CN105102627B - 用于检测样品中多种预定化合物的方法 - Google Patents

用于检测样品中多种预定化合物的方法 Download PDF

Info

Publication number
CN105102627B
CN105102627B CN201480015937.4A CN201480015937A CN105102627B CN 105102627 B CN105102627 B CN 105102627B CN 201480015937 A CN201480015937 A CN 201480015937A CN 105102627 B CN105102627 B CN 105102627B
Authority
CN
China
Prior art keywords
label
nano
pore
compound
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480015937.4A
Other languages
English (en)
Other versions
CN105102627A (zh
Inventor
静月·居
希尔·库玛尔
传娟·陶
谢尔盖·卡拉奇科夫
詹姆斯·J·拉索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University of New York
Original Assignee
Columbia University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University of New York filed Critical Columbia University of New York
Publication of CN105102627A publication Critical patent/CN105102627A/zh
Application granted granted Critical
Publication of CN105102627B publication Critical patent/CN105102627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6818Sequencing of polypeptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment

Abstract

本发明提供了用于使用多种标签部分和至少一种纳米孔检测样品中多种预定的化合物的存在的方法。本发明还提供了用于使用多种标签部分和至少一种纳米孔确定样品中多种预定的化合物的每一种的量方法。本发明还提供了用于使用至少一种标签部分和至少一种纳米孔检测至少两种预定化合物的相互作用的方法。

Description

用于检测样品中多种预定化合物的方法
遍及该申请中,引用了一些专利和公开文件,后者通过作者和出版年份来引用。可立即发现,所有这些公开文件都在权利要求之前。这些专利和公开文件的公开内容通过引用以其整体并入本申请中,以更详细地描述本发明相关领域的现有技术。
技术领域
本发明提供了用于使用多种标签部分和至少一种纳米孔检测样品中多种预定的化合物的存在的方法。本发明还提供了用于使用多种标签部分和至少一种纳米孔确定样品中多种预定的化合物的每一种的量方法。本发明还提供了用于使用标签部分和至少一种纳米孔检测至少两种预定的化合物的相互作用的方法。
背景技术
使用抗体、受体或其他结合伴侣检测蛋白质的典型免疫学方法包括酶联免疫吸附(ELISA)测定(一般以抗体三明治法的形式)、放射免疫测定和免疫印迹法[Burnette 1981,Engvall等1971和Yalow等1960]等,使用等价的生物化学方法用于蛋白质-受体反应和蛋白质-配体反应。这些方法中的多数依靠一次检查一种蛋白质。此外,蛋白质标靶通常必须以大量和相对较高的浓度存在,以确保可靠的可检测信号。
试图同时检查许多不同蛋白质的方法始现于1975年,但是在最近15年大量出现。这些方法包括2-D凝胶电泳、具有中间体蛋白切割的串联质谱(MS-2或MS-3)系统、同位素编码的亲和标签(ICAT)-MS、MudPIT(LC-2/MS-2),以及这些方法的组合[Guerrera等2005、Gygi等1999、Klose 1975和O'Farrell 1975]。例如,在ICAT法中,用包含氢或氘的标签标记来自不同组织的蛋白质,并通过质谱观察差异化的图式。虽然这些方法中的许多允许同时对多个样品进行比较,但是由于相关技术例如质谱分析的成本,这些方法中的许多尚未被发现一般实用性。
相对较近加入谱学的成员蛋白质阵列允许荧光标记的蛋白质结合许多点,每个点包含共价附接至针对特定蛋白质(抗原)的抗体,这是一种引人注意的解决方案,因为它们可进行大量生产,并且可进行数据分析标准化[Angenendt2005,Bussow等1998,Cahill2001,de Wildt等2000]。在受到可在固相上发挥功能的可用的特定抗体的数量的限制的同时,该方法的一个更重要的缺点是抗体的相对结合能力。与其中可选择使它们对mRNA标靶的结合亲和力十分均匀的探针的基因表达微阵列上的DNA探针不同,不同抗体可能以非常不同的亲和力结合它们的荧光标记抗原。因为该可变的亲和力,从点到点(抗原到抗原)的定量变得困难,尤其当与荧光信号可能超出检测的线性范围的可能性组合时,情况更是如此。例如,将见不到样品中低拷贝数的蛋白质,除非它们的结合强于芯片上其他地方的平均抗原-抗体相互作用,在这种情况下,它们将被过度显示。此外,有效浓度范围将具有与微阵列上的其他荧光方法相同的下限和上限,并且使用蛋白质阵列将难以鉴别蛋白质水平的小变化。荧光标记的另一个常见问题是存在发射谱的重叠,这限制了可应用于阵列的差异化标记的样品的数量。
总之,蛋白质合成水平的基因调控分析,例如一般的蛋白质组学,在其通量、灵敏度和自动化方面落后于核酸分析。这是由蛋白质的相对较差的稳定性、它们的高度异质性以及宽得多的检测动力范围以及对接近单分子检测水平的升高的灵敏度要求所致,荧光测量或比色度测量不容易满足该需要。虽然基于抗体与荧光标记的抗原或二抗的相互作用的蛋白质阵列在过去十年取得了一定的流行性,但是该方法的一些缺点,包括荧光发射中的荧光饱和和重叠,使得难以进行精确定量。虽然目前存在一些纳米孔基分析的应用例子,但是没有现有技术允许对具有多种标签的蛋白质-蛋白质相互作用的定量。
发明内容
本发明提供了一种用于检测样品中多种预定化合物的存在的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合至所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分,从而检测所述样品中的所述多种预定化合物的存在。
本发明提供了一种用于检测样品中多种预定化合物的存在的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合至所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具,并且其中所述结合的具有可检测标签的预定化合物的每种所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔检测每种所述标签部分的所述至少一种可检测组分,从而检测所述样品中的所述多种预定化合物的存在。
本发明还提供了一种用于确定样品中多种预定化合物中的每一种的量的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合至所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分的量;以及
(f)从在步骤(e)中确定的所述可检测组分的量确定存在于所述样品中的所述多种预定化合物中的每一种的量。
本发明还提供了一种用于确定样品中多种预定化合物中的每一种的量的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合至所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具,并且其中所述结合的可检测标签的预定化合物的每种所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔确定每种所述标签部分的所述至少一种可检测组分的量;以及
(e)从在步骤(d)中确定的所述可检测组分的量确定存在于所述样品中的所述多种预定化合物中的每一种的量。
本发明还提供了一种用于检测至少两种预定化合物的相互作用的方法,其包括:
(a)使存在于样品中的至少第一预定化合物在允许所述标签部分附接至所述样品中存在的所述预定化合物以形成可检测标签的预定化合物的条件下与可检测标签部分接触,其中所述可检测标签部分包含至少一种可检测组分;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在允许所述具有可检测标签的预定化合物与所述第二预定化合物结合的条件下与至少一种纳米孔接触,其中将至少第二预定化合物固定于所述至少一种纳米孔上;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的所述标签部分的所述至少一种可检测组分,从而检测所述预定化合物的相互作用。
本发明甚至还提供了一种用于检测至少两种预定化合物的相互作用的方法,其包括:
(a)使存在于样品中的至少第一预定化合物在允许所述标签部分附接至所述样品中存在的所述预定化合物以形成可检测标签的预定化合物的条件下与可检测标签部分接触,其中所述可检测标签部分包含至少一种可检测组分;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在允许所述具有可检测标签的预定化合物与所述第二预定化合物结合的条件下与至少一种纳米孔接触,其中将至少第二预定化合物固定于所述至少一种纳米孔上,并且其中与所述第二预定化合物结合的所述具有可检测标签的预定化合物的所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔检测所述标签部分的所述至少一种可检测组分,从而检测所述预定化合物的相互作用。
本发明甚至还提供了一种用于检测多种样品中的多种预定化合物的存在的方法,其包括:
(a)使每种样品在对于该样品允许所述标签部分附接至存在于所述样品中的所述多种预定化合物以形成可检测标签的预定化合物的条件下与纳米孔-可检测的标签部分接触,所述具有可检测标签的预定化合物可与附接至来自任何其他样品的相似的预定化合物的任何纳米孔-可检测标签部分相区别;
(b)混合由步骤(a)所得的来自多种样品的最终的具有标签的化合物,并以形成包含具有可检测并且可区别的标签的预定化合物的组的电解质溶液的方式来处理这些化合物;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于特定的分析物部分结合所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分,从而检测所述多种样品中的所述多种预定化合物的存在。
附图说明
图1.通过使用纳米孔和可切割标签检测蛋白质-蛋白质相互作用进行多重定量的蛋白质样品分析。(A)分析物由经可切割接头缀合报告子标签(reporter tag)的蛋白质(例如,抗原、抗体、蛋白A或其他分子)组成。(B)使用α-溶血素纳米孔检测具有标签的蛋白质。(1)将由不同标签标记的两种蛋白质样品的混合物添加至包含纳米孔的芯片;(2)所述分析物蛋白质通过与结合的一抗、受体等蛋白质-蛋白质相互作用被捕获于α-溶血素纳米孔附接的顺侧;(3)在蛋白质结合和洗涤后,根据可切割接头的性质从蛋白质切离标签;以电泳的方式将经切割的标签驱动通过孔,以产生特有的电流阻断信号,分析所述信号以定量和定性地分析蛋白质存在。
图2.与29-乙二醇单元的PEG聚合物(蓝色)相比,PEG低聚物的多分散性混合物在它们通过单个纳米孔期间的导电性签名与PEG低聚物(红色)的多分散混合物的质量分布之间的相关性。导电性基质谱清楚地解析30至50个单体单元范围内的PEG重复单元[Robertson等2007]。
图3.用于蛋白质标记的化学可切割接头的合成。虚线表示用TCEP处理的切割位点。
图4.用于使用以硝基苄基为基础的接头作为起始材料来进行蛋白质标记的光化学可切割接头的合成。虚线表示用TCEP处理的切割位点。
图5.不同尺寸的单分散性香豆素-PEG衍生物。
图6.单分子水平的α-溶血素纳米孔中的不同尺寸的香豆素-PEG标签的混合物的辨别。左:时间序列数据表示,当PEG标签进入单α-溶血素通道时,它们引起电流阻断,成为它们持续时间和振幅的特性。右:由单个的分子引起的并且表示为电流阻断与开放通道的比率平均电流阻断的频率柱状图,其示出了使用10kHz测量带宽的基线分辨率。顶部的有颜色的杠表示数据的6σ分布,其提示可以比300,000分之一更好的精确率来区分单标签[Kumar等2012]。
图7.使用纳米孔对有标签的化合物的相互作用(抗体和抗原相互作用被用作实施例)的检测。(A)分析物由缀合了报告子标签的靶蛋白质(例如,抗原、抗体、蛋白A或其他分子)组成。有标签的分析物与固定于纳米孔顶上的抗体结合,已经被设计成带有正电荷的该标签将进入纳米孔,引起特有的电流阻断,这可用于鉴定靶分子。(B)分析物由通过可切割接头缀合报告子标签的靶蛋白质(例如,抗原、抗体、蛋白A或其他分子)组成。有标签的分析物与固定于纳米孔顶上的抗体结合,在切割接头后,已经被设计成带有正电荷的该标签将通过纳米孔,引起特有的电流阻断,这可用于鉴定靶分子。
具体实施方式
本发明提供了一种用于检测样品中多种预定化合物的存在的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分,从而检测所述样品中的所述多种预定化合物的存在。
本发明还提供了一种用于检测样品中多种预定化合物的存在的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具,并且其中所述结合的具有可检测标签的预定化合物的每种所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔检测每种所述标签部分的所述至少一种可检测组分,从而检测所述样品中的所述多种预定化合物的存在。
本发明还提供了一种用于确定样品中多种预定化合物中的每一种的量的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分的量;以及
(f)从在步骤(e)中确定的所述可检测组分的量确定存在于所述样品中的所述多种预定化合物中的每一种的量。
本发明甚至还提供了一种用于确定样品中多种预定化合物中的每一种的量的方法,其包括:
(a)使所述样品在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具,并且其中所述结合的具有可检测标签的预定化合物的每种所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔确定每种所述标签部分的所述至少一种可检测组分的量;以及
(e)从在步骤(d)中确定的所述可检测组分的量确定存在于所述样品中的所述多种预定化合物中的每一种的量。
在本发明的一个实施方案中,所述方法还包括洗涤步骤,以在步骤(d)之前去除未与所述至少一种纳米孔结合的任何具有可检测标签的预定化合物。
在本发明的一个实施方案中,所于预定化合物是蛋白质。在一个优选实施方案中,所述预定化合物是抗体。在本发明的另一个实施方案中,所述预定化合物是非蛋白质类的。
在本发明的一个实施方案中,所述标签部分包含多于一种可检测组分。设想,每种这样的可检测组分是独立可检测的。
在本发明的另一个实施方案中,所述可检测组分选自由以下组成的组:乙二醇、氨基酸、碳水化合物、肽、染料、荧光化合物、化学发光化合物、单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸、多核苷酸、核苷一磷酸、核苷二磷酸、核苷多磷酸、脂族酸、芳族酸、未经取代的醇或硫醇、经一种或多种卤素取代的醇或硫醇、氰基、硝基、烷基、烯基、炔基和叠氮基。
在某些实施方案中,所述标签部分的所述可检测组分包含大量的乙二醇单元。在另一个实施方案中,所述大量的乙二醇单元包含16个、20个、24个或36个乙二醇单元。
在本文公开的发明的一个实施方案中,所述标签部分经可切割接头附接至所述预定化合物。在本发明的另一些实施方案中,所述可切割接头是光可切割接头或化学可切割接头。
在一个实施方案中,所述光可切割接头是2-硝基苄基接头。在另一个实施方案中,所述化学可切割接头是叠氮基接头。在一个实施方案中,使用UV光来切割所述光可切割接头。美国专利No.6,664,079中公开了用于产生具有可切割帽的和或以可切割的方式连接的分子的方法,其内容通过引用并入本文。
在所要求保护的方法的一个实施方案中,存在于所述样品中的至少一种所述预定化合物是蛋白质,并且至少一种所述标签部分附接至所述蛋白质的羧基末端或氨基末端。
在另一个实施方案中,存在于所述样品中的至少一种所述预定化合物是蛋白质,并且至少一种所述标签部分附接至所述蛋白质的赖氨酸残基、精氨酸残基或半胱氨酸残基。
在本发明的另一个实施方案中,所述纳米孔是生物学纳米孔、经修饰的生物学纳米孔或合成的纳米孔。在某些实施方案中,所述纳米孔是蛋白质类的,特别是α溶血素(α-溶血素)。
在另一个实施方案中,所述纳米孔是固态纳米孔。在一个具体实施方案中的,所述纳米孔包含石墨烯。在某些实施方案中设想,使纳米孔处于膜中。
在本发明的一个实施方案中,所述纳米孔是纳米孔阵列的部分。在某些实施方案中,所述阵列中的每个纳米孔包含用于结合所述具有可检测标签的预定化合物的相同的工具。在另一些实施方案中,所述阵列中的每个纳米孔包含用于结合所述具有可检测标签的预定化合物的不同的工具。
在一个实施方案中,用于结合所述具有可检测标签的预定化合物的工具是蛋白质,特别是抗体。在另一个实施方案中,用于结合所述具有可检测标签的预定化合物的工具是非蛋白质类的。
在本文公开的方法的一个实施方案中,标签部分可基于可用所述至少一种纳米孔检测的所述标签部分的阻断签名来与任何其他标签部分相区别。在某些实施方案中,所述阻断签名是所述至少一种纳米孔处的电流振幅或导电性变化的结果。
在一个实施方案中,所述至少一种纳米孔还包含用于从所述纳米孔喷射所述标签部分的工具。
本发明还提供了一种用于检测至少两种预定化合物的相互作用的方法,其包括:
(a)使存在于样品中的至少第一预定化合物在允许所述标签部分附接至所述样品中存在的所述预定化合物以形成具有可检测标签的预定化合物的条件下与可检测标签部分接触,其中所述可检测标签部分包含至少一种可检测组分;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在允许所述具有可检测标签的预定化合物与所述第二预定化合物结合的条件下与至少一种纳米孔接触,其中将至少第二预定化合物固定于所述至少一种纳米孔上;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的所述标签部分的所述至少一种可检测组分,从而检测所述预定化合物的相互作用。
本发明还提供了一种用于检测至少两种预定化合物的相互作用的方法,其包括:
(a)使存在于样品中的至少第一预定化合物在允许所述标签部分附接至所述样品中存在的所述预定化合物以形成具有可检测标签的预定化合物的条件下与可检测标签部分接触,其中所述可检测标签部分包含至少一种可检测组分;
(b)处理来自步骤(a)的样品,以形成包含所述可具有检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在允许所述具有可检测标签的预定化合物与所述第二预定化合物结合的条件下与至少一种纳米孔接触,其中将至少第二预定化合物固定于所述至少一种纳米孔上,并且其中与所述第二预定化合物结合的所述具有可检测标签的预定化合物的所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔检测所述标签部分的所述至少一种可检测组分,从而检测所述预定化合物的相互作用。
在一个实施方案中,所述方法还包括洗涤步骤,以在步骤(d)之前去除未与所述第二预定化合物结合的任何具有可检测标签的预定化合物。
在本发明的一个实施方案中,至少一种所述预定化合物是蛋白质。在一个具体实施方案中,所述蛋白质是抗体。在本发明的另一个实施方案中,至少一种所述预定化合物是非蛋白质类。
在一个实施方案中,所述标签部分包含多于一种可检测组分。在一个具体实施方案中,每种可检测组分是独立可检测的。
在本发明的一个实施方案中,所述标签部分的每种所述至少一种可检测组分选自由以下组成的组:乙二醇、氨基酸、碳水化合物、肽、染料、荧光化合物、化学发光化合物、单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸、多核苷酸、核苷一磷酸、核苷二磷酸、核苷多磷酸、脂族酸、芳族酸、未经取代的醇或硫醇、经一种或多种卤素取代的醇或巯醇、氰基、硝基、烷基、烯基、炔基和叠氮基。
在本发明的一个实施方案中,所述标签部分的所述至少一种可检测组分包含大量的乙二醇单元。在某些具体实施方案中,所述大量的乙二醇单元包含16个、20个、24个或36个乙二醇单元。
在本发明的一个实施方案中,所述标签部分经可切割接头附接至所述预定化合物。所述可切割接头可为光可切割接头或化学可切割接头。
在一个实施方案中,存在于所述样品中的所述预定化合物是蛋白质,并且所述标签部分附接至所述蛋白质的羧基末端或氨基末端。在另一个实施方案中,存在于所述样品中的所述预定化合物是蛋白质,并且所述标签部分附接至所述蛋白质的赖氨酸残基、精氨酸残基或半胱氨酸残基。
在某些实施方案中,所述至少一种纳米孔是生物学纳米孔、经修饰的生物学纳米孔或合成的纳米孔。在一个具体实施方案中,所述至少一种纳米孔是蛋白质类。在一个优选实施方案中,所述至少一种纳米孔是α溶血素(α-溶血素)。
在另一个实施方案中,所述至少一种纳米孔是固态纳米孔。在另一个实施方案中,所述固态纳米孔包含石墨烯。
在一个实施方案中,所述至少一种纳米孔在膜中。
在另一个实施方案中,所述至少一种纳米孔是纳米孔阵列的部分。在一些实施方案中,所述阵列中的每个纳米孔包含相同的固定的第二预定化合物。在另一些实施方案中,所述阵列中的每个纳米孔包含不同的固定的第二预定化合物。
在一个实施方案中,所述第二预定化合物是蛋白质。在一个具体实施方案中,所述蛋白质是抗体。
在另一个实施方案中,所述第二预定化合物是非蛋白质类的。
在一个实施方案中,所述标签部分产生可用所述至少一种纳米孔检测的阻断签名。在某些实施方案中,所述阻断签名是所述至少一种纳米孔处的电流振幅变化的结果。在某些其他实施方案中,所述阻断签名是所述至少一种纳米孔的导电性变化的结果。
在一个实施方案中,所述样品包含多种预定化合物。在这样的一个实施方案中,步骤(a)还包括使存在于所述样品中的所述多种预定化合物在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别。
在一个实施方案中,所述至少一种纳米孔包含能够与存在于所述样品中的所述多种具有可检测标签的预定化合物结合的多种预定化合物。
在一个实施方案中,所述至少一种纳米孔还包含用于从所述纳米孔喷射所述标签部分的工具。在一个具体实施方案中,用于从所述纳米孔喷射所述标签部分的工具由调节所述纳米孔的电场的工具组成。
本发明还提供了在本文公开的方法中使用的可检测标签部分,其包含蛋白质反应基、至少一种可检测组分以及连接所述蛋白质反应基团和所述至少一种可检测组分的接头。
在一个实施方案中,所述接头是可切割接头。所述可切割接头可为光可切割接头或化学可切割接头。
本发明还提供了一种用于检测多种样品中的多种预定化合物的存在的方法,其包括:
(a)使每种样品在对于该样品允许所述标签部分附接至存在于所述样品中的所述多种预定化合物以形成具有可检测标签的预定化合物的条件下与纳米孔-可检测的标签部分接触,所述具有可检测标签的预定化合物可与附接至来自任何其他样品的相似的预定化合物的任何纳米孔-可检测标签部分相区别;
(b)混合由步骤(a)所得的来自多种样品的最终的具有标签的化合物,并以形成包含具有可检测并且可区别的标签的预定化合物的组的电解质溶液的方式来处理这些化合物;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于特定的分析物部分与所述电解质溶液中的每种所述具有可检测标签的预定化合物结合的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分,从而检测所述多种样品中的所述多种预定化合物的存在。
本文描述的每种方法和过程都可使用具有可切割或不可切割标签的化合物来执行。
对于前述的实施方案,本文公开的每个实施方案被设想为可应用于所公开的其他实施方案中的每一个。
如本文所用,并且除非另有说明,否则下面的术语应具有如下记载的定义。
“抗体”应包括但不限于,(a)包含两条重链和两条轻链并且识别抗原的免疫球蛋白分子;(b)多克隆或单克隆免疫球蛋白分子;以及(c)其一价或二价片段。免疫球蛋白分子可衍生自任何公知的种类,包括但不限于IgA、分泌性IgA、IgG、IgE和IgM。IgG亚类对本领域技术人员是公知的,并且包括但不限于人IgG1、IgG2、IgG3和IgG4。抗体既可为天然存在的,也可为非天然存在的。此外,抗体包括嵌合抗体、完整的合成抗体、单链抗体及其片段。抗体可为人抗体或非人抗体。抗体片段包括但不限于Fab片段、Fv片段和其他抗原结合片段。
“纳米孔”包含例如包含以下的结构:(a)由物理屏障分开的第一隔区和第二隔区,所述屏障具有直径为例如约1nm至10nm的直径的至少一种微孔,以及(b)用于施加跨越该屏障的电场,以使带电荷的分子,例如DNA、核苷酸、核苷酸类似物或标签,可从所述第一隔区穿过微孔至所述第二隔区的工具。在理想的情况下,纳米孔还包含用于测量通过其屏障的分子的电子信号的工具。所述纳米屏障可部分地为合成的或部分天然存在的。屏障包括例如,其中具有α-溶血素的脂质双层、低聚蛋白质通道例如孔蛋白以及合成的肽等。屏障还可包括具有一个或多个合适尺寸的洞的无机盘。在本文中,纳米孔屏障中的“纳米孔”、“纳米孔屏障”和“微孔”有时等价使用。应理解,纳米孔的电场可为可调节的。还应理解,带有电荷的分子例如DNA、核苷酸、核苷酸类似物或标签不必为了产生电子信号而从第一隔区穿过微孔至第二隔区。可通过分子在微孔中的定位来产生这样的电子信号。
在以下文献中公开了本领域已知的纳米孔装置和使用它们的纳米孔和方法:美国专利号7,005,264B2;7,846,738;6,617,113;6,746,594;6,673,615;6,627,067;6,464,842;6,362,002;6,267,872;6,015,714;5,795,782;以及美国公开号2004/0121525、2003/0104428和2003/0104428,每篇文献都通过引用以其整体并入本文。
通过施加电场通过微孔的分子的“阻断签名”应包括例如,核苷酸穿过微孔的持续时间,连同在该穿过期间观察到电流振幅。设想了分子的阻断签名,并且所述阻断签名可为例如,该分子通过施加电场而穿过微孔的电流(例如,pA)相对于时间的图。作为另一选择,阻断签名对未穿过微孔的分子也是可确定的。还设想了这样的分子的阻断签名,并且所述阻断签名可为例如,该分子进入或通过相邻微孔的电流(例如,pA)相对于时间的图。本文中,“阻断签名”、“阻断信号”和“电子签名”有时等价使用。
构建了特殊事件图,其为易位时间相对于阻断电流的图。使用该特殊事件图(也称为阻断签名)通过基于例如易位电流、易位持续时间和该图中的它们的相应分散性等特性参数的单通道记录技术来区分分子。
本文所用的“标签”或“标签部分”是能够产生可用纳米孔检测的特有阻断签名的任何化学基团或分子。在一些情况下,标签包含以下中的一种或多种:乙二醇、氨基酸、碳水化合物、肽、染料、荧光化合物、化学发光化合物、单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸、六核苷酸、多核苷酸、核苷一磷酸、核苷二磷酸、核苷多磷酸、脂族酸、芳族酸、未经取代的醇或硫醇、经一种或多种卤素取代的醇或巯醇、氰基、硝基、烷基、烯基、炔基、叠氮基或其组合。
除非另有说明,否则本文所用的与参照分子的标签部分不同或可从参照分子的标签部分区分开来的标签部分意味着,该标签部分具有与其他/参照标签部分的化学结构不同的化学结构。与参照分子的标签部分不同或可从参照分子的标签部分区分开来的标签部分还可意味着,该标签部分具有与其他/参照标签部分的阻断签名不同的阻断签名。
如本文所用,“定位于”孔内的标签是定位于该孔内侧或该孔旁边的标签。定位于孔内的标签不必穿过孔或使孔易位。
本文所用的“蛋白质类”化合物是指由氨基酸形成的任何生物聚合物,例如,肽、蛋白质、抗体、抗原或其片段或部分。这样的化合物可为天然存在的或非天然存在的。
本文所用的“烷基”包括具有分枝的或直链的具有规定的碳原子数的饱和脂族烃基团,并且可为未经取代的或经取代的。因此,如在“C1-Cn烷基”中的C1-Cn包括在直链布置或有分枝布置中具有1,2……,n-1或n个碳原子的基团。例如,“C1-C5烷基”包括在直链布置或有分枝布置中具有1、2、3、4或5个碳原子的基团,并且具体包括甲基、乙基、正丙基、异丙基、正丁基、叔丁基和戊基。
本文所用的“烯基”是指直链或有分枝的包含至少一个碳-碳双键的非芳族烃基团,并且可存在多至最大可能的非芳族碳-碳双键数,并且可为未经取代的或经取代的。例如,“C2-C5烯基”意为具有2、3、4或5个碳原子,并且分别具有多至1、2、3或4个碳-碳双键的烯基。烯基包括乙烯基、丙烯基和丁烯基。
术语“炔基”是指直链或有分枝的包含至少一个碳-碳三键的烃基团,并且可存在多至最大可能的非芳族碳-碳三键数,并且可为未经取代的或经取代的。因此,“C2-C5炔基”意为具有2或3个碳原子以及1个碳-碳三键的炔基,或具有4或5个碳原子以及多至2个碳-碳三键的炔基。炔基包括乙炔基、丙炔基和丁炔基。
术语“经取代”是指如上文描述的官能团,例如烷基或烃基,其中至少一个与其中包含的氢原子的键被非氢原子或非碳原子取代,只要维持正常的价态并且该取代导致稳定的化合物即可。经取代的基团还包括其中一个或多个与碳原子的键或氢原子的键被一个或多个与杂原子的键包括双键或三键取代的基团。取代基的非限制性例子包括上文描述的官能团,并且例如N,例如以形成-CN。
应理解,本领域技术人员可选择本发明的化合物上的取代基和取代模式,以提供化学稳定的并且可通过本领域已知技术以及下文记载的这方法,从容易得到的起始材料容易地合成的化合物。如果取代基本身是经多于一个基团取代的,应理解,这些多种基团可处于相同的碳或不同的碳上,只要得到稳定的结构结果即可。
在选择本发明的化合物的过程中,本领域技术人员将意识到,应按照公知的化学结构连接性原理来选择多种取代基,即,R1、R2等。
在本文描绘的化合物结构中,除非在核糖或脱氧核糖上,否则一般不示出氢原子。但是,应理解,所表示的碳原子上存在足够的氢原子以满足八隅体规则。
在提供值的范围的情况下,除非上下文清楚地另有说明,否则应理解,除非上下文另有清楚地说明,否则本发明涵盖了该范围的上限与下限之间的值的每个中间整数,以及值的每个中间整数的每十分之一,以及所陈述的范围中的任何其他所陈述的值或中间值。较小的范围中可独立地包括这些较小范围的上限和下限,并且这些上限和下限将涵盖于本发明内,受到所陈述范围中的任何具体排除的限制。在所陈述的范围包括一个或两个该限制的情况下,本发明中还包括排除(i)所包括的限制之一或(ii)这二者的范围。
本文描述的多种元件的所有组合都落在本发明的范围内。本文描述的多种元件的所有子组合也都落在本发明的范围内。
通过参照接下来的实验细节,本发明将得到更好的理解,但是本领域技术人员应容易地领会,所详述的具体实验仅仅是对本发明的举例说明,在所附的权利要求书中将更全面地描述本发明。
实验细节和讨论
基于最近在开发纳米孔基DNA测序的工作上的成功,开发了使用具有不同长度的可切割PEG分子的标签的蛋白质和纳米孔检测的多重数字蛋白检测和定量技术。在该方法中,将特定的抗体共价附接至纳米孔旁边。用各自产生α-溶血素纳米孔孔的不同电流阻断信号的可切割标签来标记来自不同样品的蛋白质分析物。在抗体捕获具有标签的蛋白质样品后,将标签切离蛋白质,并当它们穿过纳米孔时在单分子水平下进行鉴定。
I.可切割蛋白质标记性标签的设计和合成
以前已经开发出来用于单分子测序并且当穿过纳米孔时显示出生成特有的电流阻断签名的一组经修饰的聚(乙二醇)(PEG)标签。开发了这些标签的合成衍生物,其能够高效地通过光可切割接头或化学地可切割接头与蛋白质或抗体缀合,以使得能够在纳米孔中进行后续鉴定。
图1A中示出了可切割标签结构的设计,并且其由三种不同组分组成:蛋白质反应性基团、可切割接头和纳米孔标签。该设计基于对不同分子尺寸的PEG分子穿过α-溶血素纳米孔的研究[Robertson等2007]以及在设计用于通过合成来进行DNA测序的具有携带荧光标签的可逆终止子的可切割接头的经验[Guo等2008和Seo等2005]。Robertson等展示,多分散性PEG分子穿过金黄色葡萄球菌(Staphylococcus aureus)α溶血素纳米孔引起不同的电流阻断状态,其生成单分子水平的与单个的PEG分子的分子量相关的特性导电性签名(图2)。除了导电性外,纳米孔内的滞留时间随着PEG分子量线性升高[Robertson等2007]。这两种特性都可用于设计用于如下文所示的蛋白质标记的可识别标签。
图1B中示出了用于使用α-溶血素纳米孔的检测具有标签的蛋白质的方法方案。在该方案中,将不同标签标记的两种蛋白质样品混合物添加至包含纳米孔的芯片;通过与结合的一抗或受体的蛋白-蛋白相互作用,所述分析物蛋白质被捕获于α-溶血素纳米孔旁边的顺侧上;在蛋白质结合并洗涤后,根据可切割接头的性质将标签切离蛋白质;以电泳的方式将经切割的标签驱动通过孔,以产生特有的电流阻断信号,分析所述信号以定量和定性地确定蛋白质存在。给定的标签穿过纳米孔引起特性振幅和持续时间的电流阻断签名,从而导致标签识别和定量。因为每次阻断时间在毫秒内发生,所以可在短时间内分析数以万计的标签,它们的计数提供了对样品中的分析物的相对丰度的单分子水平的数字量度。
存在一些可用于使蛋白与纳米孔标签缀合的化学转化。除了蛋白质的C-末端或N-末端,其他修饰位点包括赖氨酸和精氨酸,其可通过用NHS酯或异硫氰酸酯的处理来修饰,以及用马来酰亚胺或α-卤素-羰基化合物修饰的半胱氨酸巯基。
在这种情况下,用可切割接头附接的PEG分子修饰赖氨酸上的氨基或半胱氨酸的巯基。因为大多数蛋白质具有一些赖氨酸,但是未反应的半胱氨酸相对较少,所以可针对标记密度的范围来优化条件。所述接头可为化学或光化学可切割的接头,所述接头将与蛋白质上的赖氨酸或半胱氨酸反应并分别在用三(2-羧基乙基)膦(TCEP)或用350nm处的光切割后释放PEG分子;通过纳米孔上的电流阻断信号来鉴定释放的PEG分子。
a)化学地可切割接头
图3中示出了合成化学可切割接头的一个例子。使叠氮基-接头(1)[Guo等2008]与合适尺寸的PEG-NHS酯(2)反应,以提供叠氮基-可切割接头-PEG分子(3)。用DSC/DMF活化(3)中的酸根,以提供PEG-可切割接头-NHS酯(4),后者与蛋白质中的赖氨酸氨基反应,以提供与(7)相似的经标记的蛋白质。
作为另一选择,可用官能团(马来酰亚胺或碘乙酰胺)衍生化合物(4),所述官能团高效地与半胱氨酸上的巯基反应。因此,化合物(4)与氨基-马来酰亚胺或碘乙酰胺-乙胺反应分别得到化合物(5)和(6)。这些化合物与半胱氨酸巯基反应分别提供了与结构(8)和(9)相似的经标记的蛋白质。在用TCEP处理后,叠氮基连接的PEG-蛋白分子切割以释放结构(10)的PEG分子,后者穿过纳米孔,并产生最终电流阻断信号。
b)光化学可切割接头
可使用与化学可切割接头的合成相似的方法来合成光化学可切割接头,不同之处在于使用基于硝基苄基的接头(11)[Seo等2005]作为起始材料,如图4所示。剩下的合成方案与化学可切割接头的合成方案相似,并且提供了光化学可切割接头(13)至(15)。在标记蛋白质上的赖氨酸或半胱氨酸并进行光化学切割后,这些接头提供了与结构(16)相似的PEG-接头。
II.针对耦接、切割和纳米孔区分的测试标签
将标签附接至链霉亲和素或兔IgG抗体的Fc部分使得能够在后续分析中使用生物素或抗兔抗体作为捕获剂。使用凝胶迁移测定来确认标签的附接和切割。评价所合成的不同的分子标签的定量附接至蛋白质样品以及允许以高效率进行后续切割以在纳米孔中捕获签名的能力。基于这些实验结果,针对标记和检测来选择最佳的标签-接头结构,或者如果必要的话,重设计以该进其性能。
特别地,测试通过不同可切割接头与蛋白反应性基团耦接的多种长度PEG标签在耦接和切割中的性能效率,以及对纳米孔中它们的电流阻断信号的辨别。这些实验的目的是选择具有对分析物蛋白质化学高效的耦接和切割并且与纳米孔环境和电子检测化学相容的最优标签。
为了测试蛋白质-蛋白质相互作用、标签切割和纳米孔检测,使用市售的链霉亲和素(Life Technologies)和多克隆兔IgG(Thermo Fisher Scientific)作为蛋白质分析物。从这些研究中排除任何特定的抗原简化了该分析。相反,通过使用具有一抗和二抗相互作用的高标准化的反应,此处发现的条件可直接适用于完整的抗原-抗体三明治法。
使用标准NHS化学将PEG标签附接至分析物蛋白质的赖氨酸上的氨基,并使用蛋白质凝胶迁移测定来确定最优的缀合条件。使用由香豆素衍生的PEG标签发现蛋白质标记范围允许350nm处的分光光度检测,在350nm处蛋白质的吸光度低。已经成功地合成了一些香豆素-PEG衍生物化合物,用于纳米孔阻断评价(图5)。
以相似的方法确定切割反应条件。用TCEP处理,或者在光可切割标签的情况下,用近UV光(λ~365nm)辐照标签标记的蛋白质(链霉亲和素或兔IgG)。通过蛋白质凝胶迁移和分光光度测量评价切割完成。
为了评价用纳米孔对经切割的标签的辨别,将具有标签的蛋白质捕获于固相生物素涂覆的96孔板(Thermo Fisher Scientific)上用于具有PEG标签的链霉亲和素;并且捕获于固相山羊抗兔多克隆抗体涂覆的96孔板(Thermo Fisher Scientific)上用于具有PEG标签的兔IgG。然后,诱导标签释放,并使用单独α-溶血素纳米孔膜片夹电极组合件,通过将膜片夹直接浸渍于所述板的孔中,以单分子水平大量计数所释放的标签。
图6中示出了对16、20、24和36个单体单元的尺寸的四种香豆素-PEG衍生物的辨别,这些PEG低聚物的混合物穿过单一的纳米孔产生8秒第二电流痕迹。左侧示出的时间序列数据表示当PEG标签进入单α-溶血素通道时,它们引起电流阻断,成为它们持续时间和振幅的特性。在右侧,由单个的分子引起的并且表示为电流阻断与开放通道的比率平均电流阻断的频率柱状图显示基线分辨率具有10kHz测量带宽。顶部的有颜色的杠表示数据的6σ分布,其提示可以用比300,000分之一(1in 300,000events)更好的精确率来区分单标签。
如对阻断信号的分析所示,数据示出了在6σ置信区间内优异地辨别所选择的PEG标签,并且还示出对所释放的标签的定量分析的速度和精确性。特别地,在24和36个乙二醇单元的尺寸的PEG之前存在显著的间隔。基于该结果,我们可选择不同长度的PEG(可由Quanta Biodesign Ltd.或其他供应商市售),并且对该分子尺寸范围内的额外标签,监测它们的纳米孔阻断信号,所述额外标签保持相似的辨别水平。
还值得注意的是,由于纳米孔的高选择性,明显较低的预期噪音源自无标签分子穿过纳米孔。大部分聚合物,包括蛋白质,不能进入孔,并且较小的分子基本不产生可检测的孔阻断。因此,合理的可切割接头的化学设计以及合适的PEG聚合物的选择产生一系列适于使用纳米孔辨别多重样品的最优标签。
III.使用纳米孔对以不同标签标记的蛋白质样品的多重定量
使用产生不同纳米孔信号的PEG标签文库来测试通过使用配体或抗体捕获以不同标签标记的蛋白质样品来进行的多重定量方案。还确定了纳米孔检测方法的灵敏度和动态范围,并与荧光检测和比色度检测相比较。
通过在进行一些变化、处理或扰动之前、期间或之后将产生不同纳米孔信号的这样的标签文库结合到衍生自不同样品、不同个体或者不同样品或个体的相同蛋白质上完成样品的多重化。再次,关于蛋白质多重化,可确定灵敏度和动态范围,并与荧光法和比色法相比较。
这些实验涉及选择一系列良好辨别的标签,将所述标签附接至链霉亲和素(SA)或兔抗体,以不同比率混合具有标签的蛋白质,以及制备混合物的系列稀释液。还将纳米孔标签与SA-碱性磷酸酶(Thermo Fisher Scientific)、SA-AlexaFluor 488(LifeTechnologies),或在抗体反应的情况下,与类似标记的兔IgG抗体(得自Thermo FischerScientific)混合。
将生物素或抗兔IgG抗体附接至96孔板的孔,以进行结合和收集用于在纳米孔中检测的切割的标签。在使用适当涂覆的96孔板进行分析物捕获并诱导标签切割后,使用膜片夹技术以单个纳米孔进行标签定量,并且在使用荧光检测或比色检测在相同的孔中进行定量。
纳米孔反侧上的标签计数与顺侧上的预定比例的比较使得能够评价使用该纳米孔的浓度估计,在存在不同标签的情况下估计该方法的动态和定量(不含泊松噪音)范围,以及直接比较它们与其他基于非纳米孔的方法的灵敏度和性能,其还充当用于分析物捕获的内部对照。
以预期比率检测具有不同标签的蛋白质混合物。与不同抗原之间的氨基酸组合物变化相关的标签标记效率的差异不构成定量的障碍,因为可从它们的氨基酸序列(通过实验验证)推断与每种抗原类型的耦接的标签数的差异,并在下游分析中进行校正。
IV.分子相互作用的检测
图7示出了以纳米孔和标签使用抗体和抗原相互作用作为例子的分子相互作用的检测。如图7(A)所示,分析物由缀合了报告子标签的靶蛋白质(例如,抗原、抗体、蛋白A或其他分子)组成。当具有标签的分析物与固定于纳米孔顶上的抗体结合时,已经被设计成带有正电荷的该标签将进入纳米孔,引起特有的电流阻断,这可用于鉴定靶分子。如图7(B)所示,分析物还可由通过可切割接头缀合报告子标签的靶蛋白质(例如,抗原、抗体、蛋白A或其他分子)组成。当具有标签的分析物与固定于纳米孔顶上的抗体结合时,在切割接头后,已经被设计成带有正电荷的该标签将通过纳米孔,引起特有的电流阻断,这可用于鉴定靶分子。
讨论
在过去十年期间,大规模并行的核酸测序和定量方法的爆炸式发展以及相关成本的降低已经变革了突变和多态性检测、基因表达的转录调控以及许多其他基因组规模研究。事实上,这些技术的高通量性质已经在功能基因组学和系统生物学中创造了全新的规则。然而,蛋白质合成水平的基因调控分析,例如一般的蛋白质组学,在其通量、灵敏度和自动化方面落后于核酸分析。在开发高通量蛋白质组学中的主要难题有:作为分析物的蛋白质的相对较差的稳定性、蛋白质分析物的高异质性以及宽得多的检测动态范围以及对接近单分子检测水平的升高的灵敏度要求。使用荧光测量或比色测量的现有技术不容易满足这些需要。
基于最近在开发基于纳米孔的DNA测序的工作上的成功,开发了使用具有PEG标签的蛋白质和纳米孔阵列检测的用于多重数字蛋白质检测和定量的技术。在该方法的一个例子中,将特定的抗体共价附接至纳米孔旁边。用产生α-溶血素纳米孔孔的不同电流阻断信号的可切割标签来标记来自不同样品的分析物蛋白质。在抗体捕获具有标签的蛋白质样品后,将标签切离蛋白质,并当它们穿过纳米孔时在单分子水平下进行电子鉴定。该方法的优点是生成以单分子检测能力针对蛋白质定量的数字输出;通过设置任意检测上限,该技术允许表征蛋白质浓度的宽范围或辨别蛋白质水平的非常小的变化。因此,该技术具有比得上当前最先进的单分子基因组方法的扩大性和缩小性。基于可切割分子标签的纳米孔检测技术克服了现有的蛋白质阵列法(protein arrays approach)的缺陷,后者基于抗体与荧光标记的抗原或二抗的相互作用。虽然当前存在一些基于纳米孔的分析的应用,但是纳米孔用于对具有多重标签的蛋白质-蛋白质相互作用进行定量是创新性的。
这些实验阐明了该蛋白质检测方法的重要参数,估计了该方法的灵敏度,并定义了使用可切割分子标签文库和单一α-溶血素纳米孔的操作条件。该检测系统使用链霉亲和素-生物素系统以及三明治抗体检测方案,其中,使一抗附接至表面,并且使可切割的聚(乙二醇)(PEG)标签附接至抗原(或附接至二抗,用于更高效的多纳米孔阵列)。将以该方法得到的结果与以荧光检测和比色检测得到的ELISA结果进行比较。
基于现有方法,使用用于DNA测序的纳米孔和可切割标签所开发,该蛋白质检测方法由以下组成:(1)用光可切割标签或化学可切割标签标记蛋白质分析物、抗原或二抗;(2)使所得的分子与纳米孔阵列反应,其中对各蛋白质分析物具有特异性的抗体与特定的单个的纳米孔相关;以及(3)在结合和洗涤后,切割标签并在它们穿过旁边的纳米孔期间对它们进行鉴定。产生不同电流阻断签名的不同标签定义样品来源,同时记录的阻断事件定量穿过纳米孔的各种标签的数量。所有其他测定组分不进入纳米孔和/或在测定步骤之间被洗掉。
三个步骤概括上文:设计可切割标签,捕获具有标签的蛋白质样品以及使用经切割的标签电子鉴定法用纳米孔以单分子分辨率检测,将该分析放到纳米尺度同时允许放大简化的全蛋白组学定量的总通量。
与当前的基于荧光抗体的蛋白质组学阵列相比,该蛋白质检测方法具有显著的优点,并且可形成用于使用基于纳米孔的传感器阵列使用正在开发的便宜并且高度可伸缩的标准化半导体技术来制造具有传统的半导体技术的优点的蛋白质检测传感器的基础。
此外,无论标签的类型是什么,该方法的一个重要方面涉及用具有因标签穿过纳米孔而生成的可区分电流阻断签名的标签来标记不同化合物。这与现有蛋白质检测系统大不相同,在该现有系统中,其中在纳米孔的顺侧上适体结合蛋白质以形成溶解状态的复合物,其中复合物被适体吸引至复合物,并未生成两级阻断电流,第一级由适体进入孔导致,并且第二级由蛋白质阻断但不进入孔导致,并且随后被切割以允许下一个适体进入。在任何定量测量方案中,该现有方法需要测量并对未结合的适体和无适体的蛋白质的电流阻断签名计数。
本方法生成用于具有近单分子每个细胞的检测能力的蛋白质定量的数字输出。通过设置任意检测上限,该技术允许表征蛋白质浓度的宽范围或辨别蛋白质水平(proteinabundance)的非常小的变化。该技术具有比得上当前最先进的单分子基因组方法(例如,直接RNA测序)的扩大性和缩小性。最终,本方法可被适配成使用能够从多重组织以单分子水平快速并且低成本地一次表征成百上千的蛋白质的纳米孔阵列,并且本方法可在这些蛋白质在不同的病理状态下发生变化后进行。
这些实验建立了本方法,并探索了其性能的范围。一旦建立后,本方法即可被用作现有蛋白质微阵列的一种检测方法选择,并且可用于要求较高单分子检测和简化的电子读出的另一些蛋白质组学方法。可使用更可靠和均匀的结合同类物,例如适体或亲和体、针对标记的差异建立实验基校正方法、设计二次检测方法以及更精巧的三明治方案提高灵敏度,从而克服蛋白质组学中固有的超出检测的潜在障碍,例如,标记程度的差异和可变的亲和力。相对于荧光检测和比色检测,本方法具有这样的优点,即,其使用具有数字的标准化的半导体阵列而不是模拟检测输出,从而允许对单分子水平的事件进行计数。事实上,其不受动态范围限制、低成本并且可从对特定蛋白质的手动检测放大至蛋白质组分析。本方法还能够在蛋白质组学水平补充在以下多种分析领域中的高通量DNA和RNA技术的先进性,如:基因表达的翻译调控、免疫应答生物标志物鉴定、蛋白质-蛋白质相互作用谱、由miRNAs的翻译调控和用于病原体检测的非PCR方法。
参考文献
Angenendt P.,“Progress in protein and antibody microarraytechnology”,Drug Discov.Today2005;10(7):503-511.
Burnette WN.“‘Western blotting’:electrophoretic transfer of proteinsfrom sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocelluloseand radiographic detection with antibody and radioiodinated protein A”,Anal.Biochem.1981;112(2):195-203.
Bussow K,Cahill D,Nietfeld W,Bancroft D,Scherzinger E,Lehrach H,Walter G.“A method for global protein expression and antibody screening onhigh-density filters of an arrayed cDNA library”,Nucleic Acids Res.1998;26(21):5007-5008.
Cahill DJ.“Protein and antibody arrays and their medicalapplications”,J.Immunol.Methods,2001;250(1-2):81-91.
de Wildt RM,Mundy CR,Gorick BD,Tomlinson IM.“Antibody arrays forhigh-throughput screening of antibody-antigen interactions”,Nat.Biotechnol.2000;18(9):989-994.
Engvall E,Perlmann P.“Enzyme-linked immunosorbent assay(ELISA),Quantitative assay of immunoglobulin”,G.Immunochemistry 1971;8(9):871-874.
Gygi SP,Rist B,Gerber SA,Turecek F,Gelb MH,Aebersold R.“Quantitativeanalysis of complex protein mixtures using isotope-coded affinity tags”,Nat.Biotechnol.1999;17(10):994-999.
Guerrera IC,Kleiner O.“Application of mass spectrometry inproteomics”,Biosci.Rep.2005;25(1-2):71-93.
Guo J,Xu N,Li Z,Zhang S,Wu J,Kim DH,Sano Marma M,Meng Q,Cao H,Li X,Shi S,Yu L,Kalachikov S,Russo JJ,Turro NJ,Ju J.“Four-color DNA sequencingwith 3'-O-modified nucleotide reversible terminators and chemically cleavablefluorescent dideoxynucleotides”,Proc.Natl.Acad.Sci.USA 2008;105(27):9145-9150
Klose J.“Protein mapping by combined isoelectric focusing andelectrophoresis of mouse tissues:a novel approach to testing for inducedpoint mutations in mammals”,Humangenetik 1975;26(3):231-243.
Kumar S,Tao C,Chien M,Hellner B,Balijepalli A,Robertson JW,Li Z,RussoJJ,Reiner JE,Kasianowicz JJ,Ju J.“PEG-labeled nucleotides and nanoporedetection for single molecule DNA sequencing by synthesis”,Sci.Rep.2012;2:684.
O'Farrell PH.“High resolution two-dimensional electrophoresis ofproteins”,J.Biol.Chem.1975;250(10):4007-4021.
Robertson JW,Rodrigues CG,Stanford VM,Rubinson KA,Krasilnikov OV,Kasianowicz JJ.“Single-molecule mass spectrometry in solution using asolitary nanopore”,Proc.Natl.Acad.Sci.USA 2007;104(20):8207-8211.
Seo TS,Bai X,Kim DH,Meng Q,Shi S,Ruparel H,Li Z,Turro NJ,Ju J.“Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescentnucleotides”,Proc.Natl.Acad.Sci.USA 2005;102(17):5926-5931.
Yalow RS,Berson SA.“Immunoassay of endogenous plasma insulin in man”,J.Clin.Invest.1960;39:1157-1175.

Claims (15)

1.一种用于检测样品中多种预定化合物的存在的方法,其包括:
(a)使所述样品在允许标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合至所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分,从而检测所述样品中的所述多种预定化合物的存在。
2.一种用于检测样品中多种预定化合物的存在的方法,其包括:
(a)使所述样品在允许标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具,并且其中所述结合的具有可检测标签的预定化合物的每种所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔检测每种所述标签部分的所述至少一种可检测组分,从而检测所述样品中的所述多种预定化合物的存在。
3.一种用于确定样品中多种预定化合物中的每一种的量的方法,其包括:
(a)使所述样品在允许标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;
(e)确定当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分的量;以及
(f)从在步骤(e)中确定的所述可检测组分的量确定存在于所述样品中的所述多种预定化合物中的每一种的量。
4.一种用于确定样品中多种预定化合物中的每一种的量的方法,其包括:
(a)使所述样品在允许标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种可检测标签部分包含至少一种可检测组分,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定的化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于结合存在于所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具,并且其中所述结合的具有可检测标签的预定化合物的每种所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔确定每种所述标签部分的所述至少一种可检测组分的量;以及
(e)从在步骤(d)中确定的所述可检测组分的量确定存在于所述样品中的所述多种预定化合物中的每一种的量。
5.一种用于检测至少两种预定化合物的相互作用的方法,其包括:
(a)使存在于样品中的至少第一预定化合物在允许标签部分附接至所述样品中存在的所述预定化合物以形成具有可检测标签的预定化合物的条件下与可检测标签部分接触,其中所述可检测标签部分包含至少一种可检测组分;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在允许所述具有可检测标签的预定化合物与第二预定化合物结合的条件下与至少一种纳米孔接触,其中将至少第二预定化合物固定于所述至少一种纳米孔上;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的所述标签部分的所述至少一种可检测组分,从而检测所述预定化合物的相互作用。
6.一种用于检测至少两种预定化合物的相互作用的方法,其包括:
(a)使存在于样品中的至少第一预定化合物在允许标签部分附接至所述样品中存在的所述预定化合物以形成具有可检测标签的预定化合物的条件下与可检测标签部分接触,其中所述可检测标签部分包含至少一种可检测组分;
(b)处理来自步骤(a)的样品,以形成包含所述具有可检测标签的预定化合物的电解质溶液;
(c)使来自步骤(b)的电解质溶液在允许所述具有可检测标签的预定化合物与第二预定化合物结合的条件下与至少一种纳米孔接触,其中将至少第二预定化合物固定于所述至少一种纳米孔上,并且其中与所述第二预定化合物结合的所述具有可检测标签的预定化合物的所述标签部分定位于所述至少一种纳米孔内;
(d)用所述至少一种纳米孔检测所述标签部分的所述至少一种可检测组分,从而检测所述预定化合物的相互作用。
7.如权利要求5至6中任一项所述的方法,其中所述样品包括多种预定化合物;其中在步骤(a)中使存在于所述样品中的所述多种预定化合物在允许所述标签部分附接至存在于所述样品中的每种所述预定化合物以形成具有可检测标签的预定的化合物的条件下与多种可检测标签部分接触,其中每种标签部分特有地附接至存在于所述样品中的一种所述预定化合物,并且每种标签部分可与附接至存在于所述样品中的任何其他预定化合物的任何标签部分相区别;和/或其中所述至少一种纳米孔包含能够与存在于所述样品中的所述多种具有可检测标签的预定化合物结合的多种预定化合物。
8.如权利要求1至6中任一项所述的方法,其还包括洗涤步骤,以在步骤(d)之前去除未与所述至少一种纳米孔结合的任何具有可检测标签的预定化合物。
9.如权利要求1至6中任一项所述的方法,其中预定化合物是蛋白质;其中预定化合物是抗体;和/或其中预定化合物是非蛋白质类;其中存在于所述样品中的至少一种所述预定化合物是蛋白质,并且至少一种所述标签部分附接至所述蛋白质的羧基末端或氨基末端;其中存在于所述样品中的至少一种所述预定化合物是蛋白质,并且至少一种所述标签部分附接至所述蛋白质的赖氨酸残基、精氨酸残基或半胱氨酸残基;其中用于结合所述具有可检测标签的预定化合物的工具是蛋白质;其中用于结合所述具有可检测标签的预定化合物的工具是抗体;和/或其中用于结合所述具有可检测标签的预定化合物的工具是非蛋白质类的。
10.如权利要求1至6中任一项所述的方法,其中至少一种所述标签部分包含多于一种可检测组分;其中每种可检测组分是独立可检测的;其中至少一种所述标签部分经可切割接头附接至所述预定化合物;其中至少一种所述标签部分经可切割接头附接至所述预定化合物,所述可切割接头是光可切割接头;和/或其中至少一种所述标签部分经可切割接头附接至所述预定化合物,所述可切割接头是化学可切割接头;其中每种标签部分可基于可用所述至少一种纳米孔检测的所述标签部分的阻断签名来与任何其他标签部分相区别;其中每种标签部分可基于可用所述至少一种纳米孔检测的所述标签部分的阻断签名来与任何其他标签部分相区别并且所述阻断签名是所述至少一种纳米孔处的电流振幅变化的结果;和/或其中每种标签部分可基于可用所述至少一种纳米孔检测的所述标签部分的阻断签名来与任何其他标签部分相区别并且所述阻断签名是所述至少一种纳米孔的导电性变化的结果。
11.如权利要求1至6中任一项所述的方法,其中所述至少一种纳米孔是生物学纳米孔、经修饰的生物学纳米孔或合成的纳米孔;其中所述至少一种纳米孔是蛋白质类;和/或其中所述至少一种纳米孔是α溶血素;其中所述至少一种纳米孔是固态纳米孔;其中所述至少一种纳米孔是固态纳米孔,所述固态纳米孔包含石墨烯;其中所述至少一种纳米孔是膜;和/或其中所述至少一种纳米孔是纳米孔阵列的部分;其中所述至少一种纳米孔是纳米孔阵列的部分并且所述阵列中的每个纳米孔包含用于结合所述具有可检测标签的预定化合物的相同的工具;和/或其中所述至少一种纳米孔是纳米孔阵列的部分并且所述阵列中的每个纳米孔包含用于结合所述具有可检测标签的预定化合物的不同的工具;其中所述至少一种纳米孔还包含用于从所述纳米孔喷射所述标签部分的工具;和/或其中所述至少一种纳米孔还包含用于从所述纳米孔喷射所述标签部分的工具并且用于从所述纳米孔喷射所述标签部分的工具由调节所述纳米孔的电场的工具组成。
12.如权利要求1至6中任一项所述的方法,其中所述标签部分的每种所述至少一种可检测组分选自由以下组成的组:氨基酸、碳水化合物、肽、染料、单核苷酸、多核苷酸、核苷一磷酸、核苷多磷酸、脂族酸、芳族酸、未经取代的醇或硫醇、经一种或多种卤素取代的醇或硫醇、氰基、硝基、烷基、烯基、炔基和叠氮基。
13.如权利要求1至6中任一项所述的方法,其中所述标签部分的所述至少一种可检测组分包含大量的乙二醇单元。
14.如权利要求13所述的方法,其中所述标签部分的可检测组分包含16个、20个、24个或36个乙二醇单元和/或由香豆素衍生。
15.一种用于检测多种样品中的多种预定化合物的存在的方法,其包括:
(a)使每种样品在对于该样品允许标签部分附接至存在于所述样品中的所述多种预定化合物以形成具有可检测标签的预定化合物的条件下与纳米孔-可检测的标签部分接触,所述具有可检测标签的预定化合物可与附接至来自任何其他样品的相似的预定化合物的任何纳米孔-可检测标签部分相区别;
(b)混合由步骤(a)所得的来自多种样品的最终的具有标签的化合物,并以形成包含具有可检测并且可区别的标签的预定化合物的组的电解质溶液的方式来处理这些化合物;
(c)使来自步骤(b)的电解质溶液在使得所述具有可检测标签的预定化合物结合所述至少一种纳米孔的条件下与至少一种纳米孔接触,其中所述至少一种纳米孔包含用于特定的分析物部分与所述电解质溶液中的每种所述具有可检测标签的预定化合物的工具;
(d)处理与所述至少一种纳米孔结合的所述具有可检测标签的预定化合物,以使所述标签部分与所述预定化合物分离;以及
(e)检测当所述标签部分通过所述至少一种纳米孔时释放的每种所述标签部分的所述至少一种可检测组分,从而检测所述多种样品中的所述多种预定化合物的存在。
CN201480015937.4A 2013-03-15 2014-03-14 用于检测样品中多种预定化合物的方法 Active CN105102627B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361799276P 2013-03-15 2013-03-15
US61/799,276 2013-03-15
PCT/US2014/029495 WO2014144898A1 (en) 2013-03-15 2014-03-14 Method for detecting multiple predetermined compounds in a sample

Publications (2)

Publication Number Publication Date
CN105102627A CN105102627A (zh) 2015-11-25
CN105102627B true CN105102627B (zh) 2018-10-19

Family

ID=51537828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480015937.4A Active CN105102627B (zh) 2013-03-15 2014-03-14 用于检测样品中多种预定化合物的方法

Country Status (4)

Country Link
US (1) US10732183B2 (zh)
EP (1) EP2971051A4 (zh)
CN (1) CN105102627B (zh)
WO (1) WO2014144898A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9708358B2 (en) 2000-10-06 2017-07-18 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
JP2004510433A (ja) 2000-10-06 2004-04-08 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Dnaおよびrnaを解読するための大量並行方法
WO2007002204A2 (en) 2005-06-21 2007-01-04 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compostions
US7982029B2 (en) 2005-10-31 2011-07-19 The Trustees Of Columbia University In The City Of New York Synthesis of four color 3′O-allyl, modified photocleavable fluorescent nucleotides and related methods
DE112007002932B4 (de) 2006-12-01 2015-08-06 The Trustees Of Columbia University In The City Of New York Vierfarben DNA-Sequenzierung mittels Synthese unter Verwendung von abspaltbaren, reversiblen, fluoreszierenden Nucleotidterminatoren
EP2725107B1 (en) 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators
EP2940029B1 (en) 2007-10-19 2023-11-29 The Trustees of Columbia University in the City of New York Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequencing by synthesis
US10443096B2 (en) 2010-12-17 2019-10-15 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using modified nucleotides and nanopore detection
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
JP6456816B2 (ja) 2012-04-09 2019-01-23 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク ナノ細孔の調製方法およびその使用
EP2864502B1 (en) 2012-06-20 2019-10-23 The Trustees of Columbia University in the City of New York Nucleic acid sequencing by nanopore detection of tag molecules
EP2971051A4 (en) 2013-03-15 2017-03-01 The Trustees of Columbia University in the City of New York Method for detecting multiple predetermined compounds in a sample
US10648026B2 (en) 2013-03-15 2020-05-12 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
WO2015148402A1 (en) 2014-03-24 2015-10-01 The Trustees Of Columbia Univeristy In The City Of New York Chemical methods for producing tagged nucleotides
CN107135657A (zh) * 2014-12-31 2017-09-05 卡尤迪生物科技(北京)有限公司 使用纳米孔和复合部分的核酸分子检测
WO2016144973A1 (en) 2015-03-09 2016-09-15 The Trustees Of Columbia University In The City Of New York Pore-forming protein conjugate compositions and methods
EP3277427A1 (en) 2015-04-03 2018-02-07 Abbott Laboratories Devices and methods for sample analysis
AU2016243036B2 (en) * 2015-04-03 2022-02-17 Abbott Laboratories Devices and methods for sample analysis
US20180095067A1 (en) * 2015-04-03 2018-04-05 Abbott Laboratories Devices and methods for sample analysis
CN114989235A (zh) 2015-09-28 2022-09-02 哥伦比亚大学董事会 用作dna合成测序的可逆终止物的基于新的二硫键接头的核苷酸的设计与合成
WO2017205336A1 (en) 2016-05-23 2017-11-30 The Trustees Of Columbia University In The City Of New York Nucleotide derivatives and methods of use thereof
US11016053B2 (en) * 2016-10-05 2021-05-25 Abbott Laboratories Devices and methods for sample analysis
GB201620450D0 (en) * 2016-12-01 2017-01-18 Oxford Nanopore Tech Ltd Method
EP3596099A4 (en) 2017-03-06 2020-12-09 Singular Genomics Systems, Inc. NUCLEIC ACID SYNTHETIC SEQUENCING (SBS) METHODS COMBINING SBS CYCLE STEPS
GB201707140D0 (en) 2017-05-04 2017-06-21 Oxford Nanopore Tech Ltd Method
GB201809323D0 (en) 2018-06-06 2018-07-25 Oxford Nanopore Tech Ltd Method
EP3826960A4 (en) * 2018-07-23 2022-04-27 The Trustees of Columbia University in the City of New York ELECTRONIC SINGLE MOLECULE MULTIPLEX NANOPORES IMMUNOASSAYS FOR THE DETECTION OF BIOMARKERS
CN113039191A (zh) 2018-10-25 2021-06-25 奇异基因组学系统公司 核苷酸类似物
JP2022516684A (ja) 2019-01-08 2022-03-01 シンギュラー・ゲノミクス・システムズ・インコーポレイテッド ヌクレオチドの開裂可能なリンカーおよびその使用
WO2022043491A2 (en) * 2020-08-28 2022-03-03 Ventana Medical Systems, Inc. Conjugates including a detectable moiety

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846688A (zh) * 2003-10-29 2010-09-29 英特尔公司 表征分析物的方法和设备

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756355A (en) 1992-04-22 1998-05-26 Ecole Polytechnique Federale De Lausanne Lipid membrane sensors
GB9315847D0 (en) 1993-07-30 1993-09-15 Isis Innovation Tag reagent and assay method
US20120160687A1 (en) 1995-03-17 2012-06-28 President And Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US6362002B1 (en) 1995-03-17 2002-03-26 President And Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US5795782A (en) 1995-03-17 1998-08-18 President & Fellows Of Harvard College Characterization of individual polymer molecules based on monomer-interface interactions
US5876936A (en) 1997-01-15 1999-03-02 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators
US6046005A (en) 1997-01-15 2000-04-04 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group
US5804386A (en) 1997-01-15 1998-09-08 Incyte Pharmaceuticals, Inc. Sets of labeled energy transfer fluorescent primers and their use in multi component analysis
US6485703B1 (en) 1998-07-31 2002-11-26 The Texas A&M University System Compositions and methods for analyte detection
US6267872B1 (en) 1998-11-06 2001-07-31 The Regents Of The University Of California Miniature support for thin films containing single channels or nanopores and methods for using same
JP2002532717A (ja) 1998-12-11 2002-10-02 サイミックス テクノロジーズ、インク 迅速な物質特性評価のためのセンサ配列に基づくシステム及びその方法
WO2000034527A2 (en) * 1998-12-11 2000-06-15 The Regents Of The University Of California Targeted molecular bar codes
US6399335B1 (en) 1999-11-16 2002-06-04 Advanced Research And Technology Institute, Inc. γ-phosphoester nucleoside triphosphates
US6383749B2 (en) 1999-12-02 2002-05-07 Clontech Laboratories, Inc. Methods of labeling nucleic acids for use in array based hybridization assays
EP2083015B1 (en) 2000-02-11 2016-04-06 The Texas A & M University System Biosensor compositions and methods of use
US6616895B2 (en) 2000-03-23 2003-09-09 Advanced Research Corporation Solid state membrane channel device for the measurement and characterization of atomic and molecular sized samples
US6413792B1 (en) 2000-04-24 2002-07-02 Eagle Research Development, Llc Ultra-fast nucleic acid sequencing device and a method for making and using the same
CA2412567A1 (en) 2000-06-07 2001-12-13 Li-Cor, Inc. Charge-switch nucleotides
US6936702B2 (en) 2000-06-07 2005-08-30 Li-Cor, Inc. Charge-switch nucleotides
US6627748B1 (en) 2000-09-11 2003-09-30 The Trustees Of Columbia University In The City Of New York Combinatorial fluorescence energy transfer tags and their applications for multiplex genetic analyses
EP1322785A4 (en) 2000-09-11 2005-11-09 Univ Columbia COMBINATION FLUORESCENCE ENERGY TRANSFER INDICATORS AND USES THEREOF
US20060057565A1 (en) 2000-09-11 2006-03-16 Jingyue Ju Combinatorial fluorescence energy transfer tags and uses thereof
JP2004510433A (ja) 2000-10-06 2004-04-08 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク Dnaおよびrnaを解読するための大量並行方法
US20030027140A1 (en) 2001-03-30 2003-02-06 Jingyue Ju High-fidelity DNA sequencing using solid phase capturable dideoxynucleotides and mass spectrometry
US7074597B2 (en) 2002-07-12 2006-07-11 The Trustees Of Columbia University In The City Of New York Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry
US7109316B2 (en) * 2002-08-23 2006-09-19 Ce Healthcare Bio-Sciences Corp. Oligonucleotide tagged nucleoside triphosphates (OTNTPs) for genetic analysis
US7355216B2 (en) 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
AU2003297859A1 (en) 2002-12-13 2004-07-09 The Trustees Of Columbia University In The City Of New York Biomolecular coupling methods using 1,3-dipolar cycloaddition chemistry
US7745116B2 (en) 2003-04-08 2010-06-29 Pacific Biosciences Of California, Inc. Composition and method for nucleic acid sequencing
GB0308851D0 (en) 2003-04-16 2003-05-21 Lingvitae As Method
US7160313B2 (en) * 2003-07-28 2007-01-09 Helena Laboratories Load-controlled device for a patterned skin incision
US7019346B2 (en) 2003-12-23 2006-03-28 Intel Corporation Capacitor having an anodic metal oxide substrate
US20050186576A1 (en) 2004-02-19 2005-08-25 Intel Corporation Polymer sequencing using selectively labeled monomers and data integration
WO2005084367A2 (en) 2004-03-03 2005-09-15 The Trustees Of Columbia University In The City Of New York Photocleavable fluorescent nucleotides for dna sequencing on chip constructed by site-specific coupling chemistry
US7279337B2 (en) 2004-03-10 2007-10-09 Agilent Technologies, Inc. Method and apparatus for sequencing polymers through tunneling conductance variation detection
WO2006028508A2 (en) 2004-03-23 2006-03-16 President And Fellows Of Harvard College Methods and apparatus for characterizing polynucleotides
WO2006012571A1 (en) 2004-07-23 2006-02-02 Electronic Bio Sciences, Llc Method and apparatus for sensing a time varying current passing through an ion channel
AU2005272823B2 (en) 2004-08-13 2012-04-12 President And Fellows Of Harvard College An ultra high-throughput opti-nanopore DNA readout platform
US20130071837A1 (en) * 2004-10-06 2013-03-21 Stephen N. Winters-Hilt Method and System for Characterizing or Identifying Molecules and Molecular Mixtures
US20060105461A1 (en) 2004-10-22 2006-05-18 May Tom-Moy Nanopore analysis system
US7867716B2 (en) 2004-12-21 2011-01-11 The Texas A&M University System High temperature ion channels and pores
GB0505971D0 (en) 2005-03-23 2005-04-27 Isis Innovation Delivery of molecules to a lipid bilayer
WO2007002204A2 (en) 2005-06-21 2007-01-04 The Trustees Of Columbia University In The City Of New York Pyrosequencing methods and related compostions
US20070190542A1 (en) 2005-10-03 2007-08-16 Ling Xinsheng S Hybridization assisted nanopore sequencing
US7397232B2 (en) 2005-10-21 2008-07-08 The University Of Akron Coulter counter having a plurality of channels
US7982029B2 (en) 2005-10-31 2011-07-19 The Trustees Of Columbia University In The City Of New York Synthesis of four color 3′O-allyl, modified photocleavable fluorescent nucleotides and related methods
WO2007053719A2 (en) 2005-10-31 2007-05-10 The Trustees Of Columbia University In The City Of New York Chemically cleavable 3'-o-allyl-dntp-allyl-fluorophore fluorescent nucleotide analogues and related methods
US20070190543A1 (en) * 2005-11-14 2007-08-16 Applera Corporation Coded Molecules for Detecting Target Analytes
EP1957983A4 (en) 2005-11-21 2010-03-24 Univ Columbia MULTIPLEX DIGITAL IMMUNOCAPTURE USING LIBRARY OF PHOTOCLIVABLE MASS MARKERS
US7871777B2 (en) 2005-12-12 2011-01-18 The United States Of America As Represented By The Department Of Health And Human Services Probe for nucleic acid sequencing and methods of use
EP1963530B1 (en) 2005-12-22 2011-07-27 Pacific Biosciences of California, Inc. Active surface coupled polymerases
US20070298511A1 (en) 2006-04-27 2007-12-27 The Texas A&M University System Nanopore sensor system
US7777505B2 (en) 2006-05-05 2010-08-17 University Of Utah Research Foundation Nanopore platforms for ion channel recordings and single molecule detection and analysis
WO2007146158A1 (en) 2006-06-07 2007-12-21 The Trustees Of Columbia University In The City Of New York Dna sequencing by nanopore using modified nucleotides
US9434990B2 (en) * 2012-04-02 2016-09-06 Lux Bio Group, Inc. Apparatus and method for molecular separation, purification, and sensing
DE112007002932B4 (de) 2006-12-01 2015-08-06 The Trustees Of Columbia University In The City Of New York Vierfarben DNA-Sequenzierung mittels Synthese unter Verwendung von abspaltbaren, reversiblen, fluoreszierenden Nucleotidterminatoren
EP2639578B1 (en) 2006-12-14 2016-09-14 Life Technologies Corporation Apparatus for measuring analytes using large scale fet arrays
US8003319B2 (en) 2007-02-02 2011-08-23 International Business Machines Corporation Systems and methods for controlling position of charged polymer inside nanopore
WO2008102121A1 (en) 2007-02-20 2008-08-28 Oxford Nanopore Technologies Limited Formation of lipid bilayers
EP3798317B1 (en) 2007-04-04 2024-01-03 The Regents of the University of California Compositions, devices, systems, and methods for using a nanopore
US9121843B2 (en) 2007-05-08 2015-09-01 Trustees Of Boston University Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof
US20090073293A1 (en) 2007-06-27 2009-03-19 Yoel Yaffe CMOS image sensors with increased dynamic range and methods of operating the same
GB0713143D0 (en) 2007-07-06 2007-08-15 Ucl Business Plc Nucleic acid detection method
US20090081711A1 (en) * 2007-09-14 2009-03-26 Sharat Singh Addressable antibody arrays and methods of use
EP2201136B1 (en) 2007-10-01 2017-12-06 Nabsys 2.0 LLC Nanopore sequencing by hybridization of probes to form ternary complexes and variable range alignment
JP5309145B2 (ja) 2007-10-02 2013-10-09 プレジデント アンド フェロウズ オブ ハーバード カレッジ ナノポアによる分子の捕捉、再捕捉およびトラッピング
EP2725107B1 (en) 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators
EP2940029B1 (en) 2007-10-19 2023-11-29 The Trustees of Columbia University in the City of New York Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequencing by synthesis
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
EP3425060B1 (en) * 2008-03-28 2021-10-27 Pacific Biosciences of California, Inc. Compositions and methods for nucleic acid sequencing
EP2107040B1 (en) 2008-03-31 2011-10-26 Sony Deutschland Gmbh A method of fabricating a membrane having a tapered pore
WO2009145828A2 (en) 2008-03-31 2009-12-03 Pacific Biosciences Of California, Inc. Two slow-step polymerase enzyme systems and methods
US8940142B2 (en) 2008-05-05 2015-01-27 The Regents Of The University Of California Functionalized nanopipette biosensor
US20100025238A1 (en) 2008-07-31 2010-02-04 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
US8921046B2 (en) 2008-09-19 2014-12-30 Pacific Biosciences Of California, Inc. Nucleic acid sequence analysis
US8481264B2 (en) 2008-09-19 2013-07-09 Pacific Biosciences Of California, Inc. Immobilized nucleic acid complexes for sequence analysis
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
WO2010062903A2 (en) 2008-11-26 2010-06-03 Board Of Regents, The University Of Texas System Genomic sequencing using modified protein pores and ionic liquids
US20100227414A1 (en) * 2009-03-05 2010-09-09 Trex Enterprises Corp. Affinity capture mass spectroscopy with a porous silicon biosensor
GB0905140D0 (en) 2009-03-25 2009-05-06 Isis Innovation Method
WO2010111605A2 (en) 2009-03-27 2010-09-30 Nabsys, Inc. Devices and methods for analyzing biomolecules and probes bound thereto
CN113186149A (zh) * 2009-04-08 2021-07-30 加利福尼亚大学董事会 Dna-细胞缀合物
US8986928B2 (en) 2009-04-10 2015-03-24 Pacific Biosciences Of California, Inc. Nanopore sequencing devices and methods
EP2483680A4 (en) 2009-09-30 2014-01-01 Quantapore Inc ULTRASOUND SEQUENCING OF BIOLOGICAL POLYMERS WITH THE HELP OF A MARKED NANOPORE
US8324914B2 (en) 2010-02-08 2012-12-04 Genia Technologies, Inc. Systems and methods for characterizing a molecule
AU2011213234B2 (en) 2010-02-08 2015-05-14 F. Hoffmann-La Roche Ag Systems and methods for manipulating a molecule in a nanopore
US20110287414A1 (en) 2010-02-08 2011-11-24 Genia Technologies, Inc. Systems and methods for identifying a portion of a molecule
US9605307B2 (en) 2010-02-08 2017-03-28 Genia Technologies, Inc. Systems and methods for forming a nanopore in a lipid bilayer
US20120052188A1 (en) 2010-02-08 2012-03-01 Genia Technologies, Inc. Systems and methods for assembling a lipid bilayer on a substantially planar solid surface
US20110192723A1 (en) 2010-02-08 2011-08-11 Genia Technologies, Inc. Systems and methods for manipulating a molecule in a nanopore
CN102834716B (zh) 2010-02-23 2016-03-30 华盛顿大学 人工分枝菌酸膜
US8652779B2 (en) 2010-04-09 2014-02-18 Pacific Biosciences Of California, Inc. Nanopore sequencing using charge blockade labels
CA2805247C (en) 2010-07-14 2021-08-10 The Curators Of The University Of Missouri Nanopore-facilitated single molecule detection of nucleic acids
WO2012050920A1 (en) * 2010-09-29 2012-04-19 Illumina, Inc. Compositions and methods for sequencing nucleic acids
US10443096B2 (en) 2010-12-17 2019-10-15 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using modified nucleotides and nanopore detection
WO2012088341A2 (en) 2010-12-22 2012-06-28 Genia Technologies, Inc. Nanopore-based single dna molecule characterization, identification and isolation using speed bumps
US8962242B2 (en) 2011-01-24 2015-02-24 Genia Technologies, Inc. System for detecting electrical properties of a molecular complex
US9110478B2 (en) 2011-01-27 2015-08-18 Genia Technologies, Inc. Temperature regulation of measurement arrays
US11274341B2 (en) 2011-02-11 2022-03-15 NABsys, 2.0 LLC Assay methods using DNA binding proteins
US9624539B2 (en) 2011-05-23 2017-04-18 The Trustees Of Columbia University In The City Of New York DNA sequencing by synthesis using Raman and infrared spectroscopy detection
WO2013016486A1 (en) * 2011-07-27 2013-01-31 The Board Of Trustees Of The University Of Illinois Nanopore sensors for biomolecular characterization
JP6333179B2 (ja) * 2012-01-20 2018-05-30 ジニア テクノロジーズ, インコーポレイテッド ナノポアベースの分子検出および配列決定
US8541849B2 (en) 2012-02-14 2013-09-24 Genia Technologies, Inc. Noise shielding techniques for ultra low current measurements in biochemical applications
JP6178805B2 (ja) 2012-02-16 2017-08-09 ジニア テクノロジーズ, インコーポレイテッド ナノ細孔センサーとともに使用するための二重層を作製するための方法
JP6456816B2 (ja) 2012-04-09 2019-01-23 ザ・トラスティーズ・オブ・コランビア・ユニバーシティー・イン・ザ・シティー・オブ・ニューヨーク ナノ細孔の調製方法およびその使用
EP2861768A4 (en) 2012-06-15 2016-03-02 Genia Technologies Inc CHIP SETUP AND HIGH ACCURACY NUCLEIC ACID SEQUENCING
EP2864502B1 (en) 2012-06-20 2019-10-23 The Trustees of Columbia University in the City of New York Nucleic acid sequencing by nanopore detection of tag molecules
EP2971118B1 (en) * 2013-03-15 2019-10-02 The Curators of the University of Missouri Encoded nanopore sensor for multiplex nucleic acids detection
EP2971051A4 (en) 2013-03-15 2017-03-01 The Trustees of Columbia University in the City of New York Method for detecting multiple predetermined compounds in a sample
US10648026B2 (en) 2013-03-15 2020-05-12 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
EP3105354B1 (en) 2014-02-12 2020-05-06 The Trustees of Columbia University in the City of New York Single molecule electronic multiplex snp assay and pcr analysis
WO2015148402A1 (en) 2014-03-24 2015-10-01 The Trustees Of Columbia Univeristy In The City Of New York Chemical methods for producing tagged nucleotides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101846688A (zh) * 2003-10-29 2010-09-29 英特尔公司 表征分析物的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Stochastic sensing of proteins with receptor-modified solid-state nanopores;51,90,91段,图5;《nature nanotechnology》;20120311;第7卷;图1a-h *

Also Published As

Publication number Publication date
EP2971051A1 (en) 2016-01-20
EP2971051A4 (en) 2017-03-01
US10732183B2 (en) 2020-08-04
CN105102627A (zh) 2015-11-25
WO2014144898A1 (en) 2014-09-18
US20160041179A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
CN105102627B (zh) 用于检测样品中多种预定化合物的方法
Juncker et al. Cross-reactivity in antibody microarrays and multiplexed sandwich assays: shedding light on the dark side of multiplexing
CN110475864B (zh) 用于识别或量化在生物样品中的靶标的方法和组合物
US9970932B2 (en) Non-covalent patterned chemical features and use thereof in MALDI-based quality control
KR101816939B1 (ko) 다부위 바이오센서 및 관련 방법
ES2754814T3 (es) Ensayos de nanomarcadores de DRPS
JP2015533089A5 (zh)
US7579184B2 (en) Methods to increase dynamic range and improve quantitative analysis in rapid biosensors
US11085921B2 (en) Electronic nose or tongue sensors
Fredolini et al. Immunocapture strategies in translational proteomics
JP2005503557A5 (zh)
WO2018187687A1 (en) Integrated diagnostic devices having embedded biomolecular computing systems and uses thereof
Söderberg et al. Proximity ligation: a specific and versatile tool for the proteomic era
CN108351351A (zh) 使用亲和素和生物素的试验
JP2008518598A5 (zh)
Nelson et al. Peer Reviewed: Biomolecular Interaction Analysis Mass Spectrometry.
Spurrier et al. Protein and lysate array technologies in cancer research
US20210199641A1 (en) Single-molecule electronic multiplex nanopore immunoassays for biomarker detection
Luo et al. Resolving molecular heterogeneity with single-molecule centrifugation
Liu et al. A supramolecular sensor array for selective immunoglobulin deficiency analysis
O’Connor et al. A method for measuring multiple cytokines from small samples
CN101680889A (zh) 用于检测特异性免疫球蛋白g类抗体的方法
Unwin et al. How will haematologists use proteomics?
US20220381775A1 (en) Analyte detection and quantification by discrete enumeration of particle complexes
CN103917873B (zh) 检测生物分子的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant