000g离心上清液1,离心20min弃沉淀留取上清液2,上清液2再4℃、10000g离心30min,弃沉淀留取上清液3,上清液3再4℃、100000g离心60min,留取沉淀即为外分泌体。
本发明还提供了使用上述制备方法制备的外分泌体。
本发明还提供了上述外分泌体作为肿瘤疫苗的应用。
本发明所述肿瘤可以为乳腺癌肿瘤,本发明使用了乳腺癌细胞株MCF7用于实验。
与现有技术相比,本发明具有如下有益效果:
1、γδT-APC容易大量制备,纯度高,抗原递呈能力强,100ml脐带血中分离到1×108个单个核细胞后,经过7天培养,可获得1.5×109个γδT-APC,细胞纯度可达90%以上;而100ml脐带血中分离到1×108个单个核细胞后,经过7天培养,只能得到1×107个Mo-DC,细胞纯度最高只有60%左右;
2、NDV修饰的肿瘤细胞由于神经氨酸酶的插入使得肿瘤细胞的抗原得以充分暴露在表面,肿瘤免疫源性更强,NDV修饰的肿瘤细胞由于融合蛋白的插入使得肿瘤细胞的粘附性增强,细胞的融合能力更强;
3、γδT-APC和NDV修饰的肿瘤细胞进行融合,融合率可达到42%-61%,但使用Mo-DC和未经修饰的肿瘤细胞,融合率只有20%-30%;
4、γδT-APC和NDV修饰的肿瘤细胞的融合细胞及其外分泌体上抗原负载高可达80%以上,抗原结合更稳定、免疫源性更强。
附图说明
图1是经过荧光染料标记的抗体染色的不同细胞示意图,图A中为经过染色的NDV修饰的肿瘤细胞,图B中为经过染色的γδT-APC细胞,图C中黄色代表上述二者的融合细胞;
图2是采用流式细胞术检测融合细胞的图谱,右上象限代表融合细胞;
图3是对比γδT-APC细胞、Mo-DC细胞、未经修饰的乳腺癌细胞和NDV-Ulster病毒株修饰的乳腺癌细胞表面特定免疫表型的阳性表达率,每一种免疫表型对应的左起第一项代表γδT-APC;每一种免疫表型对应的左起第二项代表Mo-DC;每一种免疫表型对应的左起第三项代表未经修饰的乳腺癌细胞;每一种免疫表型对应的左起第四项代表NDV-Ulster病毒株修饰的乳腺癌细胞;
图4是不同融合细胞中制备得到的外分泌体表面免疫表型对比图,每一种免疫表型对应的左起第一项是实施例1中获得的外分泌体;每一种免疫表型对应的左起第二项为实施例3中获得的外分泌体。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1γδT-APC和NDV-Ulster病毒株修饰的肿瘤细胞进行融合,将所得融合细胞 用于制备外分泌体
(1)制备NDV-Ulster病毒株修饰的肿瘤细胞
将乳腺癌细胞株MCF7进行γ辐射照射灭活,γ辐射照射的剂量为200Gy,在灭活的肿瘤细胞中按照每1×107个灭活的肿瘤细胞中加入NDV-Ulster病毒株32个血凝单位的比例加入NDV-Ulster病毒株,得混合物,将混合物移入培养瓶中,在培养瓶中加入无血清细胞培养基(生产厂家为Lonza、商品名为X-VIVO15)并于37℃、5%CO2的条件下培养1小时,1500rpm×10min离心收集NDV-Ulster修饰后的肿瘤细胞,用无血清细胞培养基(生产厂家为Lonza、商品名为X-VIVO15)洗涤、采用台酚蓝染色法计量细胞数和浓度并进行无菌检验,无菌检验为阴性合格后重新悬浮后用于融合细胞制备;
(2)制备采用磷酸抗原或双膦酸盐类药物刺激活化的新型抗原递呈细胞γδT-APC
从脐带血血库购买脐带血,并用GE公司、商品名为Ficoll-paqueplus的人淋巴细胞分离液分离单个核细胞后,用含10%该脐带血血浆的无血清细胞培养基(生产厂家为Lonza、商品名为X-VIVO15)将单个核细胞稀释到2×106个/ml,置于培养瓶中,并向培养瓶中加入终浓度为10μM的1-羟基-2-(咪唑-1-yl)-亚乙基-1,1-二磷酸-水化物刺激活化单个核细胞,将培养瓶置于37℃、5%CO2的条件下培养24h后,再在培养瓶中加入重组人白细胞介素-Ⅱ(即rhIL-2),使其浓度为1000U/ml,每隔2-3天继续补充所述含10%上述脐带血血浆的无血清细胞培养基(生产厂家为Lonza、商品名为X-VIVO15)并补充重组人白细胞介素-Ⅱ,使其浓度保持为1000U/ml,如此总共培养7天,即可获得活化的γδT-APC,离心将γδT-APC收集起来,对活化的γδT-APC细胞进行微生物、细胞活率及免疫表型的检测,微生物检测阴性,细胞活率>85%,免疫表型HLA-DR、HLA-A、CD80、CD86和CD11c的阳性率分别>80%才能用于融合细胞的制备;
(3)制备γδT-APC和NDV-Ulser修饰的肿瘤细胞的融合细胞
使用FITC标记的抗MUC1(HMPV)单克隆抗体对步骤(1)所得NDV-Ulser修饰的肿瘤细胞进行染色,使用PE标记的抗HLA-DR(TU36)单克隆抗体对步骤(2)培养的γδT-APC进行染色,每2×105个γδT-APC中加入2×106个NDV-Ulster修饰的肿瘤细胞(即细胞比例1:10)进行混合并采用电融合技术进行融合:γδT-APC和NDV-Ulser修饰的肿瘤细胞在融合介质(含50g/L葡萄糖、0.5mmol/L醋酸镁、0.1mmol/L醋酸钙、3g/L牛血清白蛋白,pH7.2的水溶液)中洗涤并随后重悬于融合介质中,细胞浓度为1×107个/ml,融合过程由BTX公司的ECM2001电融合仪来完成,把细胞放入电融合槽中,用交流电(120V/cm)冲击细胞悬液10秒使得γδT-APC和NDV-Ulser修饰的肿瘤细胞各自排列成两排;然后立即将交流电改为直流电(1100V/cm)冲击25微秒,获得融合产物;
(4)纯化融合细胞
通过FACS对步骤(3)所得产物进行分析和纯化,获得既具有HLA-DR、HLA-A、CD80、CD86、CD11c和MUC1的免疫表型、又同时含有FITC标记的抗MUC1(HMPV)单克隆抗体和PE标记的抗HLA-DR(TU36)单克隆抗体的融合细胞;
(5)融合细胞的培养:将步骤4获得的经过纯化的融合细胞置于培养瓶中,加入上述含10%上述脐带血血浆的无血清细胞培养基,并加入重组人白介素-2使其浓度为1000U/ml,于37℃、5%CO2的条件下培养24h,得培养物;
(6)融合细胞外分泌体的制备:4℃、离心步骤(5)所得培养物除去融合细胞后收集上清液,再对所得上清液在4℃的条件下进行逐级离心分离纯化外分泌体,逐级离心包括:4℃、300g离心上清液10min弃沉淀留取上清液1,再4℃、2000g离心上清液1,离心20min弃沉淀留取上清液2,上清液2再4℃、10000g离心30min,弃沉淀留取上清液3,上清液3再4℃、100000g离心60min,留取沉淀即为外分泌体;
(7)疫苗制备:将收集的外分泌体进行蛋白定量,0.22um滤膜过滤除菌,分装,于-80度冷藏备用。
实施例2γδT-APC和NDV-Ulster病毒株修饰的肿瘤细胞进行融合,将所得融合细胞 用于制备外分泌体的
(1)制备NDV-Ulster病毒株修饰的肿瘤细胞
将乳腺癌细胞株MCF7加入丝裂霉素C灭活,使丝裂霉素C的剂量为50μg/ml,在灭活的肿瘤细胞中按照每2×107个灭活的肿瘤细胞中加入NDV-Ulster病毒株32个血凝单位的比例加入NDV-Ulster病毒株,得混合物,将混合物移入培养瓶中,在培养瓶中加入无血清细胞培养基(生产厂家为Takara、商品名为GT-T551H3)中于37℃、5%CO2的条件下培养2小时,1500rpm×10min离心收集NDV-Ulster修饰后的肿瘤细胞,用无血清细胞培养基(生产厂家为Takara、商品名为GT-T551H3)洗涤、采用台酚蓝染色法计量细胞数和浓度并进行无菌检验,无菌检验为阴性合格后重新悬浮后用于融合细胞制备;
(2)制备采用磷酸抗原或双膦酸盐类药物刺激活化的新型抗原递呈细胞γδT-APC
从脐带血血库购买脐带血,并用GE公司、商品名为Ficoll-paquepremium的人淋巴细胞分离液分离单个核细胞后,用含10%所述脐带血血浆的无血清细胞培养基(生产厂家为Takara、商品名为GT-T551H3)将单个核细胞稀释到2×106个/ml,置于培养瓶中,并向培养瓶中加入终浓度为10μM的1-羟基-2-(咪唑-1-yl)-亚乙基-1,1-二磷酸-水化物刺激活化单个核细胞,将培养瓶置于37℃、5%CO2的条件下培养24h后,再在培养瓶中加入重组人白细胞介素-Ⅱ(即rhIL-2),使其浓度为1000U/ml,每隔2-3天补充所述含10%所述述脐带血血浆的无血清细胞培养基(生产厂家为Takara、商品名为GT-T551H3)并补加重组人白细胞介素-Ⅱ,使其浓度保持为1000U/ml,如此总共培养14天,即可获得活化的γδT-APC,离心将γδT-APC收集起来,对活化的γδT-APC细胞进行微生物、细胞活率及免疫表型的检测,微生物检测阴性,细胞活率>85%,免疫表型HLA-DR+、HLA-A、CD80+、CD86+和CD11c+的阳性率分别>80%才能用于融合细胞的制备;
(3)制备γδT-APC和NDV-Ulser修饰的肿瘤细胞的融合细胞
使用FITC标记的抗Her-2/neu(TA-1)单克隆抗体对步骤(1)所得NDV-Ulser修饰的肿瘤细胞进行染色,使用PE标记的抗CD86(IT2.2)单克隆抗体和HLA-DR(TU36)单克隆抗体对步骤(2)培养的γδT-AP进行染色,每2×105个γδT-APC中加入1×106个NDV-Ulster修饰的肿瘤细胞(即细胞比例1:5)进行混合并采用聚乙二醇法进行融合:γδT-APC和肿瘤细胞组成的混合细胞均匀混合于离心管中,吸取预热至37℃的50%PEG缓慢滴入离心管中,轻柔振荡,每1×106个混合细胞中加入0.5ml50%PEG,静置融合15分钟,然后缓慢加入预热至37℃的所述无血清细胞培养基(生产厂家为Takara、商品名为GT-T551H3)稀释终止反应;
(4)纯化融合细胞
通过FACS对步骤(3)所得产物进行分析和纯化,获得既具有HLA-DR、HLA-A、CD80、CD86、CD11c和MUC1的免疫表型、又同时含有FITC标记的抗Her-2/neu(TA-1)单克隆抗体和PE标记的抗CD86(IT2.2)单克隆抗体和HLA-DR(TU36)单克隆抗体的融合细胞;
(5)融合细胞的培养:将步骤4获得的经过纯化的融合细胞置于培养瓶中,加入含10%上述脐带血血浆的无血清细胞培养基(生产厂家为Takara、商品名为GT-T551H3),并加入重组人白介素-2使其浓度为500U/ml,于37℃、5%CO2的条件下培养24h,得培养物;
(6)融合细胞外分泌体的制备:4℃、离心步骤(5)所得培养物除去融合细胞后收集上清液,再对所得上清液在4℃的条件下进行逐级离心分离纯化外分泌体,逐级离心包括:4℃、300g离心上清液10min弃沉淀留取上清液1,再4℃、2000g离心上清液1,离心20min弃沉淀留取上清液2,上清液2再4℃、10000g离心30min,弃沉淀留取上清液3,上清液3再4℃、100000g离心60min,留取沉淀即为外分泌体;
(7)疫苗制备:将收集的外分泌体进行蛋白定量,0.22um滤膜过滤除菌,分装,于-80度冷藏备用。
实施例3Mo-DC细胞和未经修饰的肿瘤细胞进行融合,将所得融合细胞用于制备外 分泌体
Mo-DC细胞的诱导培养:从脐带血血库购买脐带血(与实施例1为同一脐带血),并用GE公司、商品名为Ficoll-paquepremium的人淋巴细胞分离液分离单个核细胞后,用含10%所述脐带血血浆的无血清细胞培养基(生产厂家为Lonza、商品名为X-VIVO15)将单个核细胞稀释到2×106个/ml,置于培养瓶中,5%CO2、37℃的条件下培养2小时,轻轻吸出悬浮细胞,保留下层的贴壁细胞,在培养瓶中加入终浓度为100ng/ml的GM-CSF、终浓度为100ng/ml的IL-4、终浓度为10%的所述脐带血血浆、终浓度为0.02mmol/L的L-谷氨酰胺、终浓度为5×10-5mol/L的巯基乙醇的无血清细胞培养基(生产厂家为Lonza、商品名为X-VIVO15),5%CO2、37℃的条件下培养2天,然后加入诱导DC成熟的试剂包括终浓度为5μg/ml的PGE2,终浓度为50ng/ml的IL-6,终浓度为50ng/ml的IL-1和终浓度为100ng/ml的TNF-α继续培养5天诱导DC成熟,获得Mo-DC细胞。
将上述所得Mo-DC细胞与未经修饰的、乳腺癌细胞株MCF7进行融合,除了用于融合的2种细胞不同,其余步骤参数均与实施例1相同。
实施例4性能对比
(1)从100ml脐带血中分离到1×108个单个核细胞后,按照实施例1中制备新型抗原递呈细胞γδT-APC的方法,由1×108个单个核细胞细胞培养7天后可增殖为1.5×109个γδT-APC,培养到14天后能达到3×109个γδ-APC,细胞纯度可达到90%,按照实施例3中制备Mo-DC的方法,由1×108个单个核细胞细胞培养诱导7天后,只能得到1×107个Mo-DC,且细胞纯度最高只有60%左右;
(2)实施例1和实施例3中均采用电融合方法,对比二者融合效率:γδ-APC和Mo-DC均为同一脐带血来源的、具有抗原递呈功能的抗原递呈细胞;实施例1采用的是NDV-Ulser修饰的乳腺癌细胞株MCF7,实施例3采用的是未经修饰的乳腺癌细胞株MCF7;抗原递呈细胞和肿瘤细胞的比例均为1:10。融合效率为通过荧光标记和流式检测及免疫荧光检测分析的结果,融合效率=(视野内融合细胞的细胞核总数/视野内全部细胞的细胞核总数)×100%,实施例1中的融合效率为61%,采用本发明方法的融合效率可达到42%-61%,按照实施例3中方法的融合效率为20%-30%;
(3)对比γδT-APC细胞、Mo-DC细胞、未经修饰的乳腺癌细胞和NDV-Ulster病毒株修饰的乳腺癌细胞表面特定免疫表型的阳性表达率,如图3所示,γδT-APC细胞和NDV-Ulster病毒株修饰的乳腺癌细胞表面HLA-DR,HLA-A,CD80,CD86,CD11c,MUC1的阳性表达率要分别高于Mo-DC细胞和未经修饰的乳腺癌细胞;
(4)对比γδT-APC细胞和NDV-Ulser修饰的肿瘤细胞的融合细胞以及Mo-DC和未经修饰的肿瘤细胞的融合细胞的免疫表型,结果如表1所示:本发明所得融合细胞表面HLA-DR、HLA-A、CD80、CD86、CD11c以及MUC1的阳性表达率要高于Mo-DC和未经修饰的肿瘤细胞的融合细胞;
表1.不同融合细胞免疫表型检测结果
(5)实施例1和实施例3中所得外分泌体的免疫表型对比,如图4所示,实施例1所得外分泌体的HLA-DR、HLA-A、CD80、CD86、CD11c以及MUC1的阳性表达率要高于实施例4所得外分泌体。
综上所述,γδT-APC相对于Mo-DC更容易大量培养,且获得的γδT-APC纯度高于Mo-DC;与使用Mo-DC和未经修饰的肿瘤细胞融合相比,使用γδT-APC和经过修饰的肿瘤细胞融合的融合率更高,且本发明融合细胞表面负载的几种标志免疫表型的阳性表达率要高于前者融合细胞;同样的,本发明融合细胞分泌的外分泌体表面负载的几种标志免疫表型的阳性表达率也要高于前者融合细胞分泌的外分泌体。
以上公开的仅为本发明的具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (11)

1.一种外分泌体的制备方法,其特征在于,包括以下步骤:
(1)制备NDV-Ulster病毒株修饰的肿瘤细胞
将肿瘤细胞灭活,在灭活的肿瘤细胞中按照每(1-2)×107个灭活的肿瘤细胞中加入NDV-Ulster病毒株32个血凝单位的比例加入NDV-Ulster病毒株,得混合物,将混合物移入培养瓶中,在培养瓶中加入无血清细胞培养基并于37℃、5%CO2的条件下培养0.5-2小时,离心收集NDV-Ulster病毒株修饰后的肿瘤细胞,洗涤并进行无菌检验,无菌检验阴性为合格;
(2)制备采用磷酸抗原或双膦酸盐类药物刺激活化的新型抗原递呈细胞γδT-APC
从脐带血中分离单个核细胞后,用含2-10%所述脐带血血浆的无血清细胞培养基将单个核细胞稀释到1-2×106个/ml,置于培养瓶中,并向培养瓶中加入磷酸化抗原或双膦酸盐类药物,优选1-羟基-2-(咪唑-1-yl)-亚乙基-1,1-二磷酸-水化物刺激活化单个核细胞,使磷酸化抗原或双膦酸盐类药物浓度为1-10μM,将培养瓶置于37℃、5%CO2的条件下培养18-24h后,再在培养瓶中加入重组人白细胞介素-Ⅱ,使其浓度为100-1000U/ml,优选1000U/ml,每隔2-3天继续补充所述含2-10%所述脐带血血浆的无血清细胞培养基并补充重组人白细胞介素-Ⅱ,使重组人白细胞介素-Ⅱ浓度保持为100-1000U/ml,优选1000U/ml,如此总共培养7-14天,优选14天,即可获得活化的γδT-APC,离心将γδT-APC收集起来,对活化的γδT-APC细胞进行微生物、细胞活率及免疫表型的检测,微生物检测阴性,细胞活率>85%,目标免疫表型的阳性率均>80%才能用于融合细胞的制备;
(3)制备γδT-APC和NDV-Ulser修饰的肿瘤细胞的融合细胞
使用不同荧光染料标记的抗体对步骤(1)所得NDV-Ulser修饰的肿瘤细胞以及步骤(2)培养的γδT-APC进行染色,每2×105个γδT-APC中加入(1-2)×106个NDV-Ulster修饰的肿瘤细胞进行融合,获得融合产物;
(4)纯化融合细胞
将步骤(3)所得融合产物通过流式细胞荧光分选技术纯化获得含有步骤(3)中使用的各种抗体的融合细胞;
(5)融合细胞的培养:将步骤4获得的经过纯化的融合细胞置于培养瓶中,加入所述含2-10%所述脐带血血浆的无血清细胞培养基,并加入重组人白介素-2使其浓度为100-1000U/ml,于37℃、5%CO2的条件下培养18-24h,得培养物;
(6)融合细胞外分泌体的制备:离心,优选4℃离心步骤(5)所得培养物除去融合细胞后收集上清液,再对所得上清液,优选在4℃的条件下进行逐级离心分离,得外分泌体;
(7)疫苗制备:将收集的外分泌体进行蛋白定量,滤膜过滤除菌。
2.根据权利要求1所述的外分泌体的制备方法,其特征在于,步骤(1)中所述肿瘤细胞的灭活方式为:进行γ辐射照射或者加入丝裂霉素C,所述γ辐射照射的剂量优选为30-200Gy,所述加入丝裂霉素C的剂量优选为30-90μg/ml。
3.根据权利要求1或2所述的外分泌体的制备方法,其特征在于,步骤(2)中所述分离单个核细胞的方法为:将脐带血使用人淋巴细胞分离液进行分离,其中所述人淋巴细胞分离液优选为生产厂家为GE、商品名为Ficoll-paqueplus或Ficoll-paquepremium的人淋巴细胞分离液。
4.根据权利要求1-3之一所述的外分泌体的制备方法,其特征在于,步骤(3)中细胞融合的方法为聚乙二醇融合法或电融合法,
所述聚乙二醇融合法的步骤为:γδT-APC和肿瘤细胞组成的混合细胞均匀混合于离心管中,吸取预热至37℃的50%PEG缓慢滴入离心管中,轻柔振荡,每1-2.5×106个混合细胞中加入0.5-1ml50%PEG,静置融合1-15分钟,然后缓慢加入预热至37℃的所述无血清细胞培养基稀释终止反应;
所述电融合技术的步骤为:γδT-APC和肿瘤细胞组成的混合细胞在融合介质中进行洗涤,所述融合介质为:含50g/L葡萄糖、0.5mmol/L醋酸镁、0.1mmol/L醋酸钙、3g/L牛血清白蛋白,pH7.2的水溶液,随后将混合细胞重悬于所述融合介质中,细胞浓度为(1-1.5)×107个/ml,融合过程由电融合仪来完成,把细胞放入电融合槽中,用交流电120V/cm冲击细胞悬液10秒使得γδT-APC和肿瘤细胞各自排列成两排,然后立即将交流电改为直流电1100V/cm冲击25微秒,进行细胞融合。
5.根据权利要求1或2所述的外分泌体的制备方法,其特征在于,步骤(3)中使用FITC标记的抗MUC1(HMPV)单克隆抗体和/或FITC标记的抗Her-2/neu(TA-1)单克隆抗体对步骤(1)所得NDV-Ulser修饰的肿瘤细胞进行染色,使用PE标记的抗HLA-DR(TU36)单克隆抗体和/或PE标记的抗CD86(IT2.2)单克隆抗体对步骤(2)培养的γδT-AP进行染色。
6.根据权利要求1或2所述的外分泌体的制备方法,其特征在于,步骤(4)还包括进一步确认所得融合细胞的目标免疫表型为阳性。
7.根据权利要求1或2所述的外分泌体的制备方法,其特征在于,步骤(2)中所述目标免疫表型为HLA-DR、HLA-A、CD80、CD86和CD11c;步骤(4)中所述目标免疫表型为HLA-DR、HLA-A、CD80、CD86、CD11c和MUC1。
8.根据权利要求1-7之一所述的外分泌体的制备方法,其特征在于,步骤(6)中所述逐级离心包括:4℃、300g离心上清液10min弃沉淀留取上清液1,再4℃、2000g离心上清液1,离心20min弃沉淀留取上清液2,上清液2再4℃、10000g离心30min,弃沉淀留取上清液3,上清液3再4℃、100000g离心60min,留取沉淀即为外分泌体。
9.根据权利要求1-8之一所述的外分泌体的制备方法,其特征在于,步骤(2)中所述磷酸化抗原或双膦酸盐类药物还可以选自帕米膦酸二钠、阿伦磷酸钠、伊班膦酸钠和唑来膦酸。
10.一种根据权利要求1-9所述方法制备的外分泌体。
11.权利要求10所述外分泌体作为肿瘤疫苗的应用。
CN201510557936.9A 2015-09-02 2015-09-02 一种外分泌体及其制备方法和其作为肿瘤疫苗的应用 Active CN105132386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510557936.9A CN105132386B (zh) 2015-09-02 2015-09-02 一种外分泌体及其制备方法和其作为肿瘤疫苗的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510557936.9A CN105132386B (zh) 2015-09-02 2015-09-02 一种外分泌体及其制备方法和其作为肿瘤疫苗的应用

Publications (2)

Publication Number Publication Date
CN105132386A true CN105132386A (zh) 2015-12-09
CN105132386B CN105132386B (zh) 2018-06-26

Family

ID=54717959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510557936.9A Active CN105132386B (zh) 2015-09-02 2015-09-02 一种外分泌体及其制备方法和其作为肿瘤疫苗的应用

Country Status (1)

Country Link
CN (1) CN105132386B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063013A (zh) * 2015-09-02 2015-11-18 北京多赢时代科技有限公司 一种融合细胞及其制备方法和其作为肿瘤疫苗的应用
CN108168977A (zh) * 2018-01-08 2018-06-15 南通大学附属医院 外泌体生物标志物mmp-13的提取、检测方法及试剂盒
JP2021533798A (ja) * 2018-08-20 2021-12-09 中国科学院過程工程研究所Institute Of Process Engineering, Chinese Academy Of Sciences エクソソームに基づく抗腫瘍ワクチン

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446583A (zh) * 2002-11-29 2003-10-08 帕弗瑞生物技术(北京)有限公司 一种肿瘤免疫治疗及预防性疫苗的组成、制备、应用方案

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1446583A (zh) * 2002-11-29 2003-10-08 帕弗瑞生物技术(北京)有限公司 一种肿瘤免疫治疗及预防性疫苗的组成、制备、应用方案

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAKAMICHI IZUMI 等: ""Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor β-chain and the common γ-chain"", 《CYTOTHERAPY》 *
WINFRID LIEBRICH 等: ""In vitro and Clinical Characterisation of a Newcastle Disease Virus-modified Autologous Tumour Cell Vaccine for Treatment of Colorectal Cancer Patients"", 《EUR J CANCER》 *
胡刚 等: ""白血病树突状细胞疫苗研究和应用新进展"", 《医药前沿》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063013A (zh) * 2015-09-02 2015-11-18 北京多赢时代科技有限公司 一种融合细胞及其制备方法和其作为肿瘤疫苗的应用
CN105063013B (zh) * 2015-09-02 2018-05-15 北京多赢时代科技有限公司 一种融合细胞及其制备方法和其作为肿瘤疫苗的应用
CN108168977A (zh) * 2018-01-08 2018-06-15 南通大学附属医院 外泌体生物标志物mmp-13的提取、检测方法及试剂盒
JP2021533798A (ja) * 2018-08-20 2021-12-09 中国科学院過程工程研究所Institute Of Process Engineering, Chinese Academy Of Sciences エクソソームに基づく抗腫瘍ワクチン
JP7282874B2 (ja) 2018-08-20 2023-05-29 中国科学院過程工程研究所 エクソソームに基づく抗腫瘍ワクチン

Also Published As

Publication number Publication date
CN105132386B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
Woodruff et al. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine
Singleton et al. Neisserial porin-induced dendritic cell activation is MyD88 and TLR2 dependent
CN102137925B (zh) 同时诱导CTL和γδT细胞的方法
BRPI0619499A2 (pt) composições e métodos para indução da ativação de células dendrìticas monocìticas imaturas
JP2021533798A (ja) エクソソームに基づく抗腫瘍ワクチン
US11723921B2 (en) Modulated immunodominance therapy
CN108697777A (zh) 对免疫检查点抑制剂抵抗性肿瘤的t细胞输注疗法的预处理药物
CN105007930B (zh) 用于治疗疾病的同种异体自噬体富集组合物
CN108379569A (zh) 高效荷载肿瘤抗原的dc疫苗及其诱导扩增肿瘤抗原特异性ctl的方法
CN105132386A (zh) 一种外分泌体及其制备方法和其作为肿瘤疫苗的应用
EA012520B1 (ru) Способ получения цитотоксических лимфоцитов
Romain et al. CD 34‐derived dendritic cells transfected ex vivo with HIV‐G ag m RNA induce polyfunctional T‐cell responses in nonhuman primates
CN105063013B (zh) 一种融合细胞及其制备方法和其作为肿瘤疫苗的应用
JP2000508628A (ja) 対象体内で免疫応答を誘導する方法
CN113528436A (zh) 基于淋巴细胞的同源靶向性人工抗原呈递细胞及其构建和应用
ES2878043T3 (es) Composiciones purificadas de proteínas IVIG y KH para la modulación de los linfocitos y el tratamiento del virus de la hepatitis B
CN107574149B (zh) 一种树突状细胞的促成熟方法及其用途
EP0689596B1 (en) Stimulation of immune response by viral protein
US11413339B2 (en) Whole-cell tumor vaccine based on principle of extracellular trap and method of making same
EP4271408A1 (en) Methods for treating cancers with activating antigen carriers
CN103289957B (zh) 干细胞样肺癌细胞制备及其抗原组合物负载树突状细胞的方法与试剂盒
Lambert et al. Characterization of the antigen-presenting cell and T cell requirements for induction of pulmonary eosinophilia in a murine model of asthma
CN102154302A (zh) 一种可溶性人重组mica蛋白的制备方法
US20040152191A1 (en) Process for the maturation of dendritic cells and for the activation of macrophages with RU 41740
Coggin Jr Induction of transplantation resistance with soluble simian virus 40-induced hamster tumor-specific transplantation antigen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: The invention relates to an exocrine body, a preparation method thereof and its application as a tumor vaccine

Effective date of registration: 20210901

Granted publication date: 20180626

Pledgee: Ningbo Kuanjie Tibetan jade enterprise management partnership (L.P.)

Pledgor: BEIJING DOING-TIMES BIOMEDICAL TECHNOLOGY Co.,Ltd.

Registration number: Y2021990000799

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230904

Granted publication date: 20180626

Pledgee: Ningbo Kuanjie Tibetan jade enterprise management partnership (L.P.)

Pledgor: BEIJING DOING-TIMES BIOMEDICAL TECHNOLOGY Co.,Ltd.

Registration number: Y2021990000799

PC01 Cancellation of the registration of the contract for pledge of patent right