A kind of contrast anti-interference corner reflector laser interferometer and scaling method and measuring method
Technical field
The present invention relates to a kind of Precision Inspection and instrument field, particularly the contrast anti-interference corner reflector laser interferometer of one and scaling method and measuring method.
Background technology
The appearance of laser instrument, makes ancient interference technique be developed rapidly, and laser has that brightness is high, good directionality, monochromaticity and the feature such as coherence is good, and laser interferometry techniques is comparative maturity.Laser interferometry system is applied widely: the measurement of accurate length, angle is as the detection of linear scale, grating, gauge block, precision lead screw; Position detecting system in exact instrument is as the control of precision optical machinery, correction; Position detecting system in large scale integrated circuit specialized equipment and detecting instrument; Minute sized measurement etc.At present, in most of laser interference length-measuring system, all have employed Michelson interferometer or similar light channel structure, such as, single frequency laser interferometer conventional at present.
Single frequency laser interferometer is the light beam sent from laser instrument, after beam-expanding collimation, be divided into two-way by spectroscope, and reflects can be combined in spectroscope from stationary mirror and moving reflector respectively and produce interference fringe.When moving reflector moves, the light intensity change of interference fringe is converted to electric impulse signal by the photo-electric conversion element in receiver and electronic circuit etc., after shaping, amplification, input up-down counter calculate overall pulse number N, calculating formula L=N × λ/2 are pressed again by robot calculator, in formula, λ is optical maser wavelength, calculates the displacement L of moving reflector.
In actual use, present inventor finds, above-mentioned measurement structure and measuring method still also exist deficiency:
Also there is serious problem affected by environment in current single frequency laser interferometer, when laser interferometer moveable mirror moves, the light intensity change of interference fringe is converted to electric impulse signal by the photo-electric conversion element in receiver and electronic circuit etc., when for the strongest constructive interference, the triggering level that signal exceedes counter goes on record, if environment changes, such as air turbulence, in air, impurity increases, lathe mist of oil, add the impact of cutting swarf on laser beam in man-hour, the intensity of laser beam is reduced, now, even there is the strongest constructive interference, also likely intensity is not counted lower than the triggering level of counter.
So, based on above-mentioned deficiency, need one at present badly and namely can environment resistant disturb, the laser interferometer of measuring accuracy can be improved again.
Summary of the invention
The object of the invention is to the deficiency for current laser interferometer environment resistant interference performance difference, provide a kind of can environment resistant interference laser interferometer.
In order to realize foregoing invention object, the invention provides following technical scheme:
A kind of contrast anti-interference corner reflector laser interferometer, include lasing light emitter, fixed angles catoptron, interferometry photodetector, angle of critical deformation catoptron and spectroscope group, the laser beam of described lasing light emitter injection is divided into the first laser beam and the second laser beam after described spectroscope group, fixed angles catoptron described in first laser beam directive, spectroscope group described in directive again after the reflection of described fixed angles catoptron, interferometry photodetector described in directive after spectroscope group again, angle of critical deformation catoptron described in second laser beam directive, spectroscope group described in directive again after the reflection of described angle of critical deformation catoptron, interferometry photodetector described in directive after spectroscope group, first laser beam and the second laser beam are interfering during interferometry photodetector described in directive, described laser interferometer also includes reflection measurement photodetector, described second laser beam is also formed with reflection lasering beam after by spectroscope group described in described angle of critical deformation catoptron directive, reflection measurement photodetector described in described reflection lasering beam directive.
As further preferred version, described spectroscope group includes the first spectroscope and the second spectroscope, the laser beam of described lasing light emitter injection is first mapped to the first spectroscope, the first laser beam is formed through the first dichroic mirror, the second laser beam is formed through the first spectroscope transmission, fixed angles catoptron described in first laser beam directive, first spectroscope described in directive again after reflection, and then transmitted through described first spectroscope, angle of critical deformation catoptron described in described second laser beam directive, the second spectroscope described in directive after described angle of critical deformation catoptron reflection, the first spectroscope described in directive after described second spectroscope transmission, and interfere with the first laser beam transmitted from described first spectroscope, interferometry photodetector described in directive after formation interfering beam, also described reflection lasering beam is formed by described second dichroic mirror by second spectroscopical described second laser beam described in described angle of critical deformation catoptron directive.
The laser interferometer of the application, because reflection measurement photodetector can measure the intensity of angle of critical deformation catoptron reflection lasering beam, according to the interference state of the intensity determination laser interference light beam of reflection lasering beam, so realizes the object of environment resistant interference.
As further preferred version, the laser beam in described lasing light emitter, fixed angles catoptron, interferometry photodetector, spectroscope group, reflection measurement photodetector between any two is arranged in enclosure space and does not contact with Outdoor Space.In this application, laser beam between any two of lasing light emitter, fixed angles catoptron, interferometry photodetector, spectroscope group and these parts of reflection measurement photodetector is arranged in enclosure space, make carrying out in the process measured, laser beam between these parts above-mentioned can't be subject to the impact of environmental factor, and then ensure that the measuring accuracy of the application's laser interferometer.
As further preferred version, the laser beam between described spectroscope group and described angle of critical deformation catoptron is exposed among surrounding air.When reality uses, angle of critical deformation catoptron is arranged on testee, move with testee, so in this application, laser beam between spectroscope group and angle of critical deformation catoptron is exposed among surrounding air, first be make the application's laser interferometer structure simple, also facilitate the layout of the application's laser interferometer simultaneously.
Disclosed herein as well is a kind of scaling method for above-mentioned laser interferometer structure,
For a scaling method for contrast anti-interference corner reflector laser interferometer, comprise the steps:
Step one, position adjustment: the position of adjusting lasing light emitter, fixed angles catoptron, spectroscope group, interferometry photodetector, reflection measurement photodetector and angle of critical deformation catoptron;
Step 2, adjustment light path: start described lasing light emitter, the position of further accurate adjustment fixed angles catoptron, spectroscope group, interferometry photodetector, reflection measurement photodetector and angle of critical deformation catoptron, makes the light path of laser interferometer reach designing requirement;
Step 3, generate and the most capable and experiencedly relate to database: mobile described angle of critical deformation catoptron under the environment of air cleaning, when the interfering beam of interferometry photodetector described in directive fixes described angle of critical deformation catoptron for during the strongest constructive interference, record now reflection measurement photodetector reading and interferometry photodetector reading, changing air ambient makes described reflection measurement photodetector reading change, record the interferometry photodetector reading of several reflection measurement photodetector readings and correspondence simultaneously, obtain the most capable and experiencedly relating to database.
The laser interferometer structure of the application and scaling method, when the strongest constructive interference, change measurement environment, record reflection measurement photodetector reading and interferometry photodetector reading form the most capable and experienced database that relates to, in actual measurement process, if exist when to cause interferometry photodetector the strongest constructive interference normally can not be detected due to environmental factor, can compare with the most capable and experienced data related in database according to reflection measurement photodetector reading and interferometry photodetector reading, if have matched data, then this position is the strongest constructive interference, the laser interferometer of the application is so made to realize the ability of environment resistant interference.
As further preferred version, the scaling method of the application also includes step 4, generate the most weak interference data storehouse: mobile described angle of critical deformation catoptron under the environment of air cleaning, when the interfering beam of interferometry photodetector described in directive fixes described angle of critical deformation catoptron for during the most weak destructive interference, record now reflection measurement photodetector reading and interferometry photodetector reading, changing air ambient makes described reflection measurement photodetector reading change, record the interferometry photodetector reading of several reflection measurement photodetector readings and correspondence simultaneously, obtain the most weak interference data storehouse.
As further preferred version, also include step 5, generate 1/n wavelength-interferometric database, n be greater than or etc. 2 positive integer: mobile described angle of critical deformation catoptron under the environment of air cleaning, when the interfering beam of interferometry photodetector described in directive is the strongest constructive interference, continue the distance of mobile 1/2n wavelength again, record now reflection measurement photodetector reading and interferometry photodetector reading, then changing air ambient makes described reflection measurement photodetector reading change, record the interferometry photodetector reading of several reflection measurement photodetector readings and correspondence simultaneously, obtain 1/n wavelength-interferometric database.
When two bundle laser interfere, optical path difference between the strongest adjacent constructive interference and the most weak destructive interference is half wavelength, in the scaling method of the application, to the strongest constructive interference, the most weak destructive interference, 1/n wavelength-interferometric is all demarcated, that is, when adopting the laser interferometer of the application to carry out actual measurement, can according to reflection measurement photodetector reading and interferometry photodetector reading and the most capable and experienced database that relates to, the most weak interference data storehouse, data in 1/n wavelength-interferometric database are compared, determine that this position is the strongest constructive interference according to the match condition of data, the most weak destructive interference or 1/n wavelength-interferometric.The laser interferometer of the application environment resistant can not only be disturbed, but also improve measuring accuracy.
The invention also discloses a kind of measuring method adopting above-mentioned laser interferometer and scaling method,
A kind of measuring method adopting above-mentioned contrast anti-interference corner reflector laser interferometer and above-mentioned scaling method:
In actual measurement environment, if the signal reading that described reflection measurement photodetector measures is x, the signal reading that the measurement of described interferometry photodetector obtains is y, by x value and y value at the most capable and experienced database that relates to, the most weak interference data storehouse, compare in 1/n wavelength-interferometric database, when x value and y value match with the most capable and experienced a certain class value related in database, then think that this position is the strongest constructive interference position, when x value and y value match with a certain class value in the most weak interference data storehouse, then think that this position is the most weak destructive interference position, when a certain class value in x value and y value and 1/n wavelength-interferometric database matches, then think that this position is 1/n wavelength-interferometric position.
The measuring method of the application, determines the interference situation of current interfering beam by x value and y value, realize the ability of environment resistant interference, also improve measuring accuracy simultaneously with this.
As further preferred version, the matching threshold △ of setting y value, database is related to if the most capable and experienced, the most weak interference data storehouse, the numerical value that in 1/n wavelength-interferometric database, interferometry photodetector is corresponding is y ', according to x value to the most capable and experienced database that relates to, the most weak interference data storehouse, 1/n wavelength-interferometric database carries out the inquiry of y ', if there is y ' to make | y-y'|< △, distinguish the database at y ' place again, if y ' relates in database the most capable and experienced, then think that this position is the strongest constructive interference position, if y ' is in the most weak interference data storehouse, then think that this position is the most weak destructive interference position, if y ' is in 1/n wavelength-interferometric database, then think that this position is 1/n wavelength-interferometric position.
As further preferred version, database is related to if the most capable and experienced, the most weak interference data storehouse, the numerical value that in 1/n wavelength-interferometric database, reflection measurement photodetector is corresponding is x ', in actual measurement, select closest to the x ' of actual measured value x as matching value, according to x ' value to the most capable and experienced database that relates to, the most weak interference data storehouse, 1/n wavelength-interferometric database carries out y ' to be inquired about, if there is y ' to make | y-y'|< △, distinguish the database at y ' place again, if y ' relates in database the most capable and experienced, then think that this position is the strongest constructive interference position, if y ' is in the most weak interference data storehouse, then think that this position is the most weak destructive interference position, if y ' is in 1/n wavelength-interferometric database, then think that this position is 1/n wavelength-interferometric position.
As further preferred version, the size of described matching threshold △ ensures when carrying out data query, when meeting | during y-y'|< △, y ' is unique value.When matching threshold △ is larger, may occur that one group of x value and y value match two groups or organize x ' value and y ' value more, make troubles to measurement, so first matching threshold △, make one group of x value and y value coupling one group of x ' value and y ' value at most in measuring process, be convenient for measuring.
As further preferred version, the size of described matching threshold △ sets according to the accuracy requirement of actual measurement, when the high-precision measured value of needs, adopts less matching threshold, when not needing high-acruracy survey value, adopts larger matching threshold.
As further preferred version, if △=5%.
In the measuring method of the application, by arranging matching threshold △, needing according to Surveying Actual Precision the size that matching threshold △ is set, being convenient for measuring in process with this, the match selection of data, reduce and measure difficulty.
Compared with prior art, beneficial effect of the present invention:
By arranging reflection measurement photodetector, after laser interferometry environment changes, can by measuring angle of critical deformation catoptron reflects laser intensity, the no longer direct signal magnitude by interferometry photodetector of laser interference state is determined, but jointly determined by reflection measurement photodetector and interferometry photodetector, greatly can improve the antijamming capability of laser interferometer.
The beneficial effect of other embodiments of the application:
The laser interferometer of the application, the position of the strongest constructive interference can not only be determined, but also position and the 1/n wavelength-interferometric position of the most weak destructive interference can be determined, so, the laser interferometer of the application environment resistant can not only be disturbed, but also improve measuring accuracy.
Accompanying drawing illustrates:
Fig. 1 is the light path schematic diagram of laser interferometer structure of the present invention,
Mark in figure:
1-lasing light emitter, 2-fixed angles catoptron, 3-angle of critical deformation catoptron, 4-interferometry photodetector, 5-spectroscope group, 6-reflection measurement photodetector, 7-first laser beam, 8-second laser beam, 9-reflection lasering beam, 51-first spectroscope, 52-second spectroscope.
Embodiment
Below in conjunction with test example and embodiment, the present invention is described in further detail.But this should be interpreted as that the scope of the above-mentioned theme of the present invention is only limitted to following embodiment, all technology realized based on content of the present invention all belong to scope of the present invention.
Embodiment 1, contrast anti-interference corner reflector laser interferometer, include lasing light emitter 1, fixed angles catoptron 2, interferometry photodetector 4, angle of critical deformation catoptron 3 and spectroscope group 5, the laser beam that described lasing light emitter 1 penetrates is divided into the first laser beam 7 and the second laser beam 8 after described spectroscope group 5, fixed angles catoptron 2 described in first laser beam 7 directive, spectroscope group 5 described in directive again after described fixed angles catoptron 2 reflects, interferometry photodetector 4 described in directive after spectroscope group 5 again, angle of critical deformation catoptron 3 described in second laser beam 8 directive, spectroscope group 5 described in directive again after described angle of critical deformation catoptron 3 reflects, interferometry photodetector 4 described in directive after spectroscope group 5, first laser beam 7 and the second laser beam 8 are interfering during interferometry photodetector 4 described in directive, described laser interferometer also includes reflection measurement photodetector 6, described second laser beam 8 is also formed with reflection lasering beam 9 after by spectroscope group 5 described in described angle of critical deformation catoptron 3 directive, reflection measurement photodetector 6 described in described reflection lasering beam 9 directive.
As the preferred version of the present embodiment, described spectroscope group 5 includes the first spectroscope 51 and the second spectroscope 52, the laser beam that described lasing light emitter 1 penetrates first is mapped to the first spectroscope 51, the first laser beam 7 is reflected to form through the first spectroscope 51, the second laser beam 8 is formed through the first spectroscope 51 transmission, fixed angles catoptron 2 described in first laser beam 7 directive, first spectroscope 51 described in directive again after reflection, and then transmitted through described first spectroscope 51, angle of critical deformation catoptron 3 described in described second laser beam 8 directive, the second spectroscope 52 described in directive after described angle of critical deformation catoptron 3 reflects, the first spectroscope 51 described in directive after described second spectroscope 52 transmission, and interfere with the first laser beam 7 transmitted from described first spectroscope 51, interferometry photodetector 4 described in directive after formation interfering beam, also described reflection lasering beam 9 is reflected to form by described second spectroscope 52 by described second laser beam 8 of the second spectroscope 52 described in described angle of critical deformation catoptron 3 directive.
The laser interferometer of the present embodiment, because reflection measurement photodetector 6 can measure the intensity of angle of critical deformation catoptron 3 reflection lasering beam, according to the interference state of the intensity determination laser interference light beam of reflection lasering beam, so realizes the object of environment resistant interference.
As further preferred version, the laser beam in described lasing light emitter 1, fixed angles catoptron 2, interferometry photodetector 4, spectroscope group 5, reflection measurement photodetector 6 between any two is arranged in enclosure space and does not contact with Outdoor Space.In this application, laser beam between any two of lasing light emitter 1, fixed angles catoptron 2, interferometry photodetector 4, spectroscope group 5 and these parts of reflection measurement photodetector 6 is arranged in enclosure space, make carrying out in the process measured, laser beam between these parts above-mentioned can't be subject to the impact of environmental factor, and then ensure that the measuring accuracy of the application's laser interferometer.
As further preferred version, the laser beam between described spectroscope group 5 and described angle of critical deformation catoptron 3 is exposed among surrounding air.When reality uses, angle of critical deformation catoptron 3 is arranged on testee, move with testee, so in this application, laser beam between spectroscope group 5 and angle of critical deformation catoptron 3 is exposed among surrounding air, first be make the application's laser interferometer structure simple, also facilitate the layout of the application's laser interferometer simultaneously.
Embodiment 2, for the scaling method of above-mentioned laser interferometer structure,
For a scaling method for contrast anti-interference corner reflector laser interferometer, comprise the steps:
Step one, position adjustment: the position of adjusting lasing light emitter 1, fixed angles catoptron 2, spectroscope group 5, interferometry photodetector 4, reflection measurement photodetector 6 and angle of critical deformation catoptron 3;
Step 2, adjustment light path: start described lasing light emitter 1, the position of further accurate adjustment fixed angles catoptron 2, spectroscope group 5, interferometry photodetector 4, reflection measurement photodetector 6 and angle of critical deformation catoptron 3, makes the light path of laser interferometer reach designing requirement;
Step 3, generate and the most capable and experiencedly relate to database: mobile described angle of critical deformation catoptron 3 under the environment of air cleaning, when the interfering beam of interferometry photodetector 4 described in directive fixes described angle of critical deformation catoptron 3 for during the strongest constructive interference, record now reflection measurement photodetector 6 reading and interferometry photodetector 4 reading, changing air ambient makes described reflection measurement photodetector 6 reading change, record interferometry photodetector 4 reading of several reflection measurement photodetector 6 readings and correspondence simultaneously, obtain the most capable and experiencedly relating to database.
The laser interferometer structure of the present embodiment and scaling method, when the strongest constructive interference, change measurement environment, record reflection measurement photodetector 6 reading and interferometry photodetector 4 reading form the most capable and experienced database that relates to, in actual measurement process, if exist when to cause interferometry photodetector 4 the strongest constructive interference normally can not be detected due to environmental factor, can compare with the most capable and experienced data related in database according to reflection measurement photodetector 6 reading and interferometry photodetector 4 reading, if have matched data, then this position is the strongest constructive interference, the laser interferometer of the present embodiment is so made to realize the ability of environment resistant interference.
As the preferred version of the present embodiment, the scaling method of the present embodiment also includes step 4, generate the most weak interference data storehouse: mobile described angle of critical deformation catoptron 3 under the environment of air cleaning, when the interfering beam of interferometry photodetector 4 described in directive fixes described angle of critical deformation catoptron 3 for during the most weak destructive interference, record now reflection measurement photodetector 6 reading and interferometry photodetector 4 reading, changing air ambient makes described reflection measurement photodetector 6 reading change, record interferometry photodetector 4 reading of several reflection measurement photodetector 6 readings and correspondence simultaneously, obtain the most weak interference data storehouse.
As further preferred version, the scaling method of the application also includes step 5, generate 1/n wavelength-interferometric database, n be greater than or etc. 2 positive integer: mobile described angle of critical deformation catoptron 3 under the environment of air cleaning, when the interfering beam of interferometry photodetector 4 described in directive is the strongest constructive interference, continue the distance of mobile 1/2n wavelength again, record now reflection measurement photodetector 6 reading and interferometry photodetector 4 reading, then changing air ambient makes described reflection measurement photodetector 6 reading change, record interferometry photodetector 4 reading of several reflection measurement photodetector 6 readings and correspondence simultaneously, obtain 1/n wavelength-interferometric database.
When two bundle laser interfere, optical path difference between the strongest adjacent constructive interference and the most weak destructive interference is half wavelength, in the scaling method of the application, to the strongest constructive interference, the most weak destructive interference, 1/n wavelength-interferometric is all demarcated, that is, when adopting the laser interferometer of the application to carry out actual measurement, can according to reflection measurement photodetector 6 reading and interferometry photodetector 4 reading and the most capable and experienced database that relates to, the most weak interference data storehouse, data in 1/n wavelength-interferometric database are compared, determine that this position is the strongest constructive interference according to the match condition of data, the most weak destructive interference or 1/n wavelength-interferometric.The laser interferometer of the application environment resistant can not only be disturbed, but also improve measuring accuracy.
Embodiment 3, adopts the measuring method of above-mentioned laser interferometer and scaling method,
The measuring method of the contrast anti-interference corner reflector laser interferometer of a kind of above-mentioned employing and above-mentioned scaling method:
In actual measurement environment, if the signal reading that described reflection measurement photodetector 6 measures is x, the signal reading obtained measured by described interferometry photodetector 4 is y, by x value and y value at the most capable and experienced database that relates to, the most weak interference data storehouse, compare in 1/n wavelength-interferometric database, when x value and y value match with the most capable and experienced a certain class value related in database, then think that this position is the strongest constructive interference position, when x value and y value match with a certain class value in the most weak interference data storehouse, then think that this position is the most weak destructive interference position, when a certain class value in x value and y value and 1/n wavelength-interferometric database matches, then think that this position is 1/n wavelength-interferometric position.
The measuring method of the present embodiment, determines the interference situation of current interfering beam by x value and y value, realize the ability of environment resistant interference, also improve measuring accuracy simultaneously with this.
As the preferred version of the present embodiment, the matching threshold △ of setting y value, database is related to if the most capable and experienced, the most weak interference data storehouse, the numerical value that in 1/n wavelength-interferometric database, interferometry photodetector is corresponding is y ', according to x value to the most capable and experienced database that relates to, the most weak interference data storehouse, 1/n wavelength-interferometric database carries out the inquiry of y ', if there is y ' to make | y-y'|< △, distinguish the database at y ' place again, if y ' relates in database the most capable and experienced, then think that this position is the strongest constructive interference position, if y ' is in the most weak interference data storehouse, then think that this position is the most weak destructive interference position, if y ' is in 1/n wavelength-interferometric database, then think that this position is 1/n wavelength-interferometric position.
As further preferred version, database is related to if the most capable and experienced, the most weak interference data storehouse, the numerical value that in 1/n wavelength-interferometric database, reflection measurement photodetector is corresponding is x ', in actual measurement, select closest to the x ' of actual measured value x as matching value, according to x ' value to the most capable and experienced database that relates to, the most weak interference data storehouse, 1/n wavelength-interferometric database carries out y ' to be inquired about, if there is y ' to make | y-y'|< △, distinguish the database at y ' place again, if y ' relates in database the most capable and experienced, then think that this position is the strongest constructive interference position, if y ' is in the most weak interference data storehouse, then think that this position is the most weak destructive interference position, if y ' is in 1/n wavelength-interferometric database, then think that this position is 1/n wavelength-interferometric position.
As the preferred version of the present embodiment, the size of described matching threshold △ ensures when carrying out data query, when meeting | during y-y'|< △, y ' is unique value.When matching threshold △ is larger, may occur that one group of x value and y value match two groups or organize x ' value and y ' value more, make troubles to measurement, so first matching threshold △, make one group of x value and y value coupling one group of x ' value and y ' value at most in measuring process, be convenient for measuring.
As the preferred version of the present embodiment, the size of described matching threshold △ sets according to the accuracy requirement of actual measurement, when the high-precision measured value of needs, adopts less matching threshold, when wishing comparatively fast to measure when not needing high-acruracy survey value, adopt larger matching threshold.
As further preferred version, if △=5%.
In the measuring method of the present embodiment, by arranging matching threshold △, needing according to Surveying Actual Precision the size that matching threshold △ is set, being convenient for measuring in process with this, the match selection of data, reduce and measure difficulty.
Above embodiment only in order to the present invention is described and and unrestricted technical scheme described in the invention, although this instructions with reference to each above-mentioned embodiment to present invention has been detailed description, but the present invention is not limited to above-mentioned embodiment, therefore anyly the present invention is modified or equivalent to replace; And all do not depart from technical scheme and the improvement thereof of the spirit and scope of invention, it all should be encompassed in the middle of right of the present invention.