CN104981551B - 具有优异可成形性和疲劳性能的高强度热轧钢带材或片材以及生产所述钢带材或片材的方法 - Google Patents

具有优异可成形性和疲劳性能的高强度热轧钢带材或片材以及生产所述钢带材或片材的方法 Download PDF

Info

Publication number
CN104981551B
CN104981551B CN201480008097.9A CN201480008097A CN104981551B CN 104981551 B CN104981551 B CN 104981551B CN 201480008097 A CN201480008097 A CN 201480008097A CN 104981551 B CN104981551 B CN 104981551B
Authority
CN
China
Prior art keywords
sheet material
steel band
tensile strength
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480008097.9A
Other languages
English (en)
Other versions
CN104981551A (zh
Inventor
R·A·赖肯伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Steel Ijmuiden BV
Original Assignee
Tata Steel Ijmuiden BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Steel Ijmuiden BV filed Critical Tata Steel Ijmuiden BV
Publication of CN104981551A publication Critical patent/CN104981551A/zh
Application granted granted Critical
Publication of CN104981551B publication Critical patent/CN104981551B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明涉及一种具有570至870MPa的拉伸强度和总体延伸率、拉伸翻边可成形性、以及耐疲劳性的优异组合的热轧钢带材或片材的方法以及生产所述钢带材或片材或者由其制成的底盘部件的方法。

Description

具有优异可成形性和疲劳性能的高强度热轧钢带材或片材以 及生产所述钢带材或片材的方法
本发明涉及一种具有570至870MPa的拉伸强度和总体延伸率、拉伸翻边可成形性、以及耐疲劳性的高强度热轧钢带材或片材以及生产所述钢带材或片材的方法。
在提高的强度下可成形性的提高对于广泛的市场来说是所需的。特别是在汽车工业中(其中立法正在驱动燃料经济性和安全性的改进),有朝着较强的、可成形的高强度钢的走向。高强度和超高强度钢带材为汽车制造商提供了重量下降的车辆结构的潜力以及对抗由朝着电动和混合动力车辆的走向所引起的重量增加的可能。另外,高强度和超高强度钢在决定现代乘用车的性能和防撞性中起到关键的作用。
近些年来,已开发出所谓的多相钢以满足对于高强度和可成形性的需求。这种钢,包括双相(DP)钢(包含铁素体和马氏体)和相变诱发塑性(TRIP)钢(包含铁素体、贝氏体和残留奥氏体),提供了在高强度下高的均匀及总体的延伸率。
尽管对于许多应用,可认为拉伸延伸率是可成形性的一个主要指标,但其它参数对于一些成形路线和服务中的性能可为关键的。特别地,高的拉伸边缘延展性(可扩孔性(hole expansibility))对于在白车身和底盘及悬架中的广泛应用可为至关重要的。常规的多相显微组织(例如在DP和TRIP钢中发现的那些,包含硬相和软相的混合物同时提供高的拉伸延伸率)通常在拉伸边缘延展性测试中表现差。
更多最近的努力已致力于开发新种类的钢,为此显著改进拉伸边缘延展性。设计此类钢包括纳米析出的铁素体钢、铁素体-贝氏体钢、复相钢和所谓的第三代AHSS(先进高强度钢)以寻找拉伸延展性和拉伸边缘延展性之间的较好平衡。复相钢是这些变体在冷轧退火和热轧条件下都被商业利用最多的钢。
复相钢的显微组织包含铁素体与贝氏体和马氏体。与DP钢相比,这种组织展示出极大改进的拉伸边缘延展性,但是以牺牲一些拉伸延展性为代价。然而,在一些情况下,用拉伸延展性交换拉伸边缘延展性是许可的。实例包括辊轧成形的部件(其中需要可弯曲性而不是可拉伸性)、由坯材成形的零件(其中已预冲孔)、用于在压锻成形期间导致高的边缘变形的设计的部件。
在成形前,复相钢还通常展示出比DP或TRIP钢更高的屈服强度。在成形前的高屈服比对于辊轧成形中的形状控制、在经受有限的变形的成形零件中实现所需的强度以及在整个成形零件中实现均匀的强度也可为有利的。高屈服强度在碰撞中也可为有益的。显微组织的较大均匀性和高屈服强度在疲劳性能(其在底盘和悬架应用中特别重要)方面也可为有益的。
热轧CP钢的复杂性能要求热轧轧机工艺条件的严格控制。三种相必须在输出辊道上或在盘管上成形。不能实现所需的复杂冷却方式可导致从卷材到卷材以及在卷材之中的机械性质的不可接受的变化。对工艺变化不敏感并且能使卷材到卷材以及在卷材之中的性质一致的化学组成对于商业CP钢的生产是主要的要求。
EP1338665公开了用于此目的的钛-钼钢。钼是一种昂贵的合金化元素,且需要在集成的钢铁厂中分离废料,以防止含钼废料重新引入到钢循环中,这对于生产高r值的冷轧包装钢是不利的。在EP 2267175中提供了仅钛的解决方案。然而,钛的使用对于常规热轧制需要热装。此外,大的钛基夹杂物可能损害拉伸翻边可成形性以及劣化疲劳性能。此外,钛基钢组合物对于在紧凑的生产(CSP)设备(其中整合了铸造和热轧)上钢生产不太适合。原因是在CSP生产线铸造期间钛导致堵塞。
本发明的目的是提供一种具有拉伸强度、总体延伸率、拉伸翻边可成形性和耐疲劳性的优异组合而不用钼作合金化元素的高强度热轧钢带材或片材。关于拉伸强度,是指极限拉伸强度,通常用TS或Rm表示。
本发明的又一个目的是提供一种具有拉伸强度、总体延伸率、拉 伸翻边可成形性和耐疲劳性的优异组合而不用钛作合金化元素的高强度热轧钢带材或片材。
本发明的又一个目的是提供一种具有拉伸强度、总体延伸率、拉伸翻边可成形性和耐疲劳性的优异组合的高强度热轧钢带材或片材,其可在常规带钢热轧机(从厚板坯)中,以及在薄板坯、直接轧制设备生产,而无需化学组成的改变。
通过提供具有570至870MPa的最大拉伸强度以及总体延伸率、拉伸翻边可成形性和耐疲劳性的高强度热轧钢带材或片材来达到一个或多个目的,该钢(以重量%计)包含:
●0.015-0.075%C;
●1.0-2.0%Mn;
●0.02-0.30%V;
●任选0.01-0.08%Nb;
●至多0.5%Si;
●至多0.06%P;
●至多0.01%S;
●至多0.1%Al_sol;
●至多0.020%N;
●任选的钙,其量与用于夹杂物控制的钙处理一致;
●余量的Fe和不可避免的杂质;
其中Nb、V、Al_sol、C和N的含量满足<eq.1>和式<eq.2>
其中该钢片材具有析出强化和主要单相铁素体显微组织,其中铁素体的分数不小于97%。
根据本发明的钢含有仅作为杂质的钛和钼。
根据本发明的钢提供了高强度以及高拉伸延展性和高的扩孔能力(即拉伸翻边可成形性)的组合。这是通过使用单相铁素体显微组织实现的。这意味着显微组织中的铁素体体积分数不应低于97%。延展性铁素体显微组织能够容纳高拉伸延展率以及高扩孔能力。高密度的V和/或(Nb,V)碳氮化物析出物提供了足够的强度。除了高拉伸延展性和高扩孔能力的优异组合外,单相铁素体显微组织还提供优良的疲劳性能。高的总体延伸率伸长和高扩孔能力的组合降低由于压制期间或服役期间的边缘开裂所导致的失效风险。
常规的HSLA/AHSS(双相、铁素体-贝氏体或复相)具有包含铁素体基体和富碳相成分的混合显微组织。基体和富碳相成分之间的硬度差别促进变形和随后的裂纹生长时的微孔成核。因此,这些钢种具有较差的扩孔能力和疲劳性能。
单相铁素体钢种(如EP1338665公开的那些)依赖于使用钼以达到高(析出)强度。本发明避免了钼的使用,因为它是非常昂贵的合金化元素。
EP 2267175中公开的单相铁素体钢种依赖于钛而不使用钼的强度,并由TiC获得了其析出强化。此专利中规定的拉伸强度范围是520-720MPa。故意保持氮水平低以避免的大TiN夹杂物,这可损害拉伸翻边可成形性以及疲劳性能。
本发明有意避免使用钛,且将析出强化依赖于使用钒或使用钒和铌。与EP2267175的理念不同,本发明依赖于碳与氮,即碳氮化物的析出。使用氮增加析出效果(特别是钒的)。优势还在于,相比碳化物,(碳)氮化物不易粗大化(即奥斯特瓦尔德成熟),减少卷曲或后续热处理期间的强度损失。
固溶体的铝必须是低的,以防止因形成AlN导致的氮损失,且必须具有对于与钒或钒和铌形成氮碳氮化物足够的氮。钢中的总铝含量(Al_tot)由因钢脱氧而结合到氧化物的铝(Al_ox)和固溶体的铝(Al_sol)组成。Al_sol应该为最多0.1wt%,且优选最多0.03wt%,且更优选最多0.01wt%。Al_sol有时被称为酸溶性铝,因为它溶于酸, 而结合到氧化物的铝(氧化铝)不这样。
为了提高钒对析出过程的效率和增加其对析出强化的贡献,高氮水平是优选的。氮是重要的,因为它的存在促进氮化物形成。相比碳化物,氮化物不易粗大化,因此在卷曲过程中将会损失更少的析出强度。必须注意,在析出过程中消耗所有氮以及所有碳。后者对于防止渗碳体或珠光体成分的形成是重要的,这可损害拉伸翻边可成形性以及疲劳性能。因此,N含量应该为最多0.02wt%。然而,为了优化析出强化,N含量应该优选为至少0.01wt%。
所述组成需要带有适量的C、N、Al_sol、V和任选Nb以及(C+N)和(Nb+V)之间的适当平衡以得到足够的析出加强,且避免渗碳体和/或珠光体的形成。发明人发现,当组成满足<eq.l>和<eq.2>时,该组成对这些元素是最佳平衡的。C含量在0.015和0.075wt%的范围内,而V含量为0.02-0.30wt%。Nb的使用是任选的。它的使用有利于提供一些额外的析出强化,但最重要的是提供铁素体显微组织的晶粒细化用于额外的强度和疲劳性能以及焊接性能的改善。如果使用Nb,其含量应为至少0.01wt%以便为明显有效的,且最多0.08wt%,以避免过高的轧制负荷而没有在晶粒细化和性能方面的显著补偿。
硅有利于固溶强化和抑制渗碳体的形成。后者是高度相关的,因为珠光体和/或渗碳体损害拉伸翻边可成形性和疲劳性能。然而,低的硅含量对于减少轧制负荷和避免氧化皮问题是期望的,所述问题可损害疲劳特性。因此,Si含量不应超过0.5wt%。
Mn是重要的,因为:(a)固溶强化,(b)抑制铁素体转变温度和(c)减缓转化速率。因素(b)和(c)对于实现足够的析出强化是重要的。因此,Mn含量应该为至少1.0wt%。然而,过高Mn含量会导致偏析,这损害拉伸翻边可成形性。因此,Mn含量应该在1.0和2.0wt%的范围内。优选地,Mn含量为至少1.4wt%。
低硫含量将改善可成形性。因此推荐实现低硫含量的努力以获得高扩孔能力。用于夹杂物控制(尤其是MnS)的任选钙处理是优选的。S含量应该是最多0.01wt%。
P提供固溶强化。然而,在高水平,P偏析将损害拉伸翻边可成形性。因此,P含量应该为最多0.06wt%。
显微组织是基本单相铁素体显微组织。显微组织中的铁素体的体积分数不低于97%(体积),优选不低于99%,且最优选应尽可能接近100%。用包含钒或钒和铌的碳化物、氮化物和/或碳氮化物析出强化铁素体。显微组织的单相性质是重要的。典型的常规HSLA显微组织不是单相的,而是由铁素体基体与渗碳体和/或珠光体(作为附加相成分)组成。双相或复相组织也不是单相的,而是由铁素体基体与附加相成分如马氏体、贝氏体、残留奥氏体等组成。本发明的单相性质对于达到高的扩孔能力是重要的。单相铁素体显微组织应该优选是多角形铁素体。采用充分多角形铁素体显微组织,将会获得总体延伸率和扩孔能力之间的优化平衡。虽然不规则,但贝氏体或针状铁素体可为容许的,发明人发现它们的存在可能会牺牲总体延伸率或扩孔能力,尽管强度和其他性能保持在适当的水平。
钢铸造和热轧工艺通常类似于常规的HSLA钢。应该对工艺进行设计以确保实现单相铁素体显微组织,其被包含V或V和Nb的(碳化物、氮化物和/或)碳氮化物析出物所充分析出强化。必须避免渗碳体和/或珠光体的存在,因为它损害扩孔能力以及耐疲劳性。
将板坯再加热到1050-1250℃和以Ar3转变点或更高的终轧温度进行热轧,和在700和580℃之间的温度范围内进行卷曲。为了避免析出物的粗大化和强度损失,在卷曲后主动冷却卷材是个选择,要么通过将卷材浸于水槽要么通过主动用水喷洒卷材(例如卷材淋浴)。优选以至少10℃/s和/或最多600℃/s的平均冷却速率将热轧钢片材冷却到卷曲温度。优选以至少40℃/s和/或最多150℃/s的平均冷却速率将热轧钢片材冷却到卷曲温度。
除了常规的带钢热轧机,这种类型的产品还可以在薄板坯连铸和直接轧制轧机例如CSP型的那些上生产这种产品,因为该组成不依赖于Ti的使用。众所周知,用Ti微合金化可导致与CSP型装置上的铸造的问题。
可以通过加热涂覆(heat-to-coat)循环(或电镀锌)向材料提供锌涂层或锌合金涂层,其中锌合金涂层优选包含铝和/或镁作为其主要的合金化元素。
根据本发明的钢带材或钢片材分为三个类别,i、ii和iii:
i.具有至少580MPa的拉伸强度和至少100%扩孔比的钢,且其中拉伸强度(TS)和总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>11000,或
ii.具有至少650MPa的拉伸强度和至少80%扩孔比的钢,且其中拉伸强度(TS)和总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>10000,或
iii.具有至少780MPa的拉伸强度和至少60%扩孔比的钢,且其中拉伸强度(TS)和总体延伸率(El),和片材厚度t(mm)满足式(TS×El)/t0.2>9000
优选总体延伸率(在1毫米厚度的JIS5拉伸试样测定El)不低于14%,优选不低于16%,最优选不低于18%。
本发明也体现在根据本发明的钢片材用于生产底盘部件的用途。
现在将通过以下非限制的实施例1和2进一步解释本发明。
实施例1:在表2给出的条件热轧具有如表1所示化学组成的钢A到E,产生厚度为2.5-3.1毫米的钢片材1-12(YS=屈服强度;UTS=极限拉伸强度;YR=屈服比;El=延伸率)。测试前酸洗该热轧钢片材。报道的拉伸性能基于JIS No.5几何,拉伸测试平行于轧制方向和根据EN 10002-1/ISO 6892-1将拉伸强度测试施加于测试件。在某些情况下,通过使用温和研磨减薄试样除去拉伸测试件的表面粗糙度。为了确定视为拉伸翻边性的标准的扩孔比λ,从每个钢片材切出三个尺寸为90×90mm2方形钢样品,然后通过冲孔在样品中制出直径10毫米的孔洞。完成样品的扩孔测试和上部去毛刺。从下面增加60°的锥形孔,且当形成贯穿厚度裂纹时测量孔直径df。对于d0=10mm,用下式计算扩孔比λ:
通过使用光学显微镜鉴定显微组织来鉴定显微组织中的相成分和评估渗碳体和/或珠光体的总分数。检查的钢片材的拉伸性能和扩孔比如表2所示。表2也显示了检查的钢片材的显微组织类型的评估。如果铁素体分数是97%或更多,则将该显微组织指定为F。在渗碳体和/或珠光体分数超过3%时,将该显微组织指定为F+C+P。表2中还显示了钢片材3B和12E的疲劳性能。以-1的疲劳应力比R(完全相反的张力/压缩载荷)和平行于轧制方向的疲劳测试,测量了疲劳性能和S-N疲劳曲线(应力(以MPa计)作为失效循环(Nf)的函数)。根据疲劳测试BS3518第1部分的英国标准方法进行S-N疲劳测试。在表2中报道了在1×105和5×105循环的疲劳强度,定义为-1的应力比R的应力范围,对此在1×105和5×105循环发生失效。
对于具有单相铁素体显微组织的钢片材1A、3B、7B和包含铁素体、渗碳体和珠光体的钢片材8/9C,10/11D,和12E(都具有混合显微组织),图1显示了扩孔比相对于拉伸强度的曲线。如图1所示的数据清楚地说明了单相铁素体显微组织对扩孔比的有益影响。对于具有单相铁素体显微组织的钢片材1A、3B、7B和包含铁素体、渗碳体和珠光体的钢片材8/9C、10/11D和12E(都具有混合显微组织),图2显示了扩孔比相对于总体延伸率(JIS No.5)的曲线。再次,数据显示了单相铁素体显微组织对扩孔比和总体延伸率之间的优越平衡的有益影响。对于具有单相铁素体组织的钢片材3B和包含铁素体、珠光体和渗碳体的钢片材12E(具有混合显微组织),图3显示了S-N疲劳曲线(R=-1)。图3还显示了具有含有铁素体和马氏体的显微组织的热轧双相(DP)钢(2.7毫米)和具有包含铁素体和贝氏体的显微组织的热轧铁素体-贝氏体(FB)钢(3.3毫米)的S-N曲线。这两种钢的厚度和最大拉伸强度是在与钢片材1-12相同的区域(见表2)。DP钢的屈服强度和最大拉伸强度分别是434和647MPa(YR=0.67),和FB钢的屈服和最大拉伸强度分别是532和638MPa(YR=0.83)。认为DP和FB钢的S-N曲线对具有多相型的显微组织这类钢种是典型的。在图3中绘制的S-N曲线之间的对比清楚地说明了单相铁素体显微组织对疲劳 强度的有益影响。
实施例2:
在表4给出的条件热轧具有如表3所示化学组成的钢A到K,产生厚度为2.6-3.6毫米的钢片材1-28。与实施例1的那些类似,制备和测试了样品。检查的钢片材的拉伸性能和扩孔比如表4所示。表4也显示了检查的钢片材的显微组织类型的评估。如果铁素体分数是97%或更多,则将该显微组织指定为F。在渗碳体和/或珠光体分数超过3%时,将该显微组织指定为F+C+P。表4中还显示了钢片材9B、10B、11B和22E的疲劳性能。以-1的疲劳应力比R(完全相反的张力/压缩载荷)和平行于轧制方向的疲劳测试,测量了疲劳性能和S-N疲劳曲线(应力(以MPa计)作为失效循环(Nf)的函数)。根据疲劳测试BS3518第1部分的英国标准方法进行S-N疲劳测试。在表4中报道了在1×105和5×105循环的疲劳强度,定义为-1的应力比R的应力范围,对此在1×105和5×105循环发生失效。
对于表4中列出的钢片材1A至28K(发明例),图4显示了扩孔比相对于拉伸强度的曲线。所有这些钢都具有单相铁素体显微组织。图4中还显示了从具有多相显微组织的商购钢片材获得的基准数据。该数据组包含热轧高强度低合金(HSLA)钢、铁素体-贝氏体(FB)钢、双相(DP)钢、复相(CP)钢和贝氏体钢(BS)。在图4的图示中在括号中给出了所有钢片材的显微组织类型(F=铁素体,B=贝氏体,M=马氏体,P=珠光体)。图4所示的数据清楚地说明了单相铁素体显微组织相对于多相显微组织的益处:发明例1A至28K(表4)的扩孔比高于具有多相显微组织和相似拉伸强度的典型商购钢片材的。对于具有800-830MPa的最大拉伸强度水平的钢片材18E至21E(图4),图5显示了扩孔比相对于总体延伸率(JIS No.5几何)的曲线。图5还显示了对于具有与钢片材18E至21E相似最大拉伸强度水平和厚度的典型热轧CP800、BS800和E690TM钢片材的数据。所述数据令人信服地说明了本发明实现的在扩孔比和总体延伸率之间的优异平衡。与具有相似最大拉伸强度水平的多相钢片材相比,钢片材18E至21E的 充分单相铁素体显微组织(表4中列出的发明例)提供了在扩孔比和总体延伸率之间的显著改善的平衡。图6和7显示了对应于从分别具有600-650和800-830MPa的近似拉伸强度的钢片材获得的数据的S-N疲劳曲线(R=-1)。图6显示了钢片材9B、10B和11B(表4中所列的发明例)的S-N曲线与具有相似拉伸强度和厚度的热轧FB590和热轧DP600钢片材的典型S-N曲线的对比。图6显示的数据确认了单相铁素体显微组织提供了比具有由铁素体和贝氏体(FB590)或铁素体和马氏体(DP600)构成的多相显微组织的钢片材显著更高的疲劳强度,该具有多相显微组织的钢片材具有相似的最大拉伸强度和相似的厚度。从图7得出相似的结论,图7显示了钢片材22E(表4中列出的发明例)的S-N疲劳曲线与冷轧CP800和冷轧DP800的典型S-N疲劳曲线的对比。图7所示的数据令人信服地显示了单相铁素体显微组织提供了比具有多相显微组织和相似最大拉伸强度的钢片材显著更高的疲劳强度。

Claims (25)

1.一种具有570至870MPa的最大拉伸强度以及总体延伸率、拉伸翻边可成形性和耐疲劳性的优异组合的高强度热轧钢带材或片材,该钢以重量%计包含:
●0.015-0.075%C;
●1.0-2.0%Mn;
●0.02-0.30%V;
●任选0.01-0.08%Nb;
●至多0.5%Si;
●至多0.06%P;
●至多0.01%S;
●至多0.1%Al_sol;
●至多0.020%N;
●余量的Fe和不可避免的杂质;
其中Nb、V、Al_sol、C和N的含量以重量%计满足<eq.1>和<eq.2>
0.9 &le; ( ( N b 93 ) + ( V 51 ) + ( A l _ s o l 27 ) ( C 12 ) + ( N 14 ) ) &le; 2.2 - - - < e q .1 >
0.9 &le; ( ( N b 93 ) + ( V 51 ) ( C 12 ) ) &le; 2.0 - - - < e q .2 >
其中该钢带材或片材具有析出强化和主要单相铁素体显微组织,其中该显微组织不含富碳的显微组织组分,其中铁素体的分数不小于97%。
2.根据权利要求1所述的钢片材或带材,其中该富碳的显微组织组分是珠光体或渗碳体。
3.根据权利要求1所述的钢片材或带材,其中该显微组织不含钛基析出物或钛夹杂物。
4.根据权利要求1或2所述的钢带材或片材,包含:
●至少0.02%C和/或
●至少1.4%Mn和/或
●至少0.10%V和/或
●至少0.015%Nb和/或
●至多0.25%Si和/或
●至多0.02%P和/或
●至多0.006%S和/或
●至多0.030%Al_sol和/或
●至少0.01%N。
5.根据前述权利要求1-3中任一项的钢带材或片材,包含至多0.015%的Al_sol。
6.根据权利要求5的钢带材或片材,包含至多0.010%的Al_sol。
7.根据前述权利要求1-3和6中任一项的钢带材或片材,其中Nb、V、Al_sol、C和N的含量以重量百分比计满足<eq.1a>和<eq.2a>:
1.0 &le; ( ( N b 93 ) + ( V 51 ) + ( A l _ s o l 27 ) ( C 12 ) + ( N 14 ) ) &le; 2.2 - - - < e q .1 a >
1.0 &le; ( ( N b 93 ) + ( V 51 ) ( C 12 ) ) &le; 2.0 - - - < e q .2 a > .
8.根据前述权利要求1-3和6中任一项的钢带材或片材,其中Nb、V、Al_sol、C和N的含量以重量百分比计满足<eq.1b>和<eq.2b>:
1.1 &le; ( ( N b 93 ) + ( V 51 ) + ( A l _ s o l 27 ) ( C 12 ) + ( N 14 ) ) &le; 2.2 - - - < e q .1 b >
1.2 &le; ( ( N b 93 ) + ( V 51 ) ( C 12 ) ) &le; 2.0 - - - < e q .2 b > .
9.根据前述权利要求1-3和6中任一项的钢带材或片材,具有至少580MPa的拉伸强度和/或100%或更大的扩孔比。
10.根据前述权利要求1-3和6中任一项的钢带材或片材,具有至少680MPa的拉伸强度和/或80%或更大的扩孔比。
11.根据前述权利要求1-3和6中任一项的钢带材或片材,具有至少780MPa的拉伸强度和/或60%或更大的扩孔比。
12.根据前述权利要求1-3和6中任一项的钢带材或片材,具有:
i.至少580MPa的拉伸强度和至少100%扩孔比,且其中拉伸强度(TS)和总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>11000,或
ii.至少650MPa的拉伸强度和至少80%扩孔比,且其中拉伸强度(TS)和总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>10000,或
iii.至少780MPa的拉伸强度和至少60%扩孔比,且其中拉伸强度(TS)和总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>9000。
13.根据前述权利要求1-3和6中任一项的钢带材或片材,其中该钢片材提供有锌涂层或锌合金涂层。
14.根据前述权利要求13的钢带材或片材,其中涂覆过程通过热浸涂覆进行。
15.根据前述权利要求13的钢带材或片材,其中锌合金涂层包含铝和/或镁作为其主要的合金化元素。
16.根据前述权利要求1或2或3或6中任一项的钢带材或片材,其中该钢带材或片材包含钙,其量与用于夹杂物控制的钙处理一致。
17.一种生产具有570至870MPa的拉伸强度以及可成形性和耐疲劳性的优异组合的高强度钢带材或片材的方法,包括铸造包含以重量%计如下的厚或薄的板坯的步骤:
●0.015-0.075%C;
●1.0-2.0%Mn;
●0.02-0.30%V;
●任选0.01-0.08%Nb;
●至多0.5%Si;
●至多0.06%P;
●至多0.01%S;
●至多0.1%Al_sol;
●至多0.020%N;
●余量的Fe和不可避免的杂质;
其中Nb、V、Al_sol、C和N的含量满足<eq.1>和<eq.2>
0.9 &le; ( ( N b 93 ) + ( V 51 ) + ( A l _ s o l 27 ) ( C 12 ) + ( N 14 ) ) &le; 2.2 - - - < e q .1 >
0.9 &le; ( ( N b 93 ) + ( V 51 ) ( C 12 ) ) &le; 2.0 - - - < e q .2 >
然后是将板坯凝固,并将凝固的板坯再加热到1050-1250℃温度的步骤,热轧该钢板坯,和在Ar3温度或更高的热终轧温度下完成所述热轧以得到钢带材或片材,和在700和580℃之间的温度范围内卷曲热轧钢带材或片材以得到卷材,其中在常规的带钢热轧机,或薄板坯连铸的热轧机和直接轧制装置中进行热轧。
18.根据权利要求17的方法,其中以至少10℃/s和/或最多600℃/s的平均冷却速率将热轧钢带材或片材冷却到卷曲温度。
19.根据权利要求17的方法,其中以至少40℃/s和/或最多150℃/s的平均冷却速率将热轧钢带材或片材冷却到卷曲温度。
20.根据权利要求17或18或19所述的方法,其中通过将卷材浸于水槽或通过用水喷洒来主动冷却卷材将卷曲的热带材经受冷却。
21.根据权利要求17或18或19所述的方法,其中该钢带材或片材包含钙,其量与用于夹杂物控制的钙处理一致。
22.部件,使用根据权利要求1-16中任一项的高强度热轧钢片材。
23.权利要求22所述的部件,其中钢片材
●具有至少580MPa的拉伸强度和至少100%扩孔比,且其中拉伸强度(TS)、总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>11000,或
●具有至少650MPa的拉伸强度和至少80%扩孔比,且其中拉伸强度(TS)、总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>10000,或
●具有至少780MPa的拉伸强度和至少60%扩孔比,且其中拉伸强度(TS)、总体延伸率(El)和片材厚度t(mm)满足式(TS×El)/t0.2>9000。
24.根据权利要求22所述的部件,其中所述部件为汽车部件。
25.根据权利要求24所述的部件,其中所述部件为底盘部件。
CN201480008097.9A 2013-02-11 2014-02-06 具有优异可成形性和疲劳性能的高强度热轧钢带材或片材以及生产所述钢带材或片材的方法 Expired - Fee Related CN104981551B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13154825.7 2013-02-11
EP13154825 2013-02-11
PCT/EP2014/052334 WO2014122215A1 (en) 2013-02-11 2014-02-06 A high-strength hot-rolled steel strip or sheet with excellent formability and fatigue performance and a method of manufacturing said steel strip or sheet

Publications (2)

Publication Number Publication Date
CN104981551A CN104981551A (zh) 2015-10-14
CN104981551B true CN104981551B (zh) 2017-03-08

Family

ID=47713946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480008097.9A Expired - Fee Related CN104981551B (zh) 2013-02-11 2014-02-06 具有优异可成形性和疲劳性能的高强度热轧钢带材或片材以及生产所述钢带材或片材的方法

Country Status (10)

Country Link
US (1) US9920391B2 (zh)
EP (1) EP2954074B1 (zh)
JP (1) JP6518596B2 (zh)
KR (1) KR102010114B1 (zh)
CN (1) CN104981551B (zh)
BR (1) BR112015018058A2 (zh)
CA (1) CA2898421C (zh)
ES (1) ES2698105T3 (zh)
MX (1) MX2015009890A (zh)
WO (1) WO2014122215A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3516085B1 (en) 2016-09-22 2020-07-08 Tata Steel IJmuiden B.V. A method of producing a hot-rolled high-strength steel with excellent stretch-flange formability and edge fatigue performance
CN108486482B (zh) * 2018-06-14 2020-01-07 鞍钢股份有限公司 综合性能优良的高屈服强度热轧酸洗钢板及其生产方法
CN110643894B (zh) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 具有良好的疲劳及扩孔性能的超高强热轧钢板和钢带及其制造方法
CN109112422A (zh) * 2018-08-30 2019-01-01 宝山钢铁股份有限公司 一种780MPa级高疲劳高强钢及其制造方法
WO2021180964A1 (en) * 2020-03-13 2021-09-16 Tata Steel Ijmuiden B.V. Hot rolled steel strip having improved properties

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400223A (en) * 1981-08-21 1983-08-23 Inland Steel Company Hot rolled steel product and method for producing same
JP2004143518A (ja) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd 熱延鋼板
JP3680262B2 (ja) * 2000-06-28 2005-08-10 Jfeスチール株式会社 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP4178974B2 (ja) * 2003-01-30 2008-11-12 Jfeスチール株式会社 深絞り性に優れた複合組織型高張力冷延鋼板の製造方法
JP4575893B2 (ja) * 2006-03-20 2010-11-04 新日本製鐵株式会社 強度延性バランスに優れた高強度鋼板
JP4705508B2 (ja) * 2006-04-17 2011-06-22 新日本製鐵株式会社 ダンパー用低降伏点鋼およびその製造方法
KR20120032995A (ko) * 2010-09-29 2012-04-06 현대제철 주식회사 방향성에 따른 재질 편차를 최소화한 고강도 열연강판 및 그 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1558445A1 (de) 1967-01-20 1973-08-30 British Iron Steel Research Stahllegierungen
US4142922A (en) * 1976-09-27 1979-03-06 Republic Steel Corporation High strength low alloy steel containing columbium and vanadium
US4415376A (en) * 1980-08-01 1983-11-15 Bethlehem Steel Corporation Formable high strength low alloy steel sheet
JP3386726B2 (ja) * 1997-09-11 2003-03-17 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板及びその製造方法並びに冷延鋼板の製造方法
ES2690275T3 (es) 2000-10-31 2018-11-20 Jfe Steel Corporation Chapa de acero laminado en caliente de alta resistencia y método para la fabricación de la misma
JP3758542B2 (ja) * 2001-09-18 2006-03-22 Jfeスチール株式会社 自動車用部材の素材に適した伸びと伸びフランジ性がともに優れた高張力鋼板
JP4736853B2 (ja) * 2006-02-28 2011-07-27 Jfeスチール株式会社 析出強化型高強度薄鋼板およびその製造方法
JP4164537B2 (ja) 2006-12-11 2008-10-15 株式会社神戸製鋼所 高強度薄鋼板
KR101103203B1 (ko) 2008-03-26 2012-01-05 신닛뽄세이테쯔 카부시키카이샤 피로 특성과 신장 플랜지성이 우수한 열연 강판 및 그 제조 방법
JP5609223B2 (ja) * 2010-04-09 2014-10-22 Jfeスチール株式会社 温間加工性に優れた高強度鋼板およびその製造方法
BR112014027992B1 (pt) * 2012-05-08 2019-09-17 Tata Steel Ijmuiden Bv Chapa de aço laminada à quente e método de fabricação da mesma

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400223A (en) * 1981-08-21 1983-08-23 Inland Steel Company Hot rolled steel product and method for producing same
JP3680262B2 (ja) * 2000-06-28 2005-08-10 Jfeスチール株式会社 伸びフランジ性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2004143518A (ja) * 2002-10-23 2004-05-20 Sumitomo Metal Ind Ltd 熱延鋼板
JP4178974B2 (ja) * 2003-01-30 2008-11-12 Jfeスチール株式会社 深絞り性に優れた複合組織型高張力冷延鋼板の製造方法
JP4575893B2 (ja) * 2006-03-20 2010-11-04 新日本製鐵株式会社 強度延性バランスに優れた高強度鋼板
JP4705508B2 (ja) * 2006-04-17 2011-06-22 新日本製鐵株式会社 ダンパー用低降伏点鋼およびその製造方法
KR20120032995A (ko) * 2010-09-29 2012-04-06 현대제철 주식회사 방향성에 따른 재질 편차를 최소화한 고강도 열연강판 및 그 제조 방법

Also Published As

Publication number Publication date
US9920391B2 (en) 2018-03-20
ES2698105T3 (es) 2019-01-31
US20150354021A1 (en) 2015-12-10
WO2014122215A1 (en) 2014-08-14
BR112015018058A2 (pt) 2017-07-18
KR102010114B1 (ko) 2019-08-12
KR20150115748A (ko) 2015-10-14
CA2898421A1 (en) 2014-08-14
JP6518596B2 (ja) 2019-05-22
JP2016513174A (ja) 2016-05-12
EP2954074A1 (en) 2015-12-16
CA2898421C (en) 2017-09-12
EP2954074B1 (en) 2018-10-31
CN104981551A (zh) 2015-10-14
MX2015009890A (es) 2015-09-24

Similar Documents

Publication Publication Date Title
CA2931494C (en) Hot formed steel sheet component and method for producing the same as well as steel sheet for hot forming
CN110100032B (zh) 屈服比低且均匀延伸率优异的回火马氏体钢及其制造方法
KR101913053B1 (ko) 고강도 강판, 고강도 용융 아연 도금 강판, 고강도 용융 알루미늄 도금 강판 및 고강도 전기 아연 도금 강판, 그리고 그것들의 제조 방법
JP5018934B2 (ja) 加工性に優れた高強度鋼板およびその製造方法
CN104520449B (zh) 一种用于生产热轧钢带的方法以及由此生产的钢带
JP2018500465A (ja) 高強度鋼製品の製造方法およびこれによって得られる鋼製品
CN105648330B (zh) 一种热镀锌钢板及其生产方法
JP7547392B2 (ja) 冷間圧延マルテンサイト鋼及びその冷間圧延マルテンサイト鋼の製造方法
KR20130037208A (ko) 연성 및 내지연 파괴 특성이 우수한 초고강도 냉연 강판 및 그 제조 방법
CA2824934A1 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
WO2013046693A1 (ja) 熱延鋼板およびその製造方法
CN104981551B (zh) 具有优异可成形性和疲劳性能的高强度热轧钢带材或片材以及生产所述钢带材或片材的方法
KR101964725B1 (ko) 고강도 강판 및 그의 제조 방법
US20130160907A1 (en) High strength cold rolled steel sheet having excellent stretch flangeability and method for manufacturing the same
JP7239685B2 (ja) 穴広げ率の高い熱間圧延鋼板及びその製造方法
KR101963705B1 (ko) 고강도 강판 및 그의 제조 방법
CN107723604A (zh) 一种经济型690MPa级双相钢及其制备方法
CN112088225A (zh) 热轧钢板及其制造方法
KR20180132889A (ko) 강판, 도금 강판 및, 그들의 제조 방법
CN109898017A (zh) 1000MPa级冷弯性能优良的冷轧双相钢及生产方法
CN110621794B (zh) 具有优异延展性和可拉伸翻边性的高强度钢片
CN107406939A (zh) 高强度冷轧钢板及其制造方法
CN106795609A (zh) 拉深罐用钢板及其制造方法
JP5228963B2 (ja) 冷延鋼板およびその製造方法
KR20190063413A (ko) 고강도 강대의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170308