CN105047719B - 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管 - Google Patents

基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管 Download PDF

Info

Publication number
CN105047719B
CN105047719B CN201510490490.2A CN201510490490A CN105047719B CN 105047719 B CN105047719 B CN 105047719B CN 201510490490 A CN201510490490 A CN 201510490490A CN 105047719 B CN105047719 B CN 105047719B
Authority
CN
China
Prior art keywords
inasn
gaassb
staggered
source
raceway groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510490490.2A
Other languages
English (en)
Other versions
CN105047719A (zh
Inventor
韩根全
张春福
彭悦
汪银花
张进城
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510490490.2A priority Critical patent/CN105047719B/zh
Publication of CN105047719A publication Critical patent/CN105047719A/zh
Application granted granted Critical
Publication of CN105047719B publication Critical patent/CN105047719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

本发明公开了一种基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管,主要解决现有III‑V族材料制备场效应晶体管开态电流较低的问题。其包括衬底(1)、源极(2)、沟道(3)、漏极(4)、绝缘介电质薄膜(5)及栅电极(6)。源极采用N组分为(0,0.05]的InAsN复合材料;沟道和漏极均采用Sb组分为[0.35,0.65]的GaAsSb复合材料;在衬底上,源极、沟道、漏极形成自下而上竖直分布。本发明通过源极InAsN与沟道GaAsSb两种材料相互接触,形成交错型异质隧穿结,进而有效降了低隧穿势垒高度,增大隧穿几率和隧穿电流,提了器件的整体性能,可用于制作大规模集成电路。

Description

基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管
技术领域
本发明属于微电子器件技术领域,特别涉及一种交错型异质结隧穿场效应晶体管,可用于大规模集成电路。
背景技术
随着集成电路的发展,芯片特征尺寸不断缩小,单个芯片上集成度随之提高,由此带来的功耗问题也愈发严重。据ITRS数据显示,特征尺寸缩小到32nm节点时,功耗会是预计趋势的8倍,即随着特征尺寸的逐步缩小,传统MOS器件就功耗方面将不能满足性能需求。除此之外,MOSFET尺寸的减小面临室温下亚阈摆幅最小为60mv/decade的限制。然而基于量子隧穿效应的隧穿场效应晶体管TFET与MOSFET相比,不受该亚阈摆幅的限制,并且可以有效的降低功耗。对于TFET来说,如何增大隧穿几率和隧穿电流成为TFET的研究重点。理论和实验已经证明交错型异质结TFET比同质结TFET具有更高的隧穿电流和更好的器件性能。
III-V族材料具有较高的电子迁移率,且材料种类丰富,容易实现异质结,现已成功制备了许多高性能器件。目前已经得到的利用常见III-V族材料制成的TFET,由于其无法形成交错型异质结,隧穿几率较低,造成导通电流较小,很难达到性能要求。
发明内容
本发明的目的在于针对上述常见III-V族材料制备TFET时存在的不足,并结合InAsN特有的性质,提供一种InAsN-GaAsSb交错型异质结隧穿场效应晶体管TFET及其制备方法,以降低隧穿势垒,增大隧穿电流,提高器件的整体性能。
本发明的技术方案是这样实现的:
近期研究表明,在常见III-V族材料中引入N组分,可以有效改善材料性质,并形成交错型异质结,从而降低势垒,提升隧穿几率,增加导通电流,提升器件性能。实验数据证实,InAsN、GaAsSb两种材料能够用于形成交错型异质结。
根据此原理本发明基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管,包括:衬底、源极、沟道、漏极、绝缘介质薄膜和栅极,其特征在于:
源极采用通式为InAs1-xNx的复合材料,其中x为N组分,0<x≤0.05;
沟道采用通式为GaAs1-ySby的复合材料,其中y为Sb组分,0.35≤y≤0.65;
漏极采用通式为GaAs1-ySby的复合材料,其中y为Sb组分,0.35≤y≤0.65;
所述源极、沟道和漏极,在衬底上依次由下至上竖直分布,源极InAsN与沟道GaAsSb之间形成交错型异质隧穿结;
绝缘电介质薄膜与栅电极由内而外依次环绕覆盖在沟道的四周。
制作上述基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管,包括如下步骤:
1)利用分子束外延工艺,在InAs衬底上生长N组分为0~0.05的InAsN复合材料,形成源极层;
2)利用分子束外延工艺,在InAsN源极层上生长Sb组分为0.35~0.65的GaAsSb复合材料,形成沟道层;
3)利用分子束外延工艺,在GaAsSb沟道层上生长Sb组分为0.35~0.65的GaAsSb复合材料,形成漏极层;
4)利用刻蚀工艺,将源极层,沟道层,漏极层四周刻蚀掉,在中间形成源极区、沟道区、漏极区的竖直分布结构;
5)对源极区、沟道区、漏极区进行离子注入:
在源极区注入能量为20KeV、剂量为1019cm-3的Si元素,形成P+掺杂的源极;
在沟道区注入能量为20KeV、剂量为1015cm-3的Si元素,形成P-掺杂的沟道;
在漏极区注入能量为20KeV、剂量为1019cm-3的Te元素,形成N+掺杂漏极;
6)利用原子层淀积工艺,在240~260℃环境下,在沟道四周环绕依次生成绝缘介质薄膜和栅电极。
本发明具有如下优点:
本发明由于在InAs中引入N组分,改变了InAs材料的能带性质,同时由于源极采用InAsN复合材料,沟道采用GaAsSb复合材料,使得沟道与源极接触形成的交错型异质结隧穿势垒低,增大了隧穿几率,提高了导通电流,进而提高器件性能。
附图说明
图1为本发明基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管的XZ面剖面图;
图2为本发明制作图1场效应晶体管的流程示意图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合附图和实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
2.参照图1,本发明基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管包括:衬底1、源极2、沟道3、漏极4、绝缘介电质薄膜5及栅电极6。其中:
衬底1采用单晶InAs材料,源极2采用通式为InAs1-xNx的复合材料,式中x为N组分,0<x≤0.05;沟道3和漏极4采用通式为GaAs1-ySby的复合材料,式中y为Sb组分,0.35≤y≤0.65;该衬底1、源极2、沟道3、漏极4自下而上竖直分布,且源极2的禁带宽度Eg1大于沟道3的禁带宽度Eg2,在源极2与沟道3的接触处形成有效的交错型隧穿结;绝缘介质薄膜5和栅电极6依次环绕在沟道3的外围,即绝缘介电质薄膜5包裹在沟道3的外部,栅电极6包裹在绝缘介电质薄膜5的外部,形成由内而外逐层环绕包裹结构。
参照图2,本发明制作基于InAsN-GaAsSb材料的交错型异质结隧穿场效应晶体管的方法,给出如下三种实施例。
实施例1:制作基于InAs0.95N0.05-GaAs0.35Sb0.65材料的交错型异质结n沟道隧穿场效应晶体管。
步骤a:利用分子束外延工艺,在InAs衬底1上,以固体In、As和N作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长N组分为0.05的InAsN复合材料,形成源极层,如图2a。
步骤b:利用分子束外延工艺,在源极层上,以固体Ga、As和Sb作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长Sb组分为0.65的GaAsSb复合材料,形成沟道层,如图2b;
步骤c:利用分子束外延工艺,在沟道层上,以固体Ga、As和Sb作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长Sb组分为0.65的GaAsSb复合材料,形成漏极层,如图2c;
步骤d:利用刻蚀工艺,采用氯基原子团作为刻蚀剂,在光刻胶的掩蔽作用下,将源极层、沟道层和漏极层四周多余部分刻蚀,在中间形成自下而上的源极区、沟道区和漏极区竖直分布结构,如图2d
步骤e:对源极区、沟道区和漏极区进行离子注入:
在源极区中注入能量为20KeV、剂量为1019cm-3的Si元素,形成p+掺杂的源极2;
在沟道区中注入能量为20KeV、剂量为1015cm-3的Si元素,形成p-掺杂的沟道3;
在漏极区中注入能量为20KeV、剂量为1019cm-3的Te元素,形成n+掺杂漏极4,如图2e;
步骤f:利用原子层淀积工艺,在环境温度为240℃的N2、O2氛围下,先在沟道3四周环绕淀积绝缘电介质SiO2形成绝缘电介质薄膜5;再在绝缘电介质薄膜5的四周环绕淀积金属薄膜形成栅电极6,从而实现在沟道3四周环绕依次生成绝缘电介质薄膜5和栅电极6的结构,如图2f,完成器件制作。
实施例2:制作基于InAs0.97N0.03-GaAs0.5Sb0.5材料的交错型异质结p沟道隧穿场效应晶体管。
步骤1:利用分子束外延工艺,在InAs衬底1上,以固体In、As和N作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长N组分为0.03的InAsN复合材料,形成源极层,如图2a;
步骤2:利用分子束外延工艺,在源极层上,以固体Ga、As和Sb作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长Sb组分为0.5的GaAsSb复合材料,形成沟道层,如图2b;
步骤3:利用分子束外延工艺,在沟道层上,以固体Ga、As和Sb作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长Sb组分为0.5的GaAsSb复合材料,形成漏极层,如图2c;
步骤4:在中间形成源极区、沟道区和漏极区竖直分布的结构,如图2d。
本步骤的具体实现与实施例1的步骤d相同。
步骤5:对源极区、沟道区和漏极区进行离子注入:
在源极区中注入能量为20KeV、剂量为1019cm-3的Te元素,形成n+掺杂的源极2;
在沟道区中注入能量为20KeV、剂量为1015cm-3的Te元素,形成n-掺杂的沟道3;
在漏极区中注入能量为20KeV、剂量为1019cm-3的Si元素,形成p+掺杂漏极4,如图2e;
步骤6:利用原子层淀积工艺,设置环境为250℃以下,在N2、O2氛围下,先在沟道3四周环绕淀积绝缘电介质Al2O3形成绝缘电介质薄膜5;再在绝缘电介质薄膜5的四周环绕淀积金属薄膜形成栅电极6,从而实现在沟道3四周环绕依次生成绝缘电介质薄膜5和栅电极6的结构,如图2f,完成器件制作。
实施例3:制作基于InAs0.99N0.01-GaAs0.65Sb0.35材料的交错型异质结p沟道隧穿场效应晶体管
第一步:利用分子束外延工艺,在InAs衬底1上,以固体In、As和N作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长N组分为0.01的InAsN复合材料,形成源极层,如图2a;
第二步:利用分子束外延工艺,在源极层上,以固体Ga、As和Sb作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长Sb组分为0.35的GaAsSb复合材料,形成沟道层,如图2b;
第三步:利用分子束外延工艺,在沟道层上,以固体Ga、As和Sb作为蒸发源,在温度为725℃,压强为10-4pa条件下,生长Sb组分为0.35的GaAsSb复合材料,形成漏极层,如图2c;
第四步:在中间形成源极区、沟道区和漏极区竖直分布的结构,如图2d。
本步骤的具体实现与实施例1的步骤d相同。
第五步:对源极区、沟道区和漏极区进行离子注入,如图2e:
本步骤的具体实现与实施例2的步骤5相同。
第六步:利用原子层淀积工艺,在260℃的环境温度和NH3氛围下,先在沟道3四周环绕淀积绝缘电介质HfO2形成绝缘电介质薄膜5,再在HfO2绝缘电介质薄膜5的四周环绕淀积金属薄膜形成栅电极6,从而实现在沟道3四周环绕依次生成绝缘电介质薄膜5和栅电极6的结构,如图2f,完成器件制作。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.基于InAsN-GaAsSb材料的交错型隧穿场效应晶体管的制作方法,包括如下步骤:
1)利用分子束外延工艺,在InAs衬底(1)上生长N组分为0.01~0.05的InAsN复合材料,形成源极层;
2)利用分子束外延工艺,在InAsN源极层上生长Sb组分为0.35~0.65的GaAsSb复合材料,形成沟道层;
3)利用分子束外延工艺,在GaAsSb沟道层上生长Sb组分为0.35~0.65的GaAsSb复合材料,形成漏极层;
4)利用刻蚀工艺,将源极层、沟道层、漏极层四周的部分刻蚀掉,在中间形成源区、沟道区、漏区的竖直分布结构;
5)对源区、沟道区和漏区进行能量为20KeV的离子注入,即在源区中注入剂量为1019cm-3的Si元素,形成P+掺杂的源极(2),在沟道区中注入剂量为1015cm-3的Si元素,形成P-掺杂的沟道(3),在漏区中注入剂量为1019cm-3的Te元素,形成N+掺杂漏极(4);
6)利用原子层淀积工艺,在240~260℃环境下,在沟道(3)四周依次生成绝缘介质薄膜(5)和栅电极(6)。
2.如权利要求1所述的基于InAsN-GaAsSb材料的交错型隧穿场效应晶体管的制作方法:其中所述步骤1)的分子束外延工艺,是以固体In、As和N作为蒸发源,在10-4pa的压强下外延生长InAsN层。
3.如权利要求1所述的基于InAsN-GaAsSb材料的交错型隧穿场效应晶体管的制作方法:其中所述步骤2)和3)的分子束外延工艺,是以固体Ga、As和Sb作为蒸发源,在10-4pa的压强下外延生长GaAsSb层。
4.如权利要求1所述的基于InAsN-GaAsSb材料的交错型隧穿场效应晶体管的制作方法:其中所述步骤4)的刻蚀工艺,是利用氯基原子团,在光刻胶的掩蔽作用下,刻蚀InAsN、GaAsSb。
5.如权利要求1所述的基于InAsN-GaAsSb材料的交错型隧穿场效应晶体管的制作方法:其中所述步骤5)的离子注入工艺,是通过分别注入Te和Si元素形成n型和p型区域。
CN201510490490.2A 2015-08-11 2015-08-11 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管 Active CN105047719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510490490.2A CN105047719B (zh) 2015-08-11 2015-08-11 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510490490.2A CN105047719B (zh) 2015-08-11 2015-08-11 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管

Publications (2)

Publication Number Publication Date
CN105047719A CN105047719A (zh) 2015-11-11
CN105047719B true CN105047719B (zh) 2018-03-06

Family

ID=54454107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510490490.2A Active CN105047719B (zh) 2015-08-11 2015-08-11 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管

Country Status (1)

Country Link
CN (1) CN105047719B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552120A (zh) * 2015-12-15 2016-05-04 西安电子科技大学 基于GaAsBi-Ga(In)AsN材料的交错型异质结隧穿场效应晶体管
CN107104140B (zh) * 2017-06-15 2019-09-13 北京大学 一种二维材料/半导体异质结隧穿晶体管及制备方法
CN107248530B (zh) * 2017-06-15 2019-09-13 北京大学 一种二维材料/半导体异质结垂直隧穿晶体管及制备方法
CN112397581B (zh) * 2020-11-18 2022-06-10 光华临港工程应用技术研发(上海)有限公司 隧道场效应晶体管及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034866A (zh) * 2009-09-24 2011-04-27 台湾积体电路制造股份有限公司 集成电路结构
CN103262249A (zh) * 2010-12-17 2013-08-21 英特尔公司 隧道场效应晶体管
CN104051528A (zh) * 2013-03-13 2014-09-17 台湾积体电路制造股份有限公司 带内隧道fet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825506B2 (en) * 2002-11-27 2004-11-30 Intel Corporation Field effect transistor and method of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034866A (zh) * 2009-09-24 2011-04-27 台湾积体电路制造股份有限公司 集成电路结构
CN103262249A (zh) * 2010-12-17 2013-08-21 英特尔公司 隧道场效应晶体管
CN104051528A (zh) * 2013-03-13 2014-09-17 台湾积体电路制造股份有限公司 带内隧道fet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
71 mV/dec of Sub-threshold Slope in Vertical Tunnel Field-effect Transistors with GaAsSb/InGaAs Heterostructure;Motohiko&#8226;FUJIMATSU等;《2012 International Conference on Indium Phosphide and Related Materials》;20120830;第25-28页,图1-6 *
P-HFET"s WITH GaAsSb CHANNEL;J. Tantillo等;《Proceedings., IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits》;19891231;第316-320页 *

Also Published As

Publication number Publication date
CN105047719A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
CN102272933B (zh) 隧道场效应晶体管及其制造方法
US6770902B2 (en) Charge carrier extracting transistor
CN103094338B (zh) 半导体器件及其制造方法
CN103311306A (zh) 带有InAlP盖层的GeSn沟道金属氧化物半导体场效应晶体管
CN105047719B (zh) 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管
CN102054870A (zh) 一种半导体结构及其形成方法
CN102142461B (zh) 栅控肖特基结隧穿场效应晶体管及其形成方法
CN102931231A (zh) 一种高迁移率iii-v族半导体mos场效应晶体管
CN102324436B (zh) 大失配硅基衬底锑化物高电子迁移率晶体管及制造方法
CN104992942A (zh) 垂直层叠应变Si/SiGe异质结CMOS器件结构及其制备方法
CN102214684A (zh) 一种具有悬空源漏的半导体结构及其形成方法
CN102916048A (zh) 一种基于体硅材料的无结硅纳米线晶体管及其制备方法
CN108198855A (zh) 半导体元件、半导体基底及其形成方法
CN105518864A (zh) 半导体元件及其制造方法、以及半导体集成电路
WO2012142781A1 (zh) 隧穿电流放大晶体管
CN102194827A (zh) 一种基于高介电常数材料的抗辐照soi器件及制备方法
CN105633147A (zh) 隧穿场效应晶体管及其制造方法
CN106952952B (zh) 一种iii-v cmos型赝配异质结场效应晶体管
CN106098765B (zh) 一种增加电流开关比的隧穿场效应晶体管
CN104576723B (zh) 一种具有高开态电流的n型隧穿场效应晶体管
CN103730507A (zh) 双轴张应变GeSnn沟道金属氧化物半导体场效应晶体管
CN104638002A (zh) 场效应晶体管、半导体器件及其制造方法
CN102354708B (zh) 具有悬空源漏的隧穿场效应晶体管结构及其形成方法
CN103681868B (zh) 带有源漏应变源的GeSn n沟道金属氧化物半导体场效应晶体管
CN105140286B (zh) 基于GaAsN‑GaAsSb 材料的II型异质结隧穿场效应晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant