CN105114597B - 单大负变位渐开线齿轮传动装置 - Google Patents
单大负变位渐开线齿轮传动装置 Download PDFInfo
- Publication number
- CN105114597B CN105114597B CN201510547721.9A CN201510547721A CN105114597B CN 105114597 B CN105114597 B CN 105114597B CN 201510547721 A CN201510547721 A CN 201510547721A CN 105114597 B CN105114597 B CN 105114597B
- Authority
- CN
- China
- Prior art keywords
- involute
- mrow
- gear
- msub
- circle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/17—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/06—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/08—Profiling
- F16H55/0806—Involute profile
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gears, Cams (AREA)
Abstract
本发明公开了一种单大负变位渐开线齿轮传动装置,包括一对相互啮合的大齿轮和小齿轮,所述大齿轮的轮齿的工作齿廓包括位于齿轮基圆外部的外凸型的第一渐开线部,还包括位于齿轮基圆内的内凹型的第二渐开线部,第二渐开线部的上端与所述第一渐开线部的下端在齿轮基圆处平滑连接;所述小齿轮包括位于齿顶部的外凸型的第三渐开线部和位于齿根部的外凸型的第四渐开线部;所述第三渐开线部与所述第四渐开线部平滑连接;所述小齿轮的齿顶部的第三渐开线部与所述大齿轮齿根部的第二渐开线部为凸凹弧啮合。本发明具有使用寿命较长,传动可靠性较高,维护费用低,容易安装等优点。
Description
技术领域
本发明涉及机械传动中齿轮传动技术领域,特别的涉及一种单大负变位渐开线齿轮传动装置。
背景技术
机械传动是指利用机械方式传递动力和运动的传动,常用机械传动系统的的类型有齿轮传动、蜗轮蜗杆传动、带传动、链传动、轮系等。其中,齿轮传动是机械传动中应用最广的一种传动形式。它的传动比较准确,效率高,结构紧凑,工作可靠,寿命长。齿轮传动时,两轮齿廓必须符合下述条件:"两轮齿廓不论在任何位置接触,过接触点的公法线必须过连心线上的定点C——节点。"这就是圆形齿轮的齿廓啮合基本定律。能满足该定律的曲线有很多,实际上还要考虑制造、安装和承载能力等方面的要求,一般只采用渐开线、摆线和圆弧等几种曲线作齿轮的工作齿廓,其中大部分为渐开线齿廓。
渐开线齿轮具有可分性、互换性、适应性、制造方便等特点,得到了广泛应用,逐渐占据齿轮传动机构的统治地位。但由于渐开线齿轮是凸凸共轭齿廓曲线,啮合传动中是凸凸齿廓接触,接触应力大,齿轮接触强度低,在解决大传动比问题时多采用大正变位齿廓,压力角增大,弯曲应力和接触应力随之增加。为提高接触强度、抗弯强度,对齿轮制造材料和制造精度有更高的要求,增大了制造成本,同时没有解决根本问题。对于重载大功率、大负荷传动,渐开线齿轮点蚀破坏和断齿失效,寿命极短,可靠性低,维护费用大,是渐开线齿轮的致命缺陷。
而圆弧齿轮是两段同向圆弧凸凹齿廓接触,接触面积大,应力分散,接触应力小,接触强度高,不易点蚀破坏失效影响使用寿命。但是,两齿轮的中心距精度要求高,没有可分性、适应性,并制造困难。
如何找到一种能够将渐开线齿廓与圆弧齿廓的优点结合在一起的齿廓曲线,使其传动时既具有可分性、互换性、适应性、制造方便等特点,又具有凸凹齿廓接触,接触面积大,应力分散,接触应力小,接触强度高,不易点蚀破坏失效等优点,成为亟待解决的问题。
发明内容
针对上述现有技术的不足,本发明所要解决的技术问题是:如何提供一种使用寿命较长,传动可靠性较高,维护费用低,容易制造,安装的齿轮传动装置。
为了解决上述技术问题,本发明采用了如下的技术方案:
一种单大负变位渐开线齿轮传动装置,包括一对相互啮合的大齿轮和小齿轮,其特征在于,所述大齿轮的轮齿的工作齿廓包括位于齿轮基圆外部的外凸型的第一渐开线部,还包括位于齿轮基圆内的内凹型的第二渐开线部,第二渐开线部的上端与所述第一渐开线部的下端在齿轮基圆处平滑连接;所述小齿轮包括位于齿顶部的外凸型的第三渐开线部和位于齿根部的外凸型的第四渐开线部;所述第三渐开线部与所述第四渐开线部平滑连接;所述小齿轮的齿顶部的第三渐开线部与所述大齿轮齿根部的第二渐开线部为凸凹弧啮合,所述小齿轮的齿根部的第四渐开线部与所述大齿轮齿顶部的第一渐开线部为凸凸弧啮合。
传动时,由于小齿轮的齿顶部的第三渐开线部与所述大齿轮齿根部的第二渐开线部为凸凹弧啮合,增加了传动过程中齿廓接触的面积,接触应力小,不易点蚀失效,提高使用寿命。同时,采用渐开线齿廓,使得单大负变位渐开线齿轮传动装置具有渐开线齿轮的可分性,即齿轮副的传动比与基圆半径成反比,与两轮的实际中心距没有关系。这样,使得单大负变位渐开线齿轮传动装置的适应性强,互换性好,降低了加工制造的难度。
进一步的,所述第二渐开线部的极坐标函数表达式为:
invαk=tanαk-αk
其中:rk为第二渐开线部上任意点到齿轮轴心的距离,rs2为第二渐开线部的基圆半径,αk为齿廓对应点的压力角,βk为齿廓任意点螺旋角;
所述极坐标函数表达式中,还包括以下表达式:
rs2=rf+ρf(1-sinαt)
其中:rf为齿根圆半径,ρf为滚刀刀尖圆弧半径,αt为齿轮分度圆端面压力角。
进一步的,所述大齿轮的轮齿的工作齿廓还包括位于齿根的过渡曲线,所述过渡曲线的上端与第二渐开线部的下端平滑连接,过渡曲线的下端与齿根圆相切;所述过渡曲线上任意点(x,y)满足以下曲线方程:
所述计算式中,为滚刀移动方向的垂直线和滚刀刀尖圆弧中心点与齿轮中心的连线之间的夹角。
进一步的,所述第一渐开线部和所述第二渐开线部的连接点位于半径为rJb2的大齿轮分界圆上;所述第三渐开线部和第四渐开线部的连接点位于半径为rJa1的小齿轮分界圆上;所述rJb2与rJa1满足以下关系:
其中,还包括如下计算式:
式中,a′是理论中心距,a是安装中心距,αswt是内基圆渐开线齿廓端面啮合角,αsbt2是大齿轮根部渐开线在基圆啮合终止点端面压力角;αst是小齿轮齿顶部齿廓渐开线端面分度圆内压力角。
综上所述,本发明具有使用寿命较长,传动可靠性较高,维护费用低,容易安装等优点。
附图说明
图1为本发明所采用的双渐开线齿轮基圆内渐开线形成过程原理图(图中水平向右的箭头是滚刀运动方向)。
图2为本发明所采用的双渐开线齿轮基圆内渐开线齿廓起始点示意图。
图3为双渐开线齿轮啮合传动的结构示意图。
图4为用于加工双渐开线齿轮的滚刀结构示意图。
图5为图3中大齿轮根部啮合接触起始圆的结构示意图。
图6为反向渐开线齿廓齿厚计算原理示意图。
图7为齿轮不发生根切的原理示意图。
图8为双渐开线齿轮根部渐开线起始点的结构示意图。
图9为小齿轮根部与大齿轮顶部啮合接触点的结构示意图。
图10为单负变位齿轮啮合传动重合度计算原理示意图。
具体实施方式
下面结合相关附图对本发明作进一步的详细说明。
具体实施时:如图1和图2所示,加工时,根据变位原理,将滚刀向基圆内延伸。齿轮以角速度ω旋转,滚刀上以直线速度vk向前移动,滚刀刀尖圆弧中心始终沿一条直线移动,vk=ωrbs,相当于齿轮与滚刀作纯滚动,刀尖圆弧中心点的轨迹就是一条渐开线,其基圆半径等于齿根圆半径rf与滚刀刀尖圆弧半径ρf之和,即rbs=rf+ρf,刀尖圆弧中心点移动的直线就是齿轮基圆内的第二渐开线的发生线,第二渐开线基圆相切。当滚刀滚切齿轮时,以齿轮基圆为分界线,分别以半径为rbs的基圆与半径为rb的基圆作相反方向的渐开线展成运动,得到内、外两条相反的渐开线,即位于齿轮基圆外的第一渐开线和位于齿轮基圆内的第二渐开线。
滚刀刀尖的横截面为一个半径为ρf的圆弧,滚刀的切屑点位于刀尖圆弧上。过滚刀刀尖圆弧中心点O作滚刀上刀齿切削边PZ的垂线与刀齿切削边相交于P点,由于刀齿切削边PZ与滚刀刀尖圆弧相切,则P点即为二者的相切点,同时P点为滚刀刀齿切削边的最高点。当采用展成法进行滚齿加工时,滚刀刀尖总是向远离齿轮中心方向移动,但P点始终与齿轮基圆内齿廓相接触,这也是滚刀在齿轮基圆内曲线的实际切削的切削点,因此,齿轮基圆内的齿廓曲线是由P点在切削运动中形成的轨迹。因滚刀只是平行移动,刀齿切削边最高点P不会变化,因此,P点的轨迹也是渐开线。此时,滚刀刀齿切削边的垂线OP与发生线之间的夹角等于滚刀端面齿形角αt,由于实际渐开线是P点在切削运动中的轨迹,则齿轮中心点O2到P点运动方向的垂直距离为齿轮基圆内的第二渐开线的基圆半径;称为内基圆半径,用rs表示。则
rs=rf+ρf(1-sinαt) (1)
由于齿轮基圆内的第二渐开线与齿轮基圆外的第一渐开线由滚刀刀齿切削边上各个连续的切削点切削得到,同时滚刀刀尖圆弧起始切点与滚刀刀齿切削边相切,因此第一渐开线与第二渐开线也正好是方向相反光滑连接的渐开线曲线。
因滚刀刀尖必是一段圆弧,所以基圆内渐开线也有起始点,又由于滚刀刀齿有一定厚度,因此齿根圆到渐开线起始段仍然有过渡曲线。
如图1所示,图中CC曲线就是过渡曲线,可以根据作图证明过渡曲线是与滚刀刀尖圆弧有关的椭圆弧曲线。
如图2所示,图2中的P点为齿轮基圆内第二渐开线的起始点,过P点作第二渐开线的法线与Y轴相交于PJ点,即节点。同时与内基圆相切与N点,则PJN=rssinαt,其中αt为滚刀齿形角。图中αd是起始点P的压力角。
由图可知:
PN=PJN-PPJ
而:
得到:
其中,ha *为齿顶高系数,xsn为齿轮基圆内第二渐开线齿廓变位系数,简称内变位系数,rs是内基圆半径。
如图1所示,为精确计算,用解析方法研究基圆内曲线。建立以齿轮圆心O2为原点的直角坐标系,P为滚刀切削点,O为滚刀刀尖圆弧中心点,Q为O点的移动线与Y轴的交点。则直线O2Q=rf+ρf=rbs,△POO2与△OO2Q是直角三角形。于是有
得到
式中,rsk是切削点P(x,y)的基圆半径。
rsk=rf+ρf(1-sinαk)
rsk随压力角αk变化有微小变化,对于斜齿轮切削点P(x,y)的螺旋角为βk。则
将公式(4)代入上式转换成压力角αk的函数式:
切削点P(x,y)的直角坐标函数为:
X=O2Psinαkcosβk
Y=O2Pcosαk
将公式(3)代入上式中,得到:
由于滚刀作水平移动,滚刀刀齿有一定厚度,在起始段,是一个不变的常数,将上式化简则有:
这是一个椭圆的直角坐标函数,因此齿根部分的过渡曲线仍是椭圆曲线。
将公式(4)代入公式(6)(7),得到切削点P轨迹曲线的直角坐标函数表达式:
X=rsktanαkcosβk
Y=rsk
由于齿轮加工时,滚刀作水平移动,滚刀切齿边的最高切削点的轨迹决定了齿轮齿廓。因此,此时的rsk等于内基圆半径rs是一个不变的数值,将渐开线的直角坐标函数表达式换成渐开线函数的极坐标函数方程:
invαk=tanαk-αk
当螺旋角βk=0时,则是标准的渐开线极坐标函数表达式:
invαk=tanαk-αk
由此可以得出,该齿轮的齿根部的过渡曲线为椭圆曲线,齿轮基圆内的曲线从起始点起也是渐开线。
双渐开线齿轮传动分两种情况:一种是大负变位的大齿轮与正变位的小齿轮啮合传动,这种情况的啮合传动简称为单大负齿轮啮合传动;另一种是两个都是大负变位的齿轮传动,这种情况的啮合传动简称为双大负齿轮啮合传动。
一、单大负齿轮啮合传动:
如图3和图5所示,单大负齿轮啮合传动,其中,大齿轮为大负变位齿轮,在基圆内有齿廓。小齿轮为正变位齿轮,齿廓在基圆外。PJ点是两齿轮节圆的交点,即两齿轮的节点,直线NPJ是过节点PJ作的大齿轮基圆的切线,也与小齿轮的基圆相切。大齿轮基圆内第二渐开线曲线要与小齿轮齿顶部渐开线啮合,根据“齿廓啮合基本定律”,其公法线也必过节点PJ,过PJ点作大齿轮内基圆的切线,也必与小齿轮顶部齿廓渐开线基圆相切。图中MPJ与NPJ是两个基圆的切线,也是齿廓啮合过程,小齿轮齿顶部与大齿轮齿根部啮合的分界点就是大齿轮的基圆,两段渐开线在不同阶段啮合,在同一时间段有凸凸齿廓与凸凹齿廓两种啮合形式。大齿轮基圆内的第二渐开线是滚刀刀尖圆弧在基圆内形成的,第二渐开线压力角与滚刀齿形角没有直接关系,因此不能通过滚刀齿形角控制内渐开线压力角,要保证小齿轮齿顶部分与大齿轮齿根部分正确啮合传动,只有将小齿轮齿顶部分渐开线的分度圆压力角修改,并确定两段渐开线的分界点。
小齿轮齿顶部渐开线在分度圆上的压力角称为“分度圆内压力角”,用αsn表示;小齿轮齿顶部与齿根部渐开线分界点称顶部分界圆半径,用rJa表示;分界圆到齿顶圆的高度称分界圆齿顶高,用hJa表示,齿顶渐开线齿廓变位系数称内变位系数,用xsn表示。大齿轮齿根部与小齿轮顶圆接触点称大齿轮根部啮合起始圆,半径用rfc表示;大齿轮齿根部两段渐开线分界点称根部分界圆,半径用rJb表示,根部分界圆到齿顶圆的高度称基圆齿顶高,用hba表示。
双渐开线齿轮是两段齿廓,包含了可以用于理论啮合的齿廓高度、顶隙高度和去尖角毛刺倒角齿高三部分齿廓高度。可以用于理论啮合的齿廓高度部分简称工作齿高,用hw表示,只包含工作齿高与保证齿顶隙的齿廓高度简称有效齿高,用h表示,包含了可以用于理论啮合的齿廓、顶隙和去尖角毛刺倒角三部分全部齿廓高度简称全齿高,用hg表示。双渐开线齿轮两段齿廓有一个分界圆,因此采用分界圆与分界圆齿顶高便于设计计算与刀具制造,渐开线齿轮以分度圆为界分成的齿顶高与齿根高在双渐开线齿轮的参数与计算中就没有意义,所以就不再采用。齿顶高系数ha *、顶隙系数c*可以采用渐开线齿轮标准,去尖角毛刺倒角ca×45°,按下式计算
ca=ca *mn (8)
式中,ca *去尖角毛刺倒角系数,简称齿顶倒角系数,ca *=0.1。
如图3所示,O2M=rs2是大齿轮内基圆半径,根据公式(1)计算,O2PJ=rw2是大齿轮节圆半径,O1PJ=rw1是小齿轮节圆半径。因△PJMO2与△PJQO1是直角三角形,并且△PJM O2∽△PJQO1,所以小齿轮齿顶部分渐开线基圆半径rs1可以根据相似三角形的性质计算:
因传动比:
小齿轮内基圆半径可以用传动比与大齿轮内基圆半径计算:
根据基圆半径计算公式rb=rcosαt,可求得小齿轮齿顶部齿廓渐开线端面分度圆内压力角αst:
得到
根据法向分度圆压力角与端面分度圆压力角计算公式,小齿轮齿顶部渐开线分度圆法向内压力角为:
αsn=arctan(tanαstcosβ) (11)
小齿轮顶部齿廓与大齿轮根部齿廓的啮合角称节圆内啮合角,根据端面压力角与端面啮合角计算公式,内基圆渐开线齿廓端面节圆内啮合角αswt:
式中,a′是理论中心距,a是安装中心距(或称实际中心距)。
根据渐开线性质:基圆内无渐开线,因此大负变位齿轮两段齿廓渐开线分界点应在基圆上;对应小齿轮分界圆直径可以根据这一条件计算出来。大齿轮根部基圆内外齿廓渐开线分界圆直径用dJb表示,半径rJb用表示,对应在小齿轮顶部的分界圆直径用dJa表示,半径用rJa表示。
如图3所示,P点是大齿轮两段齿廓的分界点,也是小齿轮顶部两段齿廓的分界点,因此,O1P就是小齿轮齿顶部与齿根部渐开线分界圆半径,用rJa1表示,rJa1=O1P。在△O1O2P中,∠O1O2P=αswt-αsbt2,a=O1O2,rJb2=O2P,根据三角形边角关系求出:
式中,αswt是内基圆渐开线齿廓端面啮合角,由公式(12)计算,αsbt2是大齿轮根部渐开线在基圆啮合终止点端面压力角,简称根部终止压力角,可以由以下公式计算:
小齿轮以分界圆为分界点,根部与顶部渐开线不同,顶部渐开线齿高称分界圆齿顶高为:
hJa=ra-rJa (15)
小齿轮在分度圆上有两个压力角,一个用于齿根部分渐开线齿廓计算,是设计选定的压力角αn;一个用于齿顶部分渐开线齿廓计算,是保证小齿轮顶部与大齿轮根部能够正确啮合,根据大齿轮基圆内由滚刀刀尖圆弧自然形成的渐开线曲线计算出来的压力角αsn,是齿顶高hJa部分齿廓的滚刀齿形角,因此,在制作小齿轮滚刀时,以齿轮分界圆为界按两个齿形角αn、αsn设计制造滚刀,如图4所示。大齿轮滚刀则按选定齿形角αn制作,只有一个齿形角。
小齿轮齿顶圆与大齿轮根部基圆内渐开线齿廓接触点,就是大齿轮根部啮合起始点,所在圆半径就是大齿轮根部啮合起始点半径,用rfc2表示。
如图5所示,rfc2=O2P,在△O1O2P中,∠O1O2P=αsat1-αswt,a=O1O2,ra1=O1P,根据三角形边角关系求出:
式中,αswt是节圆内端面啮合角,由公式(12)计算,αsat1是小齿轮顶部齿廓渐开线终止点端面压力角,简称小齿轮“顶部终止角”,可以由以下公式计算:
大齿轮齿顶圆与小齿轮根部渐开线齿廓接触点,就是小齿轮根部啮合起始点,所在圆半径就是小齿轮根部啮合起始点半径,用rfc1表示。同理得到:
式中αat2是大齿轮齿顶圆压力角,计算公式是:
内变位系数xsn:变位系数与齿厚密切相关,根据分界圆齿厚相同条件可以计算出内变位系数xsn。齿厚是渐开线齿轮啮合传动的重要尺寸,齿轮齿廓各部分的齿厚是不同的,两个齿轮的分度圆齿厚也不相同,用s表示分度圆齿厚,用ss表示分度圆基圆内渐开线齿厚,简称分度圆内齿厚,小齿轮是两段同向渐开线齿廓,分度圆齿厚与内齿厚的计算公式是:
用sk表示任意圆齿厚,rk是任意圆半径,r是分度圆半径,αk是任意圆的压力角,αt是分度圆端面压力角,小齿轮根部任意圆齿厚的计算公式是:
小齿轮顶部任意圆齿厚的计算公式是:
大齿轮在基圆内齿廓是凹形齿廓即是反向渐开线齿廓,任意圆上齿厚计算与正向渐开线不同。图6所示,sk是任意圆上的弧齿厚,ss是分度圆上的弧齿厚,根据渐开线性质,任意圆上的弧齿厚:
因渐开线展角θk=invαk以及θt=invαst,得到sk计算公式:
式中,反渐开线齿廓的分度圆齿厚ss为:
基圆外是正向渐开线齿廓,计算公式同小齿轮。
双渐开线齿轮模数、螺旋角、分度圆相同,顶部与根部分度圆压力角不同,因此变位系数是不相同的。可以根据分界圆齿厚相同的条件计算出齿顶部渐开线齿廓的变位系数,简称内变位系数,用xsn表示。
(1)、小齿轮内变位系数xsn1:小齿轮分界圆弧齿厚用sJ表示,因两段齿廓是正向渐开线,根据公式(20)、(21)、(22)、(23)得到:
式中,αJat1是小齿轮根部齿廓渐开线终止端面压力角,简称小齿轮“根部终止压力角”,αsJt1是小齿轮顶部齿廓渐开线起始端面压力角,简称小齿轮“顶部起始压力角”,分别由下式计算:
根据以上公式联立求得:
(2)、大齿轮内变位系数xsn2:根据渐开线性质:基圆内无渐开线,因此大齿轮两段齿廓渐开线分界点应在基圆附近;由于两条渐开线曲线光滑过渡,因此分界点齿厚是相同的。用sb表示基圆分界点弧齿厚,基圆内齿廓是反向渐开线,根据公式(20)、(22)、(24)、(25)得到:
式中,αJbt2是大齿轮顶部(双大负齿轮是中部)渐开线起始点端面压力角,简称“顶部(中部)起始压力角”;αsbt2是大齿轮根部终止点端面压力角,简称“根部终止压力角”。
求得:
双渐开线齿轮啮合传动也是渐开线变位齿轮传动,因此渐开线变位齿轮无侧隙啮合方程适用于双渐开线齿轮啮合传动。大齿轮顶部与小齿轮根部是反向渐开线齿廓啮合传动,也是凸凸齿廓啮合传动,与渐开线齿轮啮合传动一样,称主啮合传动;大齿轮根部与小齿轮顶部是同向渐开线辅啮合传动,也是凸凹齿廓啮合传动,与渐开线齿轮传动不同,称辅啮合传动,分别计算。
(1)、主啮合传动是大齿轮顶部与小齿轮根部齿廓啮合传动,无侧隙啮合方程也是渐开线齿轮无侧隙啮合方程,这里省去推导过程,其方程是:
xΣn=xn1+xn2 (33)
式中,z1是小齿轮齿数,z2是大齿轮齿数,αwt是端面啮合角,αt是分度圆端面压力角,αn是分度圆法向压力角,xΣn是总法向变位系数,xn1是小齿轮法向变位系数,xn2c是大齿轮法向变位系数。αt、αwt、αn与分度圆螺旋角β有如下关系:
式中a是两齿轮实际的安装中心距,a'是两齿轮的理论中心距。
(2)、辅啮合传动是大齿轮根部与小齿轮顶部啮合传动,这是同向渐开线齿廓啮合传动,也要满足无侧隙啮合方程,根据齿厚计算公式(24)、(25),小齿轮顶部与大齿轮根部齿廓的总变位系数满足公式:
xsΣn=xsn1-xsn2 (35)
式中,xsΣn是大齿轮根部基圆内渐开线齿廓与小齿轮顶部渐开线齿廓相配的总法向变位系数,简称总法向内变位系数或总内变位系数,αswt是大齿轮根部基圆内渐开线齿廓与小齿轮顶部渐开线齿廓的分度圆端面啮合角,简称端面内啮合角,αst是大齿轮根部基圆内渐开线齿廓与小齿轮顶部渐开线齿廓的分度圆端面压力角,简称端面内压力角,αsn是内渐开线分度圆法向压力角,简称法向内压力角,xsn1是小齿轮顶部齿廓相配大齿轮根部基圆内渐开线的法向变位系数,简称小齿轮法向内变位系数,xsn2是大齿轮根部基圆内渐开线齿廓法向变位系数,简称大齿轮法向内变位系数。
关于总内变位系数是可以确定的,小齿轮内变位系数xsn1与大齿轮内变位系数xsn2及小齿轮两段齿廓的分界圆半径rJa1与大齿轮两段齿廓分界圆半径rJb2四个未知数可以根据公式(13)、(28)、(31)、(34)、(35)联立求解,首先要求出分界圆半径rJa1和rJb2,将公式(28)、(31)、(34)代入公式(35)中得到方程:
z1(invαJat1-invαsJt1)+z2(invαJbt2+invαsbt2)=A (36)
式中,A是常数。
A=2xΣntanαn+(z1+z2)invαt-(z1-z2)invαswt (37)
将公式(13)换成方程表达式:
rJa1 2=a2+rJb2 2-arJb2cos(αswt-αsbt2) (38)
公式(36)、(38)与(26)、(27)、(29)、(30)组成了二元二次方程,未知数是rJa1和rJb2。只要计算出rJa1和rJb2,就可以计算出xsn1和xsn2。但(36)、(38)方程组不仅是二元二次方程组,而且还是超越方程,求解是很困难的,一般方法无法求解。根据(36)、(38)方程组可以证明大齿轮基圆内、外渐开线的分界点不在基圆上,而是大于基圆,在基圆附近,因此可以用基圆半径近似逼近法求解。即以基圆半径rb2等于分界圆半径rJb2,计算出分界圆半径rJa1,再用rJa1代入公式反算rJb2,要得到更精确的数值可以再重复计算几遍,直到得到希望的精度为止。
也可以用简单的平均法求解,通过分析发现,只要知道rJb2就可以解出rJa1和xsn1及xsn2。即先设rJb2=rb2计算出其他三个未知数xsn1、xsn2、rJ1,其中xsn1、xsn2可以根据公式(28)、(31)直接计算出来,再将计算出来的xsn1和xsn2分别代入公式(35)计算出xsn2和xsn1,将得到的两个数值再计算平均值即可,要注意,在计算分界圆齿厚时也要用顶部与根部分别计算出来的数值再计算平均值。
顶隙与齿顶高减短系数:保证一对齿轮正确啮合,齿轮根部与顶部间留有一定间隙,这个间隙称为齿顶隙,简称顶隙。变位齿轮按照保证无侧隙啮合的要求选定安装中心距,则不能够保证顶隙,按照保证顶隙的要求选定安装中心距,则不能够保证无侧隙啮合,因此,变位齿轮要保证顶隙与无侧隙啮合则将齿顶减短,与模数的比值称齿顶高减短系数,用δy表示。
δy=xΣn-yn (39)
式中yn是中心分离系数,计算公式为:
将式(32)、(40)代入(39)的δy计算公式得到:
双渐开线齿廓各段高度计算公式是:
hw=(2ha *-δy)mn (42)
h=(2ha *-δy+c*)mn (43)
hg=(2ha *-δy+c*+ca *)mn (44)
双渐开线齿廓形成条件是:r-hw<rb,代入相关计算公式得到:
一对渐开线齿轮啮合传动的极限情况就是啮合角为0,根据公式(41)得到:
公式(45)和(46)都是双渐开线齿轮应校核的条件。
齿数和变位系数与螺旋角:根据变位齿轮原理,变位齿轮是滚刀由标准位置沿径向移动xnmn距离所切制出来的齿轮。其中xn是法向变位系数,mn是法向模数。
如图7所示,不根切干涉的条件是N1Q>ha-xnmn或xnmn>ha-N1Q;式中ha是分度圆齿顶高,αt是齿轮端面分度圆压力角,r是齿轮分度圆直径,分别由下面公式计算:
ha=ha *mn
N1Q=P N1sinαt
PN1=rsinαt
根据数学运算得变位系数的校核公式为:
或根据变位系数、螺旋角、压力角校核齿数:
或根据变位系数、齿数、压力角校核螺旋角:
公式(47)、(48)、(49)是校核变位系数、齿数、螺旋角三者互相满足条件。
啮合中过渡曲线干涉:要使传动不发生过渡曲线干涉,必须使齿廓工作的啮合起始点开始均是渐开线,即齿廓工作段起始点的压力角αc必须大于或等于齿廓渐开线起始点的压力角αd。齿廓渐开线起始点是由滚刀滚切时确定的,是加工起始点,压力角用αd表示,齿廓工作段啮合起始点是两齿轮传动啮合与安装位置确定的,压力角用αd表示,分别计算出两个压力角。大齿轮基圆内渐开线加工起始点已由公式(2)计算,对于小齿轮渐开线加工起始点计算如下。
(1)、渐开线加工起始点压力角αd
如图8所示,B点是渐开线起始点。渐开线加工起始点压力角αd如图8中所示,
PN1=rsinαt
rb=rcosαt
式中r是小齿轮分度圆半径,αt是端面分度圆压力角,H是小齿轮根部实际齿高。因H=(h* a-xn1)mn;因此可以得到:
(2)、齿廓啮合起始点压力角αc
如图9所示,B点是小齿轮根部齿廓啮合起始点与大齿轮顶圆工作起始点。αc是齿廓工作啮合起始点压力角,则:
BN1=N1N2-N2B
N1N2=(rb1+rb2)tanαwt
N2B=rb2tanαat2
式中,rb1是小齿轮基圆半径,rb2是大齿轮基圆半径,αwt是啮合角,αat2是大大齿轮的齿顶压力角,其计算公式是:
因此有tanαc=tanαwt-i(tanαat2-tanαwt)。
根据不发生过渡曲线干涉的条件,则有tanαc≥tanαd,即小齿轮不发生过渡曲线干涉的校验公式是:
同理可得小齿轮顶圆在大齿轮根部啮合起始角的正切函数关系:
大齿轮渐开线起始点由公式(2)计算,同理得到大齿轮根部不发生过渡曲线干涉的校验公式是:
式中,αswt是端面内啮合角,αst是端面内压力角,αsat1是小齿轮顶部渐开线齿廓终止压力角,简称小齿轮顶部终止压力角。
大齿轮根部与小齿轮根部齿廓啮合接触起始点已经计算出来,比较准确,所以一般用αfct1、αfct2校核。
重合度用εγ表示。如图10所示,啮合线由C1C、B1B两段组成,因此,双渐开线齿轮啮合传动由基圆内渐开线重迭系数εf、基圆外渐开线重迭系数εα、端面重迭系数εβ三部分组成。
如图10所示,C1C是基圆内渐开线啮合线长,B1B是基圆外渐开线啮合线长。∠1=αfJt1是小齿轮“顶部起始压力角”,∠2=αsat1是小齿轮“顶部终止压力角”,∠3=αbct1是小齿轮“根部终止压力角”。
(1)、基圆内渐开线重迭系数εf
如图10所示,C1C是基圆内渐开线啮合线长:
C1C=rs1(tanαsat1-tanαsJt1)
式中,rs1是小齿轮内基圆半径,由公式(9)计算,小齿轮顶部起始压力角αsJt1由公式(26)计算,小齿轮“顶部终止压力角αsat1由下面公式(17)计算,即计算公式是:
式中rJ1由公式(13)计算,齿轮法节等于内基圆端面周节。
因此,基圆内渐开线重迭系数εf
(2)、基圆外渐开线重迭系数εα
如图10所示,B1B是基圆外渐开线啮合线长,B1B=P B1+PB。
PB1=rb1(tanαJat1-tanαwt)
PB=rb2(tanαat2-tanαwt)
式中,αat2是大齿轮齿顶圆压力角,由公式(50)计算,
αJat是小齿轮中部终止压力角,由公式(24)计算,即
式中,rJa1根据公式(13)计算。B1B与法节的比值为:
(3)端面重迭系数εβ为:
式中,b是齿轮轮齿宽度。
(4)、总重合度(重迭系数)为:
εγ=εα+εβ+εβ (56)
总齿数与最小变位系数:双渐开线齿轮是负变位齿轮,总变位系数是负值,也是有极限的,这个极限称最小总变位系数。根据“齿廓啮合基本定律”,一对渐开线齿轮啮合传动的节圆必须在基圆以外,即两齿轮基圆半径之和要小于安装中心距,因此有:
大齿轮和小齿轮的齿数之和称为总齿数,设
称为初步计算总齿数简称初算齿数,得到
将上式(69)代入无侧隙啮合方程(32)中得到
极限情况,αwt=0,得到的极限值为:
双渐开线形成条件是齿廓工作齿高最小圆应小于基圆半径,即
r-(ha *-xn)mn<rb
代入计算公式得到
根据公式(47)与(72)得到大齿轮变位系数xn的选择范围为:
双渐开线齿轮两段齿廓均匀分布,工作齿廓以基圆为对称线,则有:
r是分度圆半径,rb是基圆半径,代入计算公式得到:
满足公式(74)是设计双渐开线齿轮的最佳变位系数。
齿厚计算:齿厚是齿轮传动的重要尺寸,也是制造滚刀,加工齿轮的重要参数,但齿轮各部位齿厚不相同,对双渐开线,分界圆齿厚是非常重要的尺寸,大、小齿轮分界圆弧齿厚的计算公式
(1)、小齿轮分界圆弧齿厚用sJ1表示,则:
或
如果分界圆直径没有精确计算出来,这两个数值是不相等的,前面已经讲过,要用两个数值来计算平均值。分别用sJf1表示根部计算的分界圆齿厚,sJa1表示顶部计算的分界圆齿厚,则计算公式是:
(2)、大齿轮分界圆弧齿厚用sb2表示,则:
或
同理,如果分界圆直径rJb2没有精确计算出来,用基圆半径为分界圆半径,即rJb2=rb2,则
上公式计算出来的数值与公式(83)计算出来的数值是不相等的,也要计算平均值。
(3)、节圆弧齿厚用sw表示
双渐开线齿轮传动,大齿轮与小齿轮的节圆均大于分界圆小于基圆,在正啮合齿廓上,因此节圆弧齿厚用分度圆弧齿厚计算。
小齿轮节圆弧齿厚sw1为:
大齿轮节圆弧齿厚sw2为:
节圆弧齿厚计算方便,是可靠检测齿轮与制作滚刀等刀具的重要参数。
齿轮应力计算与强度校核
安装中心距a和模数mn是决定传动机构体积大小的重要参数,有多重因素和多种方法确定,其中根据传动功率和转速即输入扭矩计算确定是最普遍的方法,即使不是用此方法确定,也要根据输入扭矩进行强度校核。关于双渐开线齿轮安装中心距a和模数mn根据传动扭矩Ne计算的方法。
1、实际安装中心距a的设计计算
安装中心距或实际中心距根据输入扭矩与传动比计算,再根据计算数值选取,计算公式为:
a≥ka(Nei)1/3 (152)
式中,ka是根据材料机械性能、热处理状态、齿轮结构、齿廓形式等综合系数,根据经验与试验数据选取,Ne是输入扭矩,单位是N.m,i是传动比,a是计算安装中心距或实际中心距,单位是mm。
一般情况,根据经验与试验数据统计ka在7.5-8.5之间选择,硬齿面取小值,软齿面取大值。
2、模数mn的设计计算
模数根据输入扭矩计算,再根据计算数值选取,计算公式是为:
mn≥km(Ne)1/3 (153)
式中,km是根据材料机械性能、热处理状态、齿轮结构、齿廓形式等综合系数,根据经验与试验数据选取,Ne是输入扭矩,单位是N.m,计算模数单位是mm。
一般情况,根据经验与试验数据统计km在0.35-0.45之间选择,硬齿面取小值,软齿面取大值。
3、齿数计算
双渐开线齿轮齿数根据安装中心距、模数、传动比可以初步计算确定,根据整数要求和选择的压力角与螺旋角再调整,要满足大齿轮的变位系数符合形成双渐开线的条件。根据公式(69)与传动比分别计算大齿轮和小齿轮的齿数。
根据公式(154)(155)计算按整数选取,再计算传动比,并按公式(156)校核。如果与要求的传动比误差太大要重新选择,直到同时符合传动比与总齿数条件(156)为止。
具体实施时,对于齿顶高系数ha *,顶隙系数c*,一般渐开线齿轮取h* a=1,c*=0.25,双渐开线齿轮单大负齿轮传动仍然按照渐开线齿轮确定,双大负齿轮传动要发生过渡曲线干涉,要适当增大c*数值。对于滚刀刀尖圆弧半径系数ρ*,为了齿根光滑过渡,双渐开线齿轮滚刀仍然按照滚刀标准选取,滚刀刀尖圆弧半径系数取ρ*=0.3。为了保护工作齿面,齿顶采用去尖角毛刺倒角,角度45°,倒角高度根据模数变化,ca=c* amn,倒角系数c* a=0.1。传动比i要根据传动速度变化要求确定,模数mn根据传动功率P与转速n或扭矩Ne来确定,安装(实际)中心距a要根据传动扭矩或机构空间尺寸确定。因此,齿顶高系数ha*,顶隙系数c*,滚刀刀尖圆弧半径系数ρ*,倒角系数c* a,传动比i,模数mn,实际中心距a等均是已知条件。齿数根据传动比i最先得出,分度圆法向压力角αn和分度圆螺旋角β与变位系数xn也可以初步选取,再按照啮合条件校核修改确定。
实施例1:单大负齿轮啮合传动
6T53汽车变速箱一档齿轮,安装中心距a=123,要求传动比i=5。根据计算,实际确定小齿轮z1=9,大齿轮z2=43,模数mn=5,压力角αn=22.5°,螺旋角β=8.1272222222°(8°7′38″)。具体齿轮及滚刀参数如表1~表2所示:
表1:齿轮参数表(单大负齿轮传动)
表2:滚刀参数表(大齿轮)
序号 | 参数名称 | 符号 | 数值 | 备注 |
1 | 模数 | mn | 5 | |
2 | 分度圆法向压力角 | αn | 22.5° | |
3 | 有效齿高 | h | 9.32 | 不含齿顶倒角高度 |
4 | 节圆齿厚 | sw | 4.911 | |
5 | 节圆齿顶高 | hwa | 1.449 | |
6 | 刀尖圆弧半径 | ρf | 1.5±0.02 | |
7 | 齿顶倒角高度及角度 | ca×45° | 0.5×45° | |
8 | 滚刀有效齿数 | n | 7 | |
9 | 滚刀直径 | D | 100 | |
10 | 滚刀长度 | L | 120 | |
11 | 滚刀内孔直径 | d | 32 |
Claims (3)
1.一种单大负变位渐开线齿轮传动装置,包括一对相互啮合的大齿轮和小齿轮,其特征在于,所述大齿轮的轮齿的工作齿廓包括位于齿轮基圆外部的外凸型的第一渐开线部,还包括位于齿轮基圆内的内凹型的第二渐开线部,第二渐开线部的上端与所述第一渐开线部的下端在齿轮基圆处平滑连接;所述小齿轮包括位于齿顶部的外凸型的第三渐开线部和位于齿根部的外凸型的第四渐开线部;所述第三渐开线部与所述第四渐开线部平滑连接;所述小齿轮的齿顶部的第三渐开线部与所述大齿轮齿根部的第二渐开线部为凸凹弧啮合,所述小齿轮的齿根部的第四渐开线部与所述大齿轮齿顶部的第一渐开线部为凸凸弧啮合;所述第二渐开线部的极坐标函数表达式为:
<mrow>
<msub>
<mi>r</mi>
<mi>k</mi>
</msub>
<mo>=</mo>
<msub>
<mi>r</mi>
<mrow>
<mi>s</mi>
<mn>2</mn>
</mrow>
</msub>
<msqrt>
<mrow>
<mn>1</mn>
<mo>+</mo>
<msup>
<mi>tan</mi>
<mn>2</mn>
</msup>
<msub>
<mi>&alpha;</mi>
<mi>k</mi>
</msub>
<msup>
<mi>cos</mi>
<mn>2</mn>
</msup>
<msub>
<mi>&beta;</mi>
<mi>k</mi>
</msub>
</mrow>
</msqrt>
</mrow>
invαk=tanαk-αk
其中:rk为第二渐开线部上任意点到齿轮轴心的距离,rs2为第二渐开线部的基圆半径,αk为齿廓对应点的压力角,βk为齿廓任意点螺旋角;
所述极坐标函数表达式中,还包括以下表达式:
rs2=rf+ρf(1-sinαt)
其中:rf为齿根圆半径,ρf为滚刀刀尖圆弧半径,αt为齿轮分度圆端面压力角。
2.如权利要求1所述的单大负变位渐开线齿轮传动装置,其特征在于,所述大齿轮的轮齿的工作齿廓还包括位于齿根的过渡曲线,所述过渡曲线的上端与第二渐开线部的下端平滑连接,过渡曲线的下端与齿根圆相切;所述过渡曲线上任意点(x,y)满足以下曲线方程:
所述计算式中,为滚刀移动方向的垂直线和滚刀刀尖圆弧中心点与齿轮中心的连线之间的夹角。
3.如权利要求1所述的单大负变位渐开线齿轮传动装置,其特征在于,所述第一渐开线部和所述第二渐开线部的连接点位于半径为rJb2的大齿轮分界圆上;所述第三渐开线部和第四渐开线部的连接点位于半径为rJa1的小齿轮分界圆上;所述rJb2与rJa1满足以下关系:
<mrow>
<msub>
<mi>r</mi>
<mrow>
<mi>J</mi>
<mi>a</mi>
<mn>1</mn>
</mrow>
</msub>
<mo>=</mo>
<msqrt>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<msub>
<mi>r</mi>
<mrow>
<mi>J</mi>
<mi>b</mi>
<mn>2</mn>
</mrow>
</msub>
<mn>2</mn>
</msup>
<mo>-</mo>
<msub>
<mi>ar</mi>
<mrow>
<mi>J</mi>
<mi>b</mi>
<mn>2</mn>
</mrow>
</msub>
<mi>c</mi>
<mi>o</mi>
<mi>s</mi>
<mrow>
<mo>(</mo>
<msub>
<mi>&alpha;</mi>
<mrow>
<mi>s</mi>
<mi>w</mi>
<mi>t</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>&alpha;</mi>
<mrow>
<mi>s</mi>
<mi>b</mi>
<mi>t</mi>
<mn>2</mn>
</mrow>
</msub>
<mo>)</mo>
</mrow>
</mrow>
</msqrt>
</mrow>
其中,还包括如下计算式:
<mrow>
<msub>
<mi>&alpha;</mi>
<mrow>
<mi>s</mi>
<mi>w</mi>
<mi>t</mi>
</mrow>
</msub>
<mo>=</mo>
<mi>a</mi>
<mi>r</mi>
<mi>c</mi>
<mi>c</mi>
<mi>o</mi>
<mi>s</mi>
<mrow>
<mo>(</mo>
<mfrac>
<msup>
<mi>a</mi>
<mo>&prime;</mo>
</msup>
<mi>a</mi>
</mfrac>
<msub>
<mi>cos&alpha;</mi>
<mrow>
<mi>s</mi>
<mi>t</mi>
</mrow>
</msub>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<msub>
<mi>&alpha;</mi>
<mrow>
<mi>s</mi>
<mi>b</mi>
<mi>t</mi>
<mn>2</mn>
</mrow>
</msub>
<mo>=</mo>
<mi>a</mi>
<mi>r</mi>
<mi>c</mi>
<mi>c</mi>
<mi>o</mi>
<mi>s</mi>
<mfrac>
<msub>
<mi>r</mi>
<mrow>
<mi>s</mi>
<mn>2</mn>
</mrow>
</msub>
<msub>
<mi>r</mi>
<mrow>
<mi>J</mi>
<mi>b</mi>
<mn>2</mn>
</mrow>
</msub>
</mfrac>
</mrow>
式中,a′是理论中心距,a是安装中心距,αswt是内基圆渐开线齿廓端面啮合角,αsbt2是大齿轮根部渐开线在基圆啮合终止点端面压力角;αst是小齿轮齿顶部齿廓渐开线端面分度圆内压力角。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510547721.9A CN105114597B (zh) | 2015-08-31 | 2015-08-31 | 单大负变位渐开线齿轮传动装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510547721.9A CN105114597B (zh) | 2015-08-31 | 2015-08-31 | 单大负变位渐开线齿轮传动装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105114597A CN105114597A (zh) | 2015-12-02 |
CN105114597B true CN105114597B (zh) | 2017-09-15 |
Family
ID=54662652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510547721.9A Expired - Fee Related CN105114597B (zh) | 2015-08-31 | 2015-08-31 | 单大负变位渐开线齿轮传动装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105114597B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107387667B (zh) * | 2017-09-25 | 2019-02-15 | 王仁锋 | 一种多尺寸齿轮安装传动机构 |
CN109751386B (zh) * | 2019-02-14 | 2021-09-21 | 重庆模源齿轮有限公司 | 一种反渐开线齿轮传动啮合的设计计算方法 |
CN109751395A (zh) * | 2019-03-04 | 2019-05-14 | 中车北京南口机械有限公司 | 齿轮及齿轮箱,以及具有该齿轮箱的城轨车辆 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2109584A1 (de) * | 1971-03-01 | 1972-09-14 | Volkswagenwerk Ag, 3180 Wolfsburg | Verfahren zur Änderung der Getriebeübersetzung eines eine Zahnstange und ein Ritzel mit Evolventenverzahnung enthaltenden Getriebes |
JP2008032161A (ja) * | 2006-07-31 | 2008-02-14 | Jtekt Corp | 円錐インボリュート歯車及び歯車対 |
CN103742625A (zh) * | 2013-12-31 | 2014-04-23 | 南车戚墅堰机车车辆工艺研究所有限公司 | 一种渐开线齿轮 |
CN104235308A (zh) * | 2013-06-14 | 2014-12-24 | 恩普乐斯股份有限公司 | 齿轮 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6571655B2 (en) * | 2001-07-26 | 2003-06-03 | Juken Kogyo Co., Ltd. | Involute gear pair structure |
-
2015
- 2015-08-31 CN CN201510547721.9A patent/CN105114597B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2109584A1 (de) * | 1971-03-01 | 1972-09-14 | Volkswagenwerk Ag, 3180 Wolfsburg | Verfahren zur Änderung der Getriebeübersetzung eines eine Zahnstange und ein Ritzel mit Evolventenverzahnung enthaltenden Getriebes |
JP2008032161A (ja) * | 2006-07-31 | 2008-02-14 | Jtekt Corp | 円錐インボリュート歯車及び歯車対 |
CN104235308A (zh) * | 2013-06-14 | 2014-12-24 | 恩普乐斯股份有限公司 | 齿轮 |
CN103742625A (zh) * | 2013-12-31 | 2014-04-23 | 南车戚墅堰机车车辆工艺研究所有限公司 | 一种渐开线齿轮 |
Also Published As
Publication number | Publication date |
---|---|
CN105114597A (zh) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105134910B (zh) | 同向渐开线齿轮副啮合传动装置 | |
CN105127521B (zh) | 一种用于加工双渐开线齿轮的滚刀及加工方法 | |
CN105114597B (zh) | 单大负变位渐开线齿轮传动装置 | |
CN109751386A (zh) | 一种反渐开线齿轮传动啮合的设计计算方法 | |
CN101868656B (zh) | 齿轮的齿部 | |
CN105156636B (zh) | 双渐开线齿轮 | |
CN105179600B (zh) | 双大负变位渐开线齿轮传动装置 | |
JP2001519013A (ja) | 歯車形状構成 | |
CN110081148B (zh) | 一种基于共轭曲线的凸-凸接触的对构齿轮 | |
CN106641183A (zh) | 谐波传动齿条近似齿廓设计方法 | |
CN102374273A (zh) | 一种双压力角渐开线斜齿外啮合圆柱齿轮的齿形设计 | |
CN111322373B (zh) | 一种基于羊角螺旋线齿条刀的齿轮副设计方法 | |
JP2019108958A (ja) | スパイラル歯形歯車の構造 | |
CN110039123B (zh) | 一种变压力角滚刀加工倒锥齿的方法 | |
Vullo et al. | Gears: General Concepts, Definitions and Some Basic Quantities | |
CN104019034A (zh) | 一种螺杆真空泵的螺杆组件 | |
US20230062242A1 (en) | Procedure and System for Profile Generation | |
CN111291310A (zh) | 一种考虑齿面摩擦内啮合斜齿轮副啮合效率的计算方法 | |
EP1260736B1 (en) | Hypoid gear design method | |
CN108351013B (zh) | 包括第一齿轮和第二齿轮的减速器 | |
CN109933853A (zh) | 一种用于齿轮的反渐开线获取方法 | |
CN107255153A (zh) | 一种提高渐开线圆柱齿轮胶合承载能力的齿顶修缘方法 | |
CN211624096U (zh) | 一种尼曼齿形蜗轮蜗杆用于回转支撑减速机 | |
CN113536472A (zh) | 一种基于齿廓法线法计算齿轮渐开线起始点的方法 | |
CN1143165A (zh) | 一种高效螺旋压缩机(泵)的螺杆齿廓曲线及其加工刀具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20191223 Address after: 401420 Chunguang village, Qijiang District, Qihe District, Chongqing Patentee after: Qijiang Changfeng Forging Co.,Ltd. Address before: 401420, Chongqing Road, Qijiang District, Wen long road, 89, attached to No. 34 Patentee before: CHONGQING BAIHUAYUAN GEAR TRANSMISSION TECHNOLOGY RESEARCH INSTITUTE |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170915 Termination date: 20210831 |