CN105098157B - Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用 - Google Patents

Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN105098157B
CN105098157B CN201510441125.2A CN201510441125A CN105098157B CN 105098157 B CN105098157 B CN 105098157B CN 201510441125 A CN201510441125 A CN 201510441125A CN 105098157 B CN105098157 B CN 105098157B
Authority
CN
China
Prior art keywords
composite material
cyanogen
preparation
sour potassium
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510441125.2A
Other languages
English (en)
Other versions
CN105098157A (zh
Inventor
曹敏花
张天宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201510441125.2A priority Critical patent/CN105098157B/zh
Publication of CN105098157A publication Critical patent/CN105098157A/zh
Application granted granted Critical
Publication of CN105098157B publication Critical patent/CN105098157B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用。本发明中所述方法是将六氰合铁(Ⅱ)酸钾和六氰合钴(Ⅲ)酸钾溶解于盐酸溶液中,搅拌均匀后,转移到聚四氟乙烯为内胆的不锈钢反应釜中,由室温缓慢加热,保温,经过分离、洗涤和干燥处理后,得到Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,其中Fe4[Fe(CN)6]3与Co3[Co(CN)6]2的质量比为1:0.5‑1:2。所述复合材料用作锂离子电池负极材料时,在电流密度为100mA/g充放电时,电池具有较高的充放电比容量(783.7mAh/g),且循环性能优异。

Description

Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用
技术领域
本发明涉及一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用,属于功能材料技术领域。
背景技术
锂离子电池由于工作电压高、体积小、质量轻、无记忆效应、无污染、自放电小、循环寿命长的特点已经广泛应用于移动电话、笔记本电脑、数码相机、人造卫星、电动车、新能源汽车、航空航天和水力、火力、风力、太阳能电站等储能电源系统方面,是21世纪发展的理想能源载体。1991年索尼公司发布首个商用锂离子电池,才使锂离子电池成为各国科研人员的研究热点,同时革新了当前电子产品电源的面貌。随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在逐步向其他产品应用领域发展。
目前,商业应用的锂离子电池一般采用石墨化碳材料作为负极材料,如碳素材料,如人工石墨、天然石墨、石油焦、碳纤维等。以石墨化碳材料为负极材料的锂离子扩散系数较低,倍率性能不好,石墨的理论容量只有370mAh/g,不能满足大功率电子设备及持续性的使用需求。由于锂离子电池在充放电过程中固体电解质中间相膜的生成,使其循环性能较差且存在安全隐患。为了更高效便捷地利用锂离子电池作为移动电源,开发具有大容量、安全、循环性能好的可替代负极材料成为了目前的研究热点。因此,开发新型高性能的负极材料已经成为发展新一代锂离子电池的迫切需要。
在一系列的备选材料中,普鲁士蓝(PB)及其类似物(PBAs)具有比表面积大、可功能化、化学稳定性较高、电催化性能优越、容易制备、成本低等优点。从最初的普通染料,到现在的电极材料、生物传感器、储氢材料、显色剂、催化剂等,在众多领域中普鲁士蓝类配合物的应用正体现出广阔的前景。应用普鲁士蓝及其类似物作为锂离子电池电极材料尚处于起步阶段,因此有必要制备不同种类的普鲁士蓝类似物,通过调控其微观结构以适应在锂离子电池中大倍率的充放电,提高其在循环过程中的可逆容量。
发明内容
本发明目的在于提供一种新的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2功能性复合材料。其原理是在酸性条件下,以六氰合铁(Ⅱ)酸钾和六氰合钴(Ⅲ)酸钾为前驱体,利用聚乙烯吡咯烷酮为表面活性剂,在水热反应过程中,随反应温度的升高六氰合铁(Ⅱ)酸钾优先反应并转化为Fe4[Fe(CN)6]3,温度继续升高后,六氰合钴(Ⅲ)酸钾反应,转化为Co3[Co(CN)6]2,并在Fe4[Fe(CN)6]3外层生长,从而得到具有核壳结构的二元复合物,保温后,二元复合物缓慢刻蚀,最终形成具有内部复杂刻蚀结构的核壳二元复合物。作为一种新的功能性复合材料,应用于锂离子电池负极材料中,具有较高的锂离子电池相关性能。
本发明还提供了一种制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料作为锂离子电池负极材料的应用。
在本发明制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,复合材料的粒子大小为800-1200nm。
在本发明制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,粒子具有立方体结构,外部有刻蚀,内部具有不均一的刻蚀结构。
在本发明制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,复合材料具有核壳结构,内核成分为Fe4[Fe(CN)6]3,外壳成分为Co3[Co(CN)6]2
在本发明制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,复合材料的Co3[Co(CN)6]2外壳厚度为50-200nm。
本发明还提供了一种制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的方法,该方法包括:
将六氰合铁(Ⅱ)酸钾和六氰合钴(Ⅲ)酸钾分散于溶有聚乙烯吡咯烷酮的盐酸溶液中,混合均匀后,转移带有聚四氟乙烯为内胆的不锈钢反应釜中,由室温缓慢加热到140-200℃,保温6-72h,经过分离、洗涤和干燥处理后,得到Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,其中Fe4[Fe(CN)6]3与Co3[Co(CN)6]2的质量比为1:0.5-1:2。
在本发明中,所述的铁源为六氰合铁(Ⅱ)酸钾。
在本发明中,所述的钴源为六氰合钴(Ⅲ)酸钾。
在本发明中,使用盐酸调节溶液的pH值,盐酸溶液的浓度为0.01~1mol/L。
在本发明中,水热反应温度由室温以3-5℃/min缓慢加热到140-200℃。
在本发明制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,水热反应升至反应温度后,保温6-72h,但不仅限于保温在这一区间,只要最终能获得Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料都可作为保温时间。
本发明还提供了一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料作为锂离子电池负极材料的应用。电化学测试结果表明,利用该复合材料作为负极材料制成的锂离子电池,表现出较高的充放电容量和良好的容量保持率,例如在100mA/g的充放电速率下,100次充放电循环后容量可以达到780mAh/g以上。
本发明的技术方案至少具有如下有益效果:
1.本发明制备得到的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,Fe4[Fe(CN)6]3和Co3[Co(CN)6]2分别以纯相存在,克服了反应生成其他杂质的问题。
2.本发明制备得到的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料中,该材料具有复杂刻蚀的核壳结构,Fe4[Fe(CN)6]3处于内核,Co3[Co(CN)6]2处于外壳,并且内部不均一刻蚀。作为功能材料时可以与其他活性物质充分接触,解决了体相材料内部分子难参与反应的缺陷。
3.相比于现有商业化应用的石墨化电极材料,本发明中的复合材料克服了充放电循环中容量低、循环性能差的问题,应该具有更加广阔的商业应用前景。
4.相比于单一的Fe4[Fe(CN)6]3或Co3[Co(CN)6]2材料,本发明中的复合材料克服了单一材料充放电循环中容量低的问题。
5.本发明还提供了一种制备所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2功能性复合材料的方法,通过对原料和工艺参数的控制,制备得到了Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,该方法制备成本低廉,利于实现商业规模化生产。
附图说明
图1是本发明实施例1中Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的扫描电镜图。
图2是本发明实施例1中Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的透射电镜图。
图3是本发明实施例1、对比例1、对比例2中Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料、Co3[Co(CN)6]2以及Fe4[Fe(CN)6]3的X射线粉末衍射图。
图4是本发明实施例1中Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的X射线光电子能谱图。
图5是本发明实施例1、对比例1、对比例2中Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料、Co3[Co(CN)6]2以及Fe4[Fe(CN)6]3的放电比容量曲线。
具体实施方式
为使本发明的目的、技术、优点更加清楚,下面将结合本发明实施例中,对本发明实施例中的技术方案进行清楚、完整地描述,对于本技术领域的技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
实施例1
配置浓度为0.1mol/L的盐酸溶液,量取50mL,加入聚乙烯吡咯烷酮(K309mmol),混合均匀后,依次加入六氰合钴(Ⅲ)酸钾(0.3mmol)和六氰合铁(Ⅱ)酸钾(0.3mmol)。室温搅拌15min。混合均匀后转移至80mL反应釜中,将反应釜置于烘箱内由室温以3-5℃/min升温至160℃,保温48h,冷却至室温,经过离心分离、将分离的产物使用去离子水和乙醇交替洗涤6次,在真空干燥箱中60℃干燥处理后,得到Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料。
该复合电极材料电化学性能的测试采用钮扣模拟电池进行测试。装配电池时所用浆料为活性物质、炭黑和羧甲基纤维素钠组成的混合浆料,活性物质、炭黑和羧甲基纤维素钠的质量比为70:15:15;溶剂为去离子水;电解液为LiPF6溶解在以碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和二乙基碳酸酯(DEC)的三元混合溶剂(EC、DMC和DEC的体积比为1:1:1);锂片(纯度>99.9%)作为对电极;Celagrd 2400作为隔膜。电池在含有高纯氩气的手套箱中进行组装。电池测试系统使用LAND CT2001A型号进行充放电测试,电压范围为0.01-3V。在100mA/g电流密度下进行充放电时,Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料表现出较高的比容量和良好的循环性能。
图1为本实施例制备的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的扫描电镜图,可以看到该复合材料的粒子大小在800-1200nm,并且表面存在不均一的刻蚀。
图2为本实施例制备的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的透射电镜图,可以看到该复合材料具有核壳结构,并且内部黑灰色交替,表明该材料由两种不同物相组成且内部的刻蚀不均一。
图3(a)为本实施例制备的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的X射线粉末衍射图,可以分析出本实施例制备的复合材料中存在Fe4[Fe(CN)6]3和Co3[Co(CN)6]2两种物相。
图4为本实施例制备的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的X射线光电子能谱图,可以分析出材料中含有Fe、Co、C、N、O五种元素,由于Co3[Co(CN)6]2在处于外壳,Fe4[Fe(CN)6]3处于内核,因此Fe元素的峰强很低,并且材料中含有结晶水。
图5(a)为本实施例制备的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的放电比容量曲线,该复合材料在100mA/g下循环100圈,比容量为783.7mAh/g,库伦效率接近100%。通过实验数据,进一步证明了该材料的电化学稳定性能和相对石墨化材料作为负极材料具有较高的比容量。
对比例1
配置浓度为0.1mol/L的盐酸溶液,量取50mL,加入聚乙烯吡咯烷酮(K30 9mmol),混合均匀后,加入六氰合钴(Ⅲ)酸钾(0.6mmol)。室温搅拌15min。混合均匀后转移至80mL反应釜中,将反应釜置于烘箱内由室温以3-5℃/min升温至160℃,保温48h,冷却至室温,经过离心分离、将分离的产物使用去离子水和乙醇交替洗涤6次,在真空干燥箱中60℃干燥处理后,得到Co3[Co(CN)6]2
该电极材料电化学性能的测试采用钮扣模拟电池进行测试。装配电池时所用浆料为活性物质、炭黑和羧甲基纤维素钠组成的混合浆料,活性物质、炭黑和羧甲基纤维素钠的质量比为70:15:15;溶剂为去离子水;电解液为LiPF6溶解在以碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和二乙基碳酸酯(DEC)的三元混合溶剂(EC、DMC和DEC的体积比为1:1:1);锂片(纯度>99.9%)作为对电极;Celagrd 2400作为隔膜。电池在含有高纯氩气的手套箱中进行组装。电池测试系统使用LAND CT2001A型号进行充放电测试,电压范围为0.01-3V。在100mA/g电流密度下进行充放电时,Co3[Co(CN)6]2表现出相对较高的比容量和良好的循环性能。
图3(b)为本对比例制备的Co3[Co(CN)6]2材料的X射线粉末衍射图,可以分析出本对比例制备的材料为Co3[Co(CN)6]2物相。
图5(b)为本实施例制备的Co3[Co(CN)6]2材料的放电比容量曲线,该材料在100mA/g电流密度下循环100圈,比容量为643.7mAh/g。通过实验数据,进一步证明了该材料的电化学稳定性能和相对石墨化材料作为负极材料具有较高的比容量。
对比例2
配置浓度为0.1mol/L的盐酸溶液,量取50mL,加入聚乙烯吡咯烷酮(K30 9mmol),混合均匀后,加入六氰合铁(Ⅱ)酸钾(0.6mmol)。室温搅拌15min。混合均匀后转移至80mL反应釜中,将反应釜置于烘箱内由室温以3-5℃/min升温至160℃,保温48h,冷却至室温,经过离心分离、将分离的产物使用去离子水和乙醇交替洗涤6次,在真空干燥箱中60℃干燥处理后,得到Fe4[Fe(CN)6]3材料。
该电极材料电化学性能的测试采用钮扣模拟电池进行测试。装配电池时所用浆料为活性物质、炭黑和羧甲基纤维素钠组成的混合浆料,活性物质、炭黑和羧甲基纤维素钠的质量比为70:15:15;溶剂为去离子水;电解液为LiPF6溶解在以碳酸乙烯酯(EC)、碳酸二甲酯(DMC)和二乙基碳酸酯(DEC)的三元混合溶剂(EC、DMC和DEC的体积比为1:1:1);锂片(纯度>99.9%)作为对电极;Celagrd 2400作为隔膜。电池在含有高纯氩气的手套箱中进行组装。电池测试系统使用LAND CT2001A型号进行充放电测试,电压范围为0.01-3V。在充放电电流密度为100mA/g的条件下,Fe4[Fe(CN)6]3表现出相对较高的比容量和良好的循环性能。
图3(c)为本对比例制备的Fe4[Fe(CN)6]3材料的X射线粉末衍射图,可以分析出本对比例制备的材料为Fe4[Fe(CN)6]3物相。
图5(c)为本实施例制备的Fe4[Fe(CN)6]3材料的放电比容量曲线,该材料在100mA/g下循环100圈,比容量为589mAh/g。通过实验数据,进一步证明了该材料的电化学稳定性能和相对石墨化材料作为负极材料具有较高的比容量。
综上所述,本发明采用水热方法制备了Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,与单一的Fe4[Fe(CN)6]3或Co3[Co(CN)6]2材料比较,该复合材料具有较好的循环稳定性和更高的比容量。

Claims (9)

1.一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,其特征在于,是利用六氰合铁(Ⅱ)酸钾和六氰合钴(Ⅲ)酸钾在140-200℃的水热反应条件下得到; 所述Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,在扫描电子显微镜下观察具有立方结构,外部有刻蚀,在透射电子显微镜下观察内部具有不均一的刻蚀结构,且具有核壳结构,内核成分为Fe4[Fe(CN)6]3,外壳成分为Co3[Co(CN)6]2
2.根据权利要求1所述的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,其特征在于,Fe4[Fe(CN)6]3与Co3[Co(CN)6]2的质量比为1:0.5-1:2。
3.根据权利要求1所述的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,其特征在于,所述的复合材料的颗粒尺寸在800-1200nm。
4.根据权利要求1所述的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料,其特征在于,所述的复合材料的外壳厚度为50-200nm。
5.一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法,其特征在于该方法包括以下步骤:
(1)配置一定浓度的盐酸溶液,加入聚乙烯吡咯烷酮,混合均匀;
(2)加入六氰合铁(Ⅱ)酸钾和六氰合钴(Ⅲ)酸钾,室温搅拌,混合均匀后转移至反应釜中,将反应釜置于烘箱内,温度由室温以3-5℃/min缓慢加热到140-200℃,保温6-72h;
(3)冷却至室温,经过离心分离、将分离的产物用去离子水和乙醇交替洗涤6次,在真空干燥箱中干燥处理后,得到Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料。
6.如权利要求5所述一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法,其特征在于,步骤(1)所述盐酸溶液的浓度为0.01~1mol/L;所述制备方法中不加入聚乙烯吡咯烷酮也可制备Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料。
7.如权利要求5所述一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法,其特征在于,步骤(2)反应釜为以聚四氟乙烯为内胆的不锈钢反应釜。
8.如权利要求5所述一种Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法,其特征在于,步骤(3)复合产物真空干燥温度为60-200℃,干燥时间为12-24h。
9.一种锂离子电池负极材料,其特征在于,所述锂离子电池负极材料包括如权利要求1-4任一项所述的Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料。
CN201510441125.2A 2015-07-24 2015-07-24 Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用 Expired - Fee Related CN105098157B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510441125.2A CN105098157B (zh) 2015-07-24 2015-07-24 Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510441125.2A CN105098157B (zh) 2015-07-24 2015-07-24 Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN105098157A CN105098157A (zh) 2015-11-25
CN105098157B true CN105098157B (zh) 2018-07-31

Family

ID=54578133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510441125.2A Expired - Fee Related CN105098157B (zh) 2015-07-24 2015-07-24 Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN105098157B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107452948B (zh) * 2017-08-02 2020-03-10 成都市博伦沃德新能源科技有限公司 一种普鲁士蓝复合锂离子电池三元正极材料及其制备方法
CN109755490B (zh) * 2017-11-08 2022-01-28 中国科学院大连化学物理研究所 一种普鲁士蓝电极材料及其制备与应用
CN108558956B (zh) * 2018-05-28 2020-06-09 新疆农业大学 一种钴氰酸晶体及其制备方法与应用
CN109275329B (zh) * 2018-09-18 2019-08-09 北京科技大学 一种纳米核壳吸波材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870419B2 (ja) * 2005-12-07 2012-02-08 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池
CN101704536A (zh) * 2009-11-25 2010-05-12 华东师范大学 一种新型普鲁士蓝介晶及其制备方法
CN101710513B (zh) * 2009-12-18 2011-08-17 浙江大学 一种制备磁性铁钴普鲁士蓝空心纳米方块的方法
CN102824883B (zh) * 2012-08-27 2014-11-05 北京理工大学 石墨烯/普鲁士蓝类配合物复合气凝胶、制备方法及应用

Also Published As

Publication number Publication date
CN105098157A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN104733708B (zh) 一种表面包覆磷酸铁锂的镍钴锰酸锂复合材料的制备方法
CN104505505B (zh) 硅酸锂包覆锂离子电池三元层状正极材料的制备方法
CN108321366A (zh) 一种提高高镍三元镍钴锰正极材料电化学性能的包覆方法
CN104795555B (zh) 一种水溶液钠离子电池及其正极材料、制备方法和用途
CN108598390A (zh) 一种锂硫电池用正极材料的制备方法及锂硫电池
CN107293713A (zh) 一种超低温锂离子电池复合正极材料及其制备方法
CN109167035A (zh) 碳包覆的硫化亚铁负极材料、制备方法及其制备的钠离子电池
CN103682327B (zh) 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法
CN107768645B (zh) 一种多孔的氮掺杂碳纳米片复合负极材料及其制备方法
CN105098157B (zh) Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用
CN105185989B (zh) 一种钠离子电池导电聚合物/SnSex纳米花负极复合材料及其制备方法
CN109473666A (zh) 一种石墨烯支撑的SbVO4纳米颗粒复合材料及其制备方法
CN112038614B (zh) 一种钠离子电池用负极材料及其制备方法
CN107275639A (zh) 纳米颗粒组装的CoP/C分级纳米线及其制备方法和应用
CN107968195A (zh) 一种磷酸铁锂包覆的富锂正极材料及其制备方法
CN109037552A (zh) 一种用于钠硫电池的隔膜材料的制备方法
CN108899549A (zh) 原位碳包覆TiO2(B)负极材料的制备方法和应用
CN108183213A (zh) 一种三氧化二铁/碳/碳纳米管锂离子电池负极材料的制备方法
CN109768218A (zh) 一种氮掺杂的硬碳锂离子电池负极材料及其制备方法及锂离子电池负极片和锂离子电池
CN108400296A (zh) 异质元素掺杂四氧化三铁/石墨烯负极材料
CN104241628B (zh) 一种二氧化钛修饰的三氧化二铁微球的制法及其制得的产品和用途
CN105742630A (zh) 一种α-ZnMoO4锂离子电池负极材料及其制备方法
CN105489884B (zh) 化学还原氧化石墨烯/镁改善镍钴锰酸锂电化学性能的方法
CN110165206A (zh) 一种球状钠离子电池正极材料及其制备方法
CN108288702B (zh) 剑麻纤维基三维碳纳米片/二硫化钼/聚苯胺多级结构材料的制备及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180731

Termination date: 20190724

CF01 Termination of patent right due to non-payment of annual fee