CN105097485A - 腔室环境调控方法 - Google Patents

腔室环境调控方法 Download PDF

Info

Publication number
CN105097485A
CN105097485A CN201410186830.8A CN201410186830A CN105097485A CN 105097485 A CN105097485 A CN 105097485A CN 201410186830 A CN201410186830 A CN 201410186830A CN 105097485 A CN105097485 A CN 105097485A
Authority
CN
China
Prior art keywords
coating
gas
reaction chamber
plasma
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410186830.8A
Other languages
English (en)
Other versions
CN105097485B (zh
Inventor
陈永远
符雅丽
罗巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing North Microelectronics Co Ltd
Original Assignee
Beijing North Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing North Microelectronics Co Ltd filed Critical Beijing North Microelectronics Co Ltd
Priority to CN201410186830.8A priority Critical patent/CN105097485B/zh
Publication of CN105097485A publication Critical patent/CN105097485A/zh
Application granted granted Critical
Publication of CN105097485B publication Critical patent/CN105097485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种腔室环境调控方法,包括以下步骤:向反应腔室中通入第一气体,在反应腔室的内壁及反应腔室中的基片台表面生成第一涂层;向反应腔室通入第二气体,在第一涂层的表面生成第二涂层;将晶圆送入反应腔室中,进行等离子体加工;对晶圆进行等离子体加工完毕后,将晶圆移出反应腔室,并通入第一清洗气体,去除等离子体加工过程中吸附在第二涂层的表面的沉积物及第二涂层;通入第二清洗气体,去除第一涂层,使反应腔室恢复初始环境。其通过依次在反应腔室的内壁及基片台表面生成第一涂层和第二涂层,并在晶圆等离子体加工完成之后,依次去除第二涂层和第一涂层,保证了反应腔室环境的一致性,提高了工艺的稳定性。

Description

腔室环境调控方法
技术领域
本发明涉及半导体加工制备领域,特别是涉及一种腔室环境调控方法。
背景技术
随着对电子产品的尺寸、性能及功耗等方面的要求越来越高,集成电路中的半导体器件结构变得更加复杂,特征尺寸不断缩小。通过等离子体刻蚀工艺,在大面积衬底上获得均匀的具有纳米量级特征尺寸的结构变得愈加困难。此外,腔室环境对晶圆间特征尺寸刻蚀加工的一致性和重复性的重要性也逐步凸显出来,反应腔室环境的变化一直被认为是造成工艺漂移的一个重要原因,当等离子体工艺完成之后,一般会在反应腔室内壁沉积有残留物质,随着工艺的不断进行,残留物质也会随着时间的增加不断累积,因此,在连续加工过程中不同晶圆之间所处的反应腔室环境也在不断变化,等离子体中活性粒子在反应腔室内壁处的复合率也相应发生了改变,从而等离子体中的化学环境也有改变,并最终表现在工艺结果中,如:特征尺寸、刻蚀速率、刻蚀均匀性、刻蚀形貌,以及选择比等。
通常解决反应腔室环境变化的方法是,通过在刻蚀工艺完成后的反应腔室中通入调理气体,将调理气体激发成等离子体,在反应腔室内壁沉积一层聚合物层;该方法采用的调理气体为含氟含碳或含氯的气体,由于主要是针对刻蚀铝,并不适用于浅沟槽隔离刻蚀,并且由于在沉积聚合物层过程中引入含氟的气体,对反应腔室内壁有一定的腐蚀作用,同时,含氟含碳或含氯的气体与反应腔室内壁的粘附性较差,在对晶圆加工处理过程中,容易产生剥落,从而影响工艺的稳定性。
发明内容
基于此,有必要针对腔室环境影响刻蚀工艺稳定性的问题,提供一种腔室环境调控方法。
为实现本发明目的提供的一种腔室环境调控方法,包括以下步骤:
向反应腔室中通入第一气体,在所述反应腔室的内壁及所述反应腔室中的基片台表面生成第一涂层;
向所述反应腔室通入第二气体,在所述第一涂层的表面生成第二涂层;
将晶圆送入所述反应腔室中,进行等离子体加工;
对所述晶圆进行所述等离子体加工完毕后,将所述晶圆移出所述反应腔室,并通入第一清洗气体,去除所述等离子体加工过程中吸附在所述第二涂层的表面的沉积物及所述第二涂层;
通入第二清洗气体,去除所述第一涂层,使所述反应腔室恢复初始环境。
其中,所述第一涂层为含硅元素和氧元素的涂层,分子式为SixOy
其中,所述第二涂层为含硅元素、碳元素和卤族元素的涂层,或者为含硅元素、碳元素和氢元素的涂层,分子式为SiaCbRc,其中所述R为F、Cl、Br或H。
其中,所述第一气体为含硅元素和氢元素的气体与氧气的混合气体。
其中,所述第二气体为含碳元素、氢元素和卤族元素的气体与含硅元素和卤族元素的气体的混合气体。
其中,所述第一涂层的厚度和所述第二涂层的厚度均为2nm—100nm。
其中,所述第一涂层的厚度和所述第二涂层的厚度均为10nm—30nm。
其中,所述第一涂层的生成方法为等离子体激发沉积方法或者气体分子聚合沉积方法;
所述第二涂层的生成方法为所述等离子体激发沉积方法或者所述气体分子聚合沉积方法。
其中,所述等离子体加工为等离子体刻蚀加工或者等离子体气相沉积加工。
其中,所述第一清洗气体为含氟元素的气体和含氧元素的气体中的一种或两种以上的混合气体。
其中,所述第二清洗气体为含氯元素的气体、含氧元素的气体和含氮元素的气体中的一种或两种以上的混合气体。
本发明提供的腔室环境调控方法,通过在对晶圆进行等离子体加工之前,首先依次在反应腔室的内壁及基片台表面,生成与反应腔室的内壁粘附性较好的第一涂层,和保证晶圆在进行等离子体加工时反应腔室环境稳定的第二涂层,不仅实现了每片晶圆的加工环境的一致性,同时还保证了晶圆加工之初等离子体的稳定性,有效地提高了刻蚀工艺的稳定性。
附图说明
图1为腔室环境调控方法一具体实施例流程图;
图2为腔室环境调控方法另一具体实施例中生成第一涂层后的反应腔室的纵截面示意图;
图3为腔室环境调控方法另一具体实施例中生成第二涂层后的反应腔室的纵截面示意图;
图4为腔室环境调控方法另一具体实施例中对晶圆进行等离子体加工后的反应腔室的纵截面示意图;
图5为腔室环境调控方法另一具体实施例中去除第二涂层的表面的沉积物和第二涂层后的反应腔室的纵截面示意图;
图6为腔室环境调控方法另一具体实施例中去除第一涂层后的反应腔室的纵截面示意图。
具体实施方式
为使本发明技术方案更加清楚,以下结合附图及具体实施例对本发明做进一步详细说明。
参见图1至图6,一种腔室环境调控方法,包括以下步骤:
步骤S100,向反应腔室200中通入第一气体,在反应腔室200的内壁210及反应腔室200中的基片台220表面生成第一涂层230。
步骤S200,向反应腔室220中通入第二气体,在第一涂层230的表面生成第二涂层240。
步骤S300,将晶圆250送入反应腔室200中,进行等离子体加工。
步骤S400,对晶圆250进行等离子体加工完毕后,将晶圆250移出反应腔室200,并通入第一清洗气体,去除等离子体加工过程中吸附在第二涂层240的表面的沉积物及第二涂层240。
步骤S500,通入第二清洗气体,去除第一涂层230,使反应腔室200恢复初始环境。
本发明提供的腔室环境调控方法,在对晶圆进行等离子体加工之前,首先在反应腔室200的内壁210及基片台220表面生成与反应腔室200的内壁210粘附性较好的第一涂层230。然后,在已生成第一涂层230的反应腔室200的内壁210及基片台220表面生成保证反应腔室200环境稳定的第二涂层240。不仅保证了每片晶圆250的加工环境一致,同时还保证了晶圆250加工之初等离子体的稳定性,有效地提高了刻蚀工艺的稳定性。
并且,当晶圆进行等离子体加工完成之后,在进行下一组晶圆的等离子体加工时,通过对工艺腔室200中通入第一清洗气体去除工艺腔室200中的第二涂层240及吸附在第二涂层240的表面的沉积物。通入第二清洗气体去除在工艺腔室200的内壁210及基片台220表面制备的第一涂层230。实现对反应腔室200进行清洁的目的,从而减少了反应腔室200中污染物的沉积,延长了反应腔室200清洗的间隔时间。
其中,第一涂层230为含硅元素和氧元素的涂层,分子式为SixOy
一般的,y与x的比值小于或等于2。
由于反应腔室200的内壁210的初始材料为Y2O3或Al2O3等,而含硅元素和氧元素的第一涂层230的极性与反应腔室200的内壁210的初始材料极性更为接近。因此,通过在反应腔室200的内壁210及基片台220表面生成含硅的氧化物类成分的第一涂层230,有效地加大了第一涂层230与反应腔室200的内壁210的粘附力,防止等离子体加工过程中第一涂层230的剥落,减少了颗粒污染。同时,避免了反应过程中氟与反应腔室200材料发生反应,生成难挥发产物(如AlFx或YFx)的现象,有效地减少了反应腔室200的内壁210聚合物的沉积,延长了反应腔室200清洗的时间间隔。
作为一种可实施方式,生成第一涂层230的第一气体为含硅元素和氢元素的气体与氧气的混合气体。其中,第一涂层230的生成方法可为等离子体激发沉积方法或气体分子聚合沉积方法。
参见图2,为采用等离子体激发沉积方法生成第一涂层230后,反应腔室200的纵截面示意图。当晶圆进入反应腔室200之前,首先向反应腔室200通入第一气体,形成第一涂层230。在本实施例中,所采用的第一气体为SiH4和O2的混合气体,对SiH4和O2的混合气体进行等离子体激发,在反应腔室200的内壁210和基片台220表面形成含硅元素和氧元素的第一涂层230,其主要成分为SixOy,具有一定的隔离和抗氟腐蚀能力。
其中,对SiH4和O2的混合气体进行等离子体激发生成第一涂层230的工艺参数为:
上功率为100W—1000W,优选为300W—700W;下功率为0W。
SiH4的流量为10sccm—500sccm,优选为100sccm—300sccm。
O2的流量为10sccm—500sccm,优选为100sccm—300sccm。
工艺气压为1mTorr—100mTorr,优选为10mTorr—30mTorr。
最终得到的第一涂层230的厚度为2nm—100nm,优选为10nm—30nm。
较佳的,第二涂层240为含硅元素、碳元素和卤族元素的涂层,或者为含硅元素、碳元素和氢元素的涂层,分子式为SiaCbRc,其中R为F、Cl、Br或H。
其中,a、b和c的关系为:4(a+b)大于或等于c。
由于硅的卤族含碳衍生物的化学键极性与成分为硅的氧化物的第一涂层230的化学键极性相接近。因此,通过在第一涂层230的表面生成化学成分为硅的卤族含碳衍生物的第二涂层240,能够使得第二涂层240更好的粘附在第一涂层230上,从而有效的避免了进行等离子体加工工艺过程中,如:刻蚀工艺过程中,反应腔室200的内壁210沉积的第一涂层230或第二涂层240的剥落带来的刻蚀图形缺陷现象。
同时,由于第二涂层240的化学成分与晶圆250刻蚀过程中的反应副产物更为接近,因此避免了晶圆250刻蚀反应最开始的反应腔室200的内壁210反应副产物从无到有的逐渐沉积过程,保证了每组晶圆250在开始刻蚀时的反应腔室200环境的一致性,有效地改善了刻蚀速率的稳定性,最终提高了刻蚀工艺的稳定性和重复性,避免了累积效应的产生。
作为一种可实施方式,第二气体为含碳元素、氢元素和卤族元素的气体与含硅元素和卤族元素的气体的混合气体。
参见图3,为采用等离子体激发沉积第二涂层240后,反应腔室200的纵截面示意图。作为一种可实施方式,第二涂层240的生成方法同样可为等离子体激发沉积方法或气体分子聚合沉积方法。当沉积完第一涂层230后,同样采用等离子体激发沉积第二涂层240。在该实施例中,所采用的第二气体为CH4和SiCl4的混合气体。对CH4和SiCl4的混合气体进行等离子体激发,在反应腔室200的内壁210和基片台220表面的第一涂层230上沉积第二涂层240,其主要成分为SiaCbCldHe,同样具有一定的隔离和抗氟腐蚀能力。其中,R为卤族元素(如:Cl)和氢元素的混合物,且a、b、d、e的关系使得SiaCbCldHe呈电中性即可。
其中,对CH4和SiCl4的混合气体进行等离子体激发生成第二涂层240的工艺参数为:
上功率为100W—1000W,优选为300W—700W;下功率为0W。
CH4的流量为10sccm—500sccm,优选为100sccm—200sccm。
SiCl4的流量为10sccm—500sccm,优选为50sccm—100sccm。
工艺气压为1mTorr—100mTorr,优选为10mTorr—30mTorr。
最终得到的第二涂层240的厚度为2nm—100nm,优选为10nm—30nm。
当在反应腔室200的内壁210及基片台220表面生成第一涂层230,和在第一涂层230的表面生成第二涂层240后,此时,可将晶圆送入反应腔室200中,进行等离子体加工。其中,等离子体加工可为等离子体刻蚀加工或等离子体气相沉积加工。
参见图4,作为一种可实施方式,当在反应腔室200的内壁210及基片台220表面先后沉积完第一涂层230和第二涂层240后,将晶圆250送入反应腔室200中,对晶圆250进行等离子体加工。
在该实施例中,对晶圆250进行等离子体刻蚀加工,所选用的刻蚀气体为HBr、Cl2和O2的混合气体。在对晶圆250进行等离子体刻蚀工艺过程中,会有沉积物260附着在反应腔室200的内壁210和基片台220表面(除被晶圆覆盖的区域)的第二涂层240上。该沉积物260为在对晶圆250进行等离子体刻蚀工艺过程中产生的非挥发性刻蚀产物,其主要成分为SiOuBrvClw及含碳沉积物,或SiOuBrvFw及含碳沉积物。其中,u、v和w的关系为:2u+v+w小于或等于4。
其中,对晶圆250进行等离子体刻蚀的工艺参数为:
上功率为100W—1500W,优选为300W—1000W。
下功率为500W—500W,优选为100W—300W。
HBr的流量为10sccm—200sccm,优选为50sccm—150sccm。
Cl2的流量为10sccm—100sccm,优选为40sccm—60sccm。
O2的流量为1sccm—20sccm,优选为1sccm—10sccm。
工艺气压为1mTorr—100mTorr,优选为10mTorr—20mTorr。
对晶圆250进行等离子体刻蚀工艺完成之后,由于在进行等离子体刻蚀工艺过程中,产生了附着在反应腔室200的内壁210和基片台220表面的沉积物260,为保证对下一组晶圆进行等离子体加工时工艺的稳定性,需要清除产生的沉积物260和第二涂层240。
作为一种可实施方式,清除沉积物260及第二涂层240的第一清洗气体为含氟元素的气体和含氧元素的气体中的一种或两种以上的混合气体。
参见图5,当对晶圆250等离子体加工完毕后,将晶圆250移出反应腔室200,便可原位进行干法清洗。首先通入第一清洗气体,去除第二涂层240上的沉积物260及第二涂层240。
在本实施例中,选用的第一清洗气体为SF6和O2的混合气体。在清洗过程中,由于反应腔室200的内壁210和基片台220表面存在第一涂层230,因此第一清洗气体中的含氟等离子体只对第一涂层230有一定的腐蚀作用,并有部分氟离子吸附在第一涂层230的表面;从而有效的避免了反应腔室200的内壁210和基片台220表面产生刻蚀损伤的现象。
其中,采用SF6和O2的混合气体对沉积物260和第二涂层240进行干法清洗的工艺参数为:
上功率为100W—1000W,优选为400W—800W;下功率为0W。
SF6的流量为50sccm—300sccm,优选为100sccm—200sccm。
O2的流量为10sccm—100sccm,优选为10sccm—30sccm。
工艺气压为10mTorr—100mTorr,优选为10mTorr—80mTorr。
采用第一清洗气体对第二涂层240及第二涂层240上的沉积物260清洗完毕后,需要清除沉积在反应腔室200的内壁210及基片台220表面的第一涂层230。
作为一种可实施方式,用于清除第一涂层230的第二清洗气体为含氯元素的气体、含氧元素的气体和含氮元素的气体中的一种或两种以上的混合气体。
参见图6,采用第一清洗气体对第二涂层240及第二涂层240上的沉积物260清洗完毕后,通入第二清洗气体,去除第一涂层230。
在该实施例中,所采用的第二清洗气体为NF3。其中,工艺参数为:
上功率为100W—1000W,优选为400W—800W;下功率为0W。
NF3的流量为10sccm—200sccm,优选为50sccm—100sccm。
工艺气压为10mTorr—100mTorr,优选为10mTorr—80mTorr。
其中,通过第二清洗气体对第一涂层230清洗完毕后,还可再通入O2对反应腔室200做进一步的清洁,最终获得清洁的反应腔室200环境。当再次进行晶圆的等离子体加工时,依次重复上述步骤,保证了反应腔室200的环境在每片晶圆进行等离子体加工时的一致性,保证了等离子体工艺的稳定性。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

1.一种腔室环境调控方法,其特征在于,包括以下步骤:
向反应腔室中通入第一气体,在所述反应腔室的内壁及所述反应腔室中的基片台表面生成第一涂层;
向所述反应腔室通入第二气体,在所述第一涂层的表面生成第二涂层;
将晶圆送入所述反应腔室中,进行等离子体加工;
对所述晶圆进行所述等离子体加工完毕后,将所述晶圆移出所述反应腔室,并通入第一清洗气体,去除所述等离子体加工过程中吸附在所述第二涂层的表面的沉积物及所述第二涂层;
通入第二清洗气体,去除所述第一涂层,使所述反应腔室恢复初始环境。
2.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第一涂层为含硅元素和氧元素的涂层,分子式为SixOy
3.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第二涂层为含硅元素、碳元素和卤族元素的涂层,或者为含硅元素、碳元素和氢元素的涂层,分子式为SiaCbRc,其中所述R为F、Cl、Br或H。
4.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第一气体为含硅元素和氢元素的气体与氧气的混合气体。
5.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第二气体为含碳元素、氢元素和卤族元素的气体与含硅元素和卤族元素的气体的混合气体。
6.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第一涂层的厚度和所述第二涂层的厚度均为2nm—100nm。
7.根据权利要求6所述的腔室环境调控方法,其特征在于,所述第一涂层的厚度和所述第二涂层的厚度均为10nm—30nm。
8.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第一涂层的生成方法为等离子体激发沉积方法或者气体分子聚合沉积方法;
所述第二涂层的生成方法为所述等离子体激发沉积方法或者所述气体分子聚合沉积方法。
9.根据权利要求1所述的腔室环境调控方法,其特征在于,所述等离子体加工为等离子体刻蚀加工或者等离子体气相沉积加工。
10.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第一清洗气体为含氟元素的气体和含氧元素的气体中的一种或两种以上的混合气体。
11.根据权利要求1所述的腔室环境调控方法,其特征在于,所述第二清洗气体为含氯元素的气体、含氧元素的气体和含氮元素的气体中的一种或两种以上的混合气体。
CN201410186830.8A 2014-05-05 2014-05-05 腔室环境调控方法 Active CN105097485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410186830.8A CN105097485B (zh) 2014-05-05 2014-05-05 腔室环境调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410186830.8A CN105097485B (zh) 2014-05-05 2014-05-05 腔室环境调控方法

Publications (2)

Publication Number Publication Date
CN105097485A true CN105097485A (zh) 2015-11-25
CN105097485B CN105097485B (zh) 2017-09-01

Family

ID=54577648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410186830.8A Active CN105097485B (zh) 2014-05-05 2014-05-05 腔室环境调控方法

Country Status (1)

Country Link
CN (1) CN105097485B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316797A (zh) * 2017-05-25 2017-11-03 鲁汶仪器有限公司(比利时) 一种干法清洗工艺腔的方法
CN111364027A (zh) * 2018-12-25 2020-07-03 广东聚华印刷显示技术有限公司 原子层沉积腔室部件及其制备方法、以及原子层沉积设备
CN111524785A (zh) * 2020-06-03 2020-08-11 上海邦芯半导体设备有限公司 干法刻蚀腔的处理方法
CN112289669A (zh) * 2019-07-25 2021-01-29 中微半导体设备(上海)股份有限公司 一种在无晶圆的真空反应腔内镀膜的方法及晶圆处理方法
CN113403606A (zh) * 2021-05-17 2021-09-17 长鑫存储技术有限公司 改善膜层沉积工艺中首片效应的方法
CN113631513A (zh) * 2019-03-31 2021-11-09 美国陶氏有机硅公司 制备纳米粒子的方法
CN113936995A (zh) * 2021-12-17 2022-01-14 苏州长光华芯光电技术股份有限公司 一种半导体外延结构及其制备方法
CN115318755A (zh) * 2021-05-10 2022-11-11 中国科学院微电子研究所 一种等离子体掺杂工艺腔的清洁方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750211A (en) * 1991-05-17 1998-05-12 Lam Research Corporation Process for depositing a SiOx film having reduced intrinsic stress and/or reduced hydrogen content
JP2001250812A (ja) * 2000-03-08 2001-09-14 Sony Corp プラズマ処理の終点検出方法及び終点検出装置
EP1154038A1 (en) * 2000-05-12 2001-11-14 Applied Materials, Inc. Method of conditioning a chamber for chemical vapor deposition
TW200535277A (en) * 2004-03-30 2005-11-01 Tokyo Electron Ltd Method of improving the wafer to wafer uniformity and defectivity of a deposited dielectric film
CN101752207A (zh) * 2008-12-02 2010-06-23 中芯国际集成电路制造(上海)有限公司 消除干法刻蚀中溴化氢浓缩残留方法
CN102187436A (zh) * 2008-10-17 2011-09-14 朗姆研究公司 预涂布及无晶圆自动清洁系统与方法
TW201133605A (en) * 2010-03-16 2011-10-01 Hitachi High Tech Corp Plasma processing apparatus and plasma processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750211A (en) * 1991-05-17 1998-05-12 Lam Research Corporation Process for depositing a SiOx film having reduced intrinsic stress and/or reduced hydrogen content
JP2001250812A (ja) * 2000-03-08 2001-09-14 Sony Corp プラズマ処理の終点検出方法及び終点検出装置
EP1154038A1 (en) * 2000-05-12 2001-11-14 Applied Materials, Inc. Method of conditioning a chamber for chemical vapor deposition
TW200535277A (en) * 2004-03-30 2005-11-01 Tokyo Electron Ltd Method of improving the wafer to wafer uniformity and defectivity of a deposited dielectric film
CN102187436A (zh) * 2008-10-17 2011-09-14 朗姆研究公司 预涂布及无晶圆自动清洁系统与方法
CN101752207A (zh) * 2008-12-02 2010-06-23 中芯国际集成电路制造(上海)有限公司 消除干法刻蚀中溴化氢浓缩残留方法
TW201133605A (en) * 2010-03-16 2011-10-01 Hitachi High Tech Corp Plasma processing apparatus and plasma processing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316797A (zh) * 2017-05-25 2017-11-03 鲁汶仪器有限公司(比利时) 一种干法清洗工艺腔的方法
CN111364027A (zh) * 2018-12-25 2020-07-03 广东聚华印刷显示技术有限公司 原子层沉积腔室部件及其制备方法、以及原子层沉积设备
CN113631513A (zh) * 2019-03-31 2021-11-09 美国陶氏有机硅公司 制备纳米粒子的方法
CN112289669A (zh) * 2019-07-25 2021-01-29 中微半导体设备(上海)股份有限公司 一种在无晶圆的真空反应腔内镀膜的方法及晶圆处理方法
CN112289669B (zh) * 2019-07-25 2023-09-29 中微半导体设备(上海)股份有限公司 一种在无晶圆的真空反应腔内镀膜的方法及晶圆处理方法
CN111524785A (zh) * 2020-06-03 2020-08-11 上海邦芯半导体设备有限公司 干法刻蚀腔的处理方法
CN111524785B (zh) * 2020-06-03 2023-03-14 上海邦芯半导体科技有限公司 干法刻蚀腔的处理方法
CN115318755A (zh) * 2021-05-10 2022-11-11 中国科学院微电子研究所 一种等离子体掺杂工艺腔的清洁方法
CN115318755B (zh) * 2021-05-10 2024-04-12 中国科学院微电子研究所 一种等离子体掺杂工艺腔的清洁方法
CN113403606A (zh) * 2021-05-17 2021-09-17 长鑫存储技术有限公司 改善膜层沉积工艺中首片效应的方法
CN113936995A (zh) * 2021-12-17 2022-01-14 苏州长光华芯光电技术股份有限公司 一种半导体外延结构及其制备方法
CN113936995B (zh) * 2021-12-17 2022-03-04 苏州长光华芯光电技术股份有限公司 一种半导体外延结构及其制备方法

Also Published As

Publication number Publication date
CN105097485B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
CN105097485A (zh) 腔室环境调控方法
US20220367175A1 (en) Apparatus and method for removal of oxide and carbon from semiconductor films in a single processing chamber
CN105742157B (zh) 氧化锗预清洁模块和方法
KR100448291B1 (ko) 조합 화학물을 사용해서 반도체 제조 장비를 인시튜세정하기 위한 방법 및 장치
CN103890910B (zh) 等离子体活化保形电介质膜沉积的方法和装置
TW554418B (en) Method and device for cleaning chemical vapor deposition apparatus
CN106024673A (zh) 使用具有间歇恢复等离子体的ald氧化硅表面涂层来使自由基重组最小化
CN107146755A (zh) 使用等离子体和蒸气处理的组合对al2o3进行原子层蚀刻
US8974602B2 (en) Method of reducing contamination in CVD chamber
CN105448634B (zh) 一种腔室环境的控制方法
TWI508150B (zh) 用於沉積具有低界面汙染之層的方法
US10892143B2 (en) Technique to prevent aluminum fluoride build up on the heater
CN104752142B (zh) 调控等离子体反应腔室环境的方法
TW200536953A (en) Low temperature CVD chamber cleaning using dilute NF3
US20130025624A1 (en) Method of cleaning a semiconductor device manufacturing apparatus
JP2013046020A (ja) 炭化珪素成膜装置、及び炭化珪素除去方法
JP5888674B2 (ja) エッチング装置およびエッチング方法およびクリーニング装置
JP4320389B2 (ja) Cvdチャンバーのクリーニング方法およびそれに用いるクリーニングガス
JP5214316B2 (ja) プラズマ成膜装置のクリーニング方法
TWI753494B (zh) 一種在無晶圓的真空反應腔内鍍膜的方法及晶圓處理方法
CN208368468U (zh) 化学气相刻蚀设备
TW201606904A (zh) 用於蝕刻和腔室清洗之方法及用於該方法之氣體
JP7014477B1 (ja) 微細加工処理剤、及び微細加工処理方法
CN114761519B (zh) 微细加工处理剂、和微细加工处理方法
CN117425616A (zh) 制造微结构的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 100176 Beijing economic and Technological Development Zone, Wenchang Road, No. 8, No.

Patentee after: Beijing North China microelectronics equipment Co Ltd

Address before: 100176 Beijing economic and Technological Development Zone, Beijing, Wenchang Road, No. 8, No.

Patentee before: Beifang Microelectronic Base Equipment Proces Research Center Co., Ltd., Beijing