CN104936620B - 增强粘膜渗透的纳米粒子调配物 - Google Patents

增强粘膜渗透的纳米粒子调配物 Download PDF

Info

Publication number
CN104936620B
CN104936620B CN201380015484.0A CN201380015484A CN104936620B CN 104936620 B CN104936620 B CN 104936620B CN 201380015484 A CN201380015484 A CN 201380015484A CN 104936620 B CN104936620 B CN 104936620B
Authority
CN
China
Prior art keywords
nanoparticle
peg
composite
administration
mucus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380015484.0A
Other languages
English (en)
Other versions
CN104936620A (zh
Inventor
L·恩塞恩
R·康
J·S·汉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2012/024344 external-priority patent/WO2012109363A2/en
Priority claimed from PCT/US2012/069882 external-priority patent/WO2013090804A2/en
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Publication of CN104936620A publication Critical patent/CN104936620A/zh
Application granted granted Critical
Publication of CN104936620B publication Critical patent/CN104936620B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0031Rectum, anus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0043Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery

Abstract

评估低渗调配物以便递送水溶性药物以及以粘惰性(即,非粘附性)粘液渗透性纳米粒子(MPP)进行药物递送。低渗调配物显著增大药物和MPP到达上皮表面包括深入阴道褶皱的速率。优选介于20‑220mOsm/kg范围内的最低限度低渗调配物使MPP快速并均匀地递送到整个阴道表面且上皮毒性风险最小。数据还展示出结肠中的渗透压摩尔浓度较高,使得渗透压摩尔浓度高于血浆渗透压摩尔浓度(通常视为在约300mOsm/kg下等渗)的媒剂由于快速、渗透诱导的流体吸收而仍引起在结肠中的分布方面的改进。用于在结肠中以低渗媒剂改进结肠分布的范围是约20mOsm/kg‑450mOsm/kg。

Description

增强粘膜渗透的纳米粒子调配物
技术领域
本发明处于以下领域内:纳米粒子调配物,尤其将粘液渗透性纳米粒子快速递送到粘膜覆盖的上皮表面的低渗纳米粒子调配物以及制造和使用其的方法。
政府权利
美国政府在本发明中享有某些权利。这项工作由美国国家卫生研究院(NationalInstitutes of Health)拨款号R01HD062844、R33AI079740、R01CA140746)(J.H.和R.C.)、美国国家科学基金会(L.M.E.和美国国家卫生研究院/杀微生物剂创新项目(MicrobicideInnovation Program)5R21AI079740支持。
优先权要求
2012年1月19日提交的U.S.S.N.61/588,350
2012年2月8日提交的PCT/US2012/024344
2012年12月14日提交的PCT/US2012/069882
背景技术
经由生物可降解纳米粒子局部递送治疗剂通常提供优于全身药物投与的优势,包括减小的全身副作用和目标部位处受控的药物水平。然而,粘膜表面处受控的药物递送已通过存在保护性粘液层而受到限制。
粘液是包覆所有未被皮肤覆盖的暴露上皮表面(如呼吸道、胃肠道、鼻咽道以及女性生殖道和眼表面)的粘弹性凝胶。粘液经由空间和/或粘附相互作用有效地截留常规微粒药物递送系统。由于粘液周转,大部分局部递送到粘膜表面的治疗剂存在滞留和分布较差的问题,这会限制其功效。
递送到眼、鼻、肺、胃肠道和女性生殖道中的粘液覆盖的细胞的携带药物和基因的纳米粒子必须实现均匀分布以便最大限度地治疗或保护这些表面。然而,高度粘弹性(即,性质上粘性和固体样)和粘附性粘液层可减缓粒子或完全固定粒子,并由此防止其在粘膜表面上扩散。另外,一些粘膜表面(如口腔、胃、肠、结肠和阴道的粘膜表面)展现出高度折叠的上皮表面,常规粘-粘附性粒子以及许多小分子药物和治疗剂不能到达所述上皮表面。在没有最大分布与渗透到这些深凹处的情况下,使得许多所述上皮易感和/或未经治疗。另外,渗透到可能含有清除缓慢得多的粘液层的褶皱中允许在上皮表面处的滞留时间延长。
对于药物或基因递送应用,治疗性粒子必须能够1)在所关注的粘膜表面上实现均匀分布以及2)有效跨过粘液屏障以避免快速粘液清除并确保其治疗性有效载荷有效递送到下层细胞(尼夫斯J(Neves J)和巴伊亚MF(Bahia MF)国际药学杂志(Int J Pharm)318,1-14(2006);赖(Lai)等人先进药物递送评论(Adv Drug Deliver Rev)61,158-171(2009);恩瑟(Ensign)等人科学·转化医学(Sci Transl Med)4,138ral79(2012);艾尔斯(Eyles)等人药理学和药物治疗学杂志(J Pharm Pharmacol)47,561-565(1995))。
深入渗透到粘液屏障中的生物可降解纳米粒子可提供粘膜表面处改进的药物分布、滞留以及功效。低分子量聚乙二醇(PEG)的致密表面涂层允许纳米粒子快速渗透穿过高度粘弹性的人类和动物粘液分泌物。亲水性和生物惰性PEG涂层有效地使纳米粒子与粘液组分之间的粘附相互作用降到最低。生物可降解的粘液渗透性粒子(MPP)已通过某些PLURONIC(如F127)物理吸附到预制造的粘膜粘附性纳米粒子上来制备。
阴道表面是高度折叠的以在性交和分娩期间适应扩张;这些褶皱或“皱襞”通常通过腹内压力折叠,妨碍药物递送到折叠表面。为了真正地有效预防和治疗,持续的药物浓度必须递送到整个易感表面并维持在所述表面上。未能实现在整个阴道上皮上的充分分布是有记载的阴道杀微生物剂的失败模式。
药物有效递送到阴道的另一显著屏障是由覆盖阴道上皮的子宫颈内膜分泌的粘弹性粘液层。粘液通过空间和粘附性两种机制有效截获外来粒子和微粒,有助于快速清除。尽管为了增加在阴道中的滞留时间已提出使用粘膜粘附剂型,但粘液清除快速进行(约数分钟到数小时),限制粘膜粘附系统的滞留时间。
粘膜上皮使用渗透梯度以引起流体吸收和分泌。阴道产品已在传统上以高渗调配物制成,包括酵母感染治疗物、大部分性润滑剂如升温凝胶和设计用于防止性传播的感染(如HIV)的凝胶。高渗调配物引起流体快速、渗透驱动地分泌到阴道中,且这引起流体以与调配物的高渗性成比例的速率从阴道渗漏的即刻增多。此外,近来在动物模型和人类中对候选阴道和直肠杀微生物剂两者的研究已揭示了高渗调配物会引起可增大对感染易感性的毒性作用。第一个成功的用于HIV预防的杀微生物剂试验发现以阴道凝胶形式递送的抗逆转录病毒药物替诺福韦(tenofovir)提供部分保护。不幸的是,所述凝胶调配物为高度高渗的,导致研究者在大部分近来的替诺福韦临床试验中减小甘油浓度从而减小毒性。然而,浓度并未减小,且调配物仍是显著高渗的。似乎没有证据支持高渗调配物用于阴道药物递送,因为除有记载的毒性作用之外,高渗调配物还会引起阴道流体的快速渗透驱动的分泌、对抗药物递送到上皮的流体流动。这种理由的缺乏已被阴道产品的研究者和制造商两者忽略,唯一明显的例外是意图支持生育的润滑剂。这些产品被调配成等渗的(渗透压摩尔浓度相当于血浆的渗透压摩尔浓度)以帮助维持精子的活力。
因此,本发明的一个目标是提供用于以对上皮的最小毒性将各种药物快速和均匀地微粒递送到粘膜覆盖的上皮表面的调配物。
发明内容
渗透可用于引起粘液渗透性粒子快速渗透到高度折叠的粘膜组织中的深凹处中。吸收并渗透到粘膜组织的深凹处中会改进否则会不良分布的实体在粘膜表面上的分布。快速吸收并渗透到粘膜组织的深凹处中引起粘液渗透性粒子的滞留时间延长。快速吸收除增加治疗的有效性并使施用与粘膜保护之间的时间缩到最短之外,还有助于使用者可接受性。
评估低渗调配物以便递送水溶性药物以及以粘惰性(即,非粘附性)粘液渗透性纳米粒子(MPP)进行药物递送。低渗调配物显著增大药物和MPP到达上皮表面的速率。另外,低渗调配物大大增强药物和MPP递送到整个上皮表面,包括深入到等渗调配物无法到达的阴道褶皱(皱襞)中。低渗调配物可引起游离药物不仅被吸引到上皮而且经由上皮吸引,减少阴道滞留。相比之下,低渗调配物引起MPP在阴道表面上快速和均匀地积聚,但其并不穿过上皮且因此保持理想地定位以实现持续的粘膜药物递送。优选介于20-220mOsm/kg范围内的最低限度低渗调配物使MPP快速并均匀地递送到整个阴道表面且上皮毒性风险最小。经由MPP用于阴道药物递送的低渗调配物应显著改进生殖道疾病和病症的预防和治疗。
数据还展示出结肠中的渗透压摩尔浓度较高,使得渗透压摩尔浓度高于血浆渗透压摩尔浓度(通常视为在约300mOsm/kg下等渗)的媒剂由于快速、渗透诱导的流体吸收而仍引起在结肠中的分布方面的改进。用于在结肠中以低渗媒剂改进结肠分布的范围是约20mOsm/kg-450mOsm/kg。在优选实施例中,用于施用到结肠或直肠的调配物的渗透压摩尔浓度介于约20mOsm/kg与450mOsm/kg之间,其中钠离子(Na+)引起至少30%超过220mOsm/kg的渗透压摩尔浓度。(即,如果调配物的渗透压摩尔浓度是450mOsm/kg,那么Na+离子必须构成450-220=230的至少30%,或69mOsm/kg)。还证实了在患有诱导性溃疡性结肠炎的直肠组织上低渗投与的MPP(与CP相比)的改进的分布,包括MPP吸收到溃疡组织中。低渗投与还引起游离药物(标记FITC的替诺福韦)在结肠中的分布改进。
附图说明
图1a和1b是通过乳化方法制备的含有CHA和PVA的PLA-PEG和PCL-PEG纳米粒子的代表性轨迹。图1c和1d是展示整体平均几何均方位移(<MSD>/μm2)随时间(时标/s)而变的图式。图1e和1f是展示作为在1s的时标下个别粒子有效扩散率(Deff)的对数分布的函数的渗透分率的图式。图1g和1h是展示随时间能够渗透生理学30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。
图2a和2b展示了PEG MW对MPP在人类子宫颈阴道粘液中的转运速率的作用:图2a是展示整体平均几何均方位移<MSD/μm2>随时标/s而变的图式。图2b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。粒子使用PLGA-PEG(6重量%PEG)用乳化方法制备。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。
图3a是展示整体平均几何均方位移<MSD/μm2>随时标/s而变的图式。图3b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图3c是展示随时间预测能够渗透30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。
图4a-c是说明表面PEG覆盖率([Γ/Γ*])对纳米粒子的粘液渗透的影响的示意图。图4a-c展示以渐增覆盖率制备具有表面PEG涂层的PLGA-PEG纳米粒子。随着表面PEG覆盖率增加,PEG状态从蘑菇(邻近PEG链不重叠,[Γ/Γ*]<1,图4a)变成刷子(邻近PEG链重叠,1<[Γ/Γ*]<3,图4b)变成致密刷子([Γ/Γ*]>3,图4c)。在低PEG覆盖率([Γ/Γ*]<1,图4a)下,粘蛋白纤维强力粘附于纳米粒子核心。在中等PEG覆盖率(1<[Γ/Γ*]<3,图4b)下,粘蛋白纤维仍可部分吸收到纳米粒子核心。在高([Γ/Γ*]>3,图4c)PEG覆盖率下,纳米粒子核心完全由生物惰性PEG冠环遮蔽,使得无粘蛋白吸附到纳米粒子中。图4c展示了具有低PEG覆盖率的纳米粒子固定于粘液中,具有中等PEG覆盖率的纳米粒子受到阻碍或甚至固定在粘液中,且具有高和极高PEG覆盖率的纳米粒子能够快速渗透粘液。
图5A和5B展示以低渗(hypo)或等渗(iso)溶液形式投与的阿霉素(Dox)的阴道覆盖率。小鼠(A)保持仰卧1小时,随后进行组织收集(非可走动的)或(B)可走动10分钟,随后进行组织收集(可走动的)。图像代表用呈(C)等渗(iso)和(D)低渗(hypo)溶液形式的Dox给药的可走动小鼠的平均阴道表面覆盖率。数据是平均值±SEM(n=5)。与等渗相比*P<0.05,威尔科克森秩和检验。
图6展示以等渗(iso)或低渗(hypo)溶液形式投与的阿霉素的阴道滞留。小鼠保持仰卧10分钟,随后进行组织收集。整个子宫颈阴道组织中等渗溶液和低渗溶液的阿霉素荧光强度和亮场图像的重叠图。针对溶液荧光调整的基于荧光信号定量的相对阿霉素信号代表对n=4只小鼠计算的平均值且被定量为相对信号±SEM。与等渗相比*P<0.05,威尔科克森秩和检验。
图7展示在用呈低渗(hypo)或等渗(iso)溶液形式的阿昔洛韦单磷酸盐(ACVp)治疗之后的阴道HSV-2感染。ACVp(10mg/ml)在病毒接种物前1分钟或60分钟投与,每一组测试n≥45只小鼠,且对照组中的感染率是约90%。与等渗相比*P<0.05,费舍尔精确检验。
图8A和8B展示以低渗(hypo)或等渗(iso)溶液形式投与的MPP的阴道滞留。图8A,小鼠保持仰卧1小时,随后进行组织收集(非可走动的)。图8B,小鼠可走动10分钟,随后进行组织收集(可走动的)。粒子滞留被计算为平均值±SEM(n≥5)。如与等渗相比*P<0.05,威尔科克森秩和检验。
图9展示以改变横切阴道冷冻切片中和整个展平的阴道组织上的渗透压摩尔浓度的溶液形式投与的荧光100nm MPP的阴道分布。所有组织均在粒子投与的10分钟内收集。所有值的单位均为mOsm/kg。粘膜粘附性CP粒子的渗透压摩尔浓度为20mOsm/kg。图像代表n≥5小鼠。数据被计算为平均值±SEM(n≥3)。#从(4)重印。如与低渗溶液(20-220)相比*P<0.05,威尔科克森秩和检验。
具体实施方式
许多粘膜表面(如口腔、胃、肠、结肠和阴道的粘膜表面)含有大量较深上皮褶皱以适应上皮扩张以及流体和养分的吸收。出于这些原因,相当大的上皮表面部分含于这些难以达到的褶皱中。设计均匀分布在粘膜组织表面上的粒子的能力在治疗剂递送、成像以及诊断应用方面保持许多重要的意义。举例来说,并未实现均匀分布和渗透到深凹处中的粒子无法完全治疗或保护粘膜表面(拉贾帕克萨(Rajapaksa)等人生物化学杂志(J BiolChem)285,23739-23746(2010)。
在阴道药物递送领域,实现对所有目标表面的充分分布是一个被经常提到的问题。阴道表面是高度折叠的以在性交和分娩期间适应扩张,产生折叠的褶皱或“皱襞”。在皱襞中的不良分布(甚至在模拟性交之后)已作为在杀微生物剂产品无法针对阴道感染保护方面的关键因素提出。其它在小鼠中的杀微生物剂研究已使用较大体积的测试产品(高达40μl)以促进更完全的阴道分布。小鼠阴道可容纳约50μl体积;这种相对较大体积的测试剂扩张并展开阴道上皮。相比之下,人类阴道可保持在50ml范围,而典型阴道产品仅递送2-5ml。为了研究小鼠体内的阴道分布,使用将更恰当模拟人类中所用体积的较小体积(5μl)。将药物递送到深度折叠表面中而不扩张阴道的方法可引起更有效的阴道药物递送。
阴道上皮是小分子可渗透的,且能够吸收各种药物。阴道上皮的浅表层含有密集填充的已死亡和正在死亡的细胞(角质层),所述细胞保护更深的活细胞层同时允许流体经由上皮分泌和吸收。阴道具有可用于药物递送的渗透诱导的流体吸收的天然能力。以低渗溶液形式投与的阿霉素涂布可走动小鼠的超过85%的阴道表面,而仅25%阴道组织表面经以等渗溶液形式投与的阿霉素涂布。等渗流体并不渗透到皱襞中,当阴道组织展平时留下条纹图案。已提出,低渗递送可通过改进清洁剂壬苯醇醚-9(N9)经由粘液的移动性来增加N9的避孕功效(邓迈尔EN(Dunmire EN)和卡茨DF(Katz DF)避孕(Contraception)55,209-217(1997);欧文(Owen)等人控制释放杂志(J Control Release)60,23-34(1999))。低渗N9溶液经由粘液的渗透增强展示在体外经分离粘液中,重点是实现粘液中清洁剂与精子之间的更快速接触。
递送到子宫颈阴道和结肠尤其可具挑战性,不仅因为分布问题,而且因为“渗漏”。大多数阴道和直肠调配物是高度高渗透压摩尔浓度的,其引起流体从粘膜上皮渗透分泌。这种流体分泌引起调配物的稀释和渗漏以及与高渗透压摩尔浓度有关的毒性(鲁道夫(Rudolph)等人分子治疗学(Mol Ther)12,493-501(2005);博钦格(Bertschinger)等人控制释放杂志(Journal of Controlled Release)116,96-104(2006);皮赫尔(Pihl)等人生理学报(Acta Physiol)193,67-78(2008);挪亚(Noach)药理学与实验治疗学杂志(JPharmacol Exp Ther)270,1373-1380(1994))。使用低渗药物溶液的药物吸收是已知的但吸收对分布和滞留的作用并非已知的。参见例如,艾尔斯等人药理学和药物治疗学杂志47,561-565(1995);拉贾帕克萨等人生物化学杂志285,23739-23746(2010);鲁道夫等人分子治疗学12,493-501(2005);博钦格等人控制释放杂志116,96-104(2006);皮赫尔等人生理学报193,67-78(2008);挪亚药理学与实验治疗学杂志270,1373-1380(1994);莱恩玛斯H(Lennemas H)药物研究(Pharmaceut Res)12,1573-1582(1995)。
调配物的张力取决于组织的渗透性质(例如结肠对阴道),且对于吸收增加和分布均匀性且无毒性来说存在关键的适度低渗范围。适度低渗调配物应引起流体吸收,其将减少通常被临床试验中的患者报导为不利副作用的“渗漏”。这种产品渗漏引起使用者可接受性降低以及治疗剂快速去除两种情况。举例来说,渗透压摩尔浓度从294mOsm/kg减小到220mOsm/kg起到以下作用:使阴道表面覆盖率从60%增加到76%的适度低渗流体和基本上所有低渗递送的MPP从管腔吸引出以在投与的10分钟内到达折叠表面内深处的上皮表面。
快速实现均匀分布以及经由粘液运送的微粒调配物可用于有效靶向体内粘液覆盖的上皮以用于较广范围的应用,包括药物疗法(范围从小分子治疗剂如化学治疗剂到肽、蛋白、寡核苷酸、DNA等)、成像和诊断。出于治疗性目的,包覆在粒子中的分子可接着以预定速率经延长的时间释放。一般来说,所述技术的治疗性应用包括在标准调配物由于低效分布、毒性或“泄漏”而是不可行的、并不100%有效或引起非所需副作用时递送任何药物。所述方法还应改进标准药物调配物(即,无药物递送粒子)的渗透和均匀分布,尤其对于基因/寡核苷酸递送;治疗癌症的靶向和高度定位的化学疗法递送;抗发炎药物的靶向递送;STD的治疗或预防;在生物膜和其它生物涂膜/屏障中的渗透;和治疗细菌感染的抗生素的靶向递送。
大多数阴道凝胶已用赋予凝胶高渗的赋形剂(如丙三醇或丙二醇)调配。不幸的是,近来的研究展示出,这些高渗调配物在小鼠的阴道中引起毒性,所述毒性增加对HSV-2感染的易感性(芒什(Moench)等人BMC传染病(BMC Infect Dis)10,331(2010)),这很可能通过成为高渗的来进行(富克斯(Fuchs)等人感染病杂志(J Infect Dis)195,703-710(2007);克拉克MR(Clark MR)和弗兰德DR(Friend DR)(2012)两种替诺福韦凝胶在兔中的药物动力学和局部阴道作用(Pharmacokinetics and Topical Vaginal Effects of TwoTenofovir Gels in Rabbits).AIDS研究与人类逆转录病毒(AIDSRes HumRetroviruses))。此外,已发现高渗凝胶调配物破坏人类结肠中的上皮完整性,且已发现高渗替诺福韦凝胶调配物在与仅暴露于介质的组织相比的外宫颈和结肠直肠外植体中诱发上皮破裂(罗恩(Rohan)公共科学图书馆·综合(PLoS One)5,e9310(2010))。已假设葡聚糖硫酸钠(DSS)诱导的实验肠激躁疾病小鼠模型的主要促成因素是DSS溶液的高渗性。小鼠阴道灌洗液中的发炎性细胞因子释放在7个每日一次剂量的高渗凝胶媒剂之后增加,但在7个每日一次剂量的低渗调配物之后不增加。
I.定义
如本文中所用的“纳米粒子”通常是指直径为约1nm直到(但不包括)约1微米、更优选约5nm到约500nm、最优选约5nm到约100nm的任何形状的粒子。具有球形的纳米粒子通常被称为“纳米球”。
如本文中所用的“平均粒度”通常是指粒子群体中粒子的统计学平均粒度(直径)。基本上球形的粒子的直径可称为物理或流体动力学直径。非球形粒子的直径可优选地指流体动力学直径。如本文中所用,非球形粒子的直径可指粒子表面上两点之间的最大直线距离。平均粒度可使用本领域中已知方法(如动态光散射法)测量。
“单分散”和“均质粒径分布”在本文中可互换使用且描述其中粒子具有相同或几乎相同直径或空气动力直径的多个纳米粒子或微米粒子。如本文中所用,单分散分布是指其中80%、81%、82%、83%、84%、85%、86%、86%、88%、89%、90%、91%、92%、93%、94%、95%或更大的分布处于质量中值直径或空气动力直径的5%内的粒子分布。
如本文所用的“亲水性”是指物质具有容易与水相互作用的强极性基团。
“亲脂性”是指化合物具有脂质亲和力。
“两性”是指分子将亲水与亲脂(疏水)性质组合。
如本文所用的“疏水性”是指物质缺乏水亲和力;倾向于排斥和不吸收水以及不溶解于水或与水混合。
如本文中所用的“医药学上可接受的”是指根据如食品和药物管理局(Food andDrug Administration)的机构的方针,在合理的医学判断范围内适用于与人类和动物组织接触而无过度毒性、刺激、过敏反应或与合理利益/风险比相称的其它问题或并发症的化合物、材料、组合物和/或剂型。
如本文中所用的“生物相容的”和“生物学上相容的”通常是指连同其任何代谢物或降解产物一起对接受者通常是无毒的材料,且所述材料不会对接受者引起任何显著副作用。一般说来,生物相容的材料是在投与患者时不会诱发显著发炎或免疫反应的材料。
除非另有规定,否则如本文中所用的“分子量”通常是指本体聚合物的相对平均链长。实际上,分子量可使用包括凝胶渗透色谱法(GPC)或毛细管测粘法的各种方法估计或表征。GPC分子量被报导为重量平均分子量(Mw),与数量平均分子量(Mn)相对。毛细管测粘法提供分子量的估计,如使用特定组的浓度、温度以及溶剂条件从稀聚合物溶液测定的固有粘性。
如本文中所用的“亲水性”是指对水具有亲和力的性质。举例来说,亲水聚合物(或亲水聚合物片段)是主要可溶于水性溶液和/或具有吸水倾向的聚合物(或聚合物片段)。一般说来,聚合物越亲水,所述聚合物越倾向于溶解于水中,与水混合或被水湿润。
如本文中所用的“疏水性”是指对水缺乏亲和力或甚至排斥水的性质。举例来说,聚合物(或聚合物片段)越疏水,所述聚合物(或聚合物片段)越倾向于不溶解于水中,不与水混合或不被水湿润。
如本文中所用的“粘液”是指主要含有粘蛋白型糖蛋白和其它物质的粘弹性天然物质,其保护各种器官/组织(包括呼吸、鼻、子宫颈阴道、胃肠、直肠、视觉以及听觉系统)的上皮表面。如本文中所用的“痰液”是指高度粘弹性粘液分泌物,其除粘蛋白型糖蛋白之外还由各种高分子如DNA、肌动蛋白以及由死细胞释放的其它细胞碎片组成。“痰液”通常存在于罹患阻塞性肺疾病(包括(但不限于)哮喘、COPD以及CF)的患者的病原性气管中。如本文中所用的“CF粘液”和“CF痰液”分别是指来自罹患囊性纤维化的患者的粘液和痰液。
如本文中所用的“粘液降解剂”是指在投与患者时增大粘液清除速率的物质。粘液降解剂为本领域中已知。参见,例如黑尼斯J.(Hanes,J.)等人基因递送到肺(GeneDelivery to the Lung),医药吸入气溶胶技术(Pharmaceutical Inhalation Aerosol Technology),马塞尔德克尔公司(Marcel Dekker,Inc.),纽约(New York):489-539(2003)。粘液降解剂的实例包括N-乙酰半胱氨酸(NAC),其裂解粘蛋白中存在的二硫键和硫氢键。其它粘液降解剂包括艾蒿(mugwort)、菠萝蛋白酶(bromelain)、木瓜蛋白酶(papain)、大青属(clerodendrum)、乙酰半胱氨酸、溴己新(bromhexine)、羧甲司坦(carbocisteine)、依普拉酮(eprazinone)、美司钠(mesna)、氨溴索(ambroxol)、索布瑞醇(sobrerol)、多米奥醇(domiodol)、地纽福索(denufosol)、莱托稀痰(letosteine)、司替罗宁(stepronin)、硫普罗宁(tiopronin)、凝溶胶蛋白(gelsolin)、胸腺素β4、奈替克新(neltenexine)、厄多司坦(erdosteine)以及各种DNase(包括rhDNase)。
如本文中所用的术语“表面活性剂”是指降低液体表面张力的试剂。
术语“治疗剂”是指可经投与以预防或治疗疾病或病症的药剂。治疗剂可为核酸、核酸类似物、小分子、肽模拟物、蛋白质、肽、碳水化合物或糖、脂质、或表面活性剂或其组合。
术语“治疗”或预防疾病、病症或病状免于发生在可易患所述疾病、病症和/或病状但还未被诊断为患有其的动物中;抑制所述疾病、病症或病状,例如阻碍其发展;以及减轻所述疾病、病症或病状,例如引起所述疾病、病症和/或病状消退。治疗疾病或病状包括改善特定病原或病状的至少一个症状,即使潜在病理生理学不受影响,如通过投与止痛剂来治疗个体的疼痛,即使所述药剂并不治疗疼痛的病因。
如本文中所用的术语“靶向部分”是指定位于或远离特定场所的部分。所述部分可例如为蛋白质、核酸、核酸类似物、碳水化合物或小分子。实体可例如为治疗性化合物,如小分子,或诊断实体,如可检测标记。场所可为组织、特定细胞类型或亚细胞区室。在一个实施例中,靶向部分引导活性实体的局部化。活性实体可为小分子、蛋白质、聚合物或金属。活性实体可适用于治疗性、防治性或诊断性目的。
术语“治疗有效量”是指在结合到本文中描述的粒子之中和/或之上时在可适用于任何医学治疗的合理利益/风险比下产生一些所需作用的治疗剂的量。有效量可不同,取决于如所治疗的疾病或病状、所投与的特定靶向构建体、个体大小、疾病或病状的严重性的因素。本领域普通技术人员可凭经验确定特定化合物的有效量而无需进行过度实验。
术语“结合”和“囊封”是指将活性剂结合、调配或以其它方式包括到在所需应用中允许释放(如持续释放)所述药剂的组合物之中和/或之上。所述术语涵盖将治疗剂或其它物质结合到聚合物基体中的任何方式,包括例如:(通过共价、离子或其它结合相互作用)连接于所述聚合物的单体,物理掺合,将药剂封装在聚合物涂层中,结合到聚合物中,分配在整个聚合物基体中,(通过共价或其它结合相互作用)附加到聚合物基体表面,囊封到聚合物基体内部等。术语“共结合”或“共囊封”是指治疗剂或其它物质与至少一种其它治疗剂或其它物质结合在主题组合物中。
术语“等渗”的常规使用是指流体并不引起细胞溶胀或皱缩,这通常在总溶质浓度(渗透压摩尔浓度)等于血液的总溶质浓度(约300mOsm/kg)时发生。等渗在本文中被定义为并不引起水进入或离开管腔或经由上皮渗透驱动的调配物。低渗在本文中定义为指调配物引起水从粘膜表面向内、向上皮流动,且高渗调配物被定义为引起水向外、向粘液涂布的表面流动的高渗调配物。
如本文所用的“粘液渗透性粒子”或“MPP”通常是指已经粘膜渗透增强涂层涂布的粒子。在一些实施例中,粒子是经如下文所述的粘膜渗透增强涂层涂布的活性剂(如治疗剂、诊断剂、防治剂和/或营养药剂的粒子(即,药物粒子)。在其它实施例中,粒子由其中囊封、分散和/或缔合有治疗剂、诊断剂、防治剂和/或营养药剂的基质材料(如聚合材料)形成。涂层材料可共价或非共价地与药物粒子或聚合粒子缔合。
II.粘液渗透性纳米粒子(MPP)
A.聚合粒子
1.核心聚合物
许多生物相容性聚合物可用于制备纳米粒子。在一个实施例中,生物相容性聚合物是生物可降解的。在另一实施例中,粒子是不可降解的。在其它实施例中,粒子是可降解和不可降解粒子的混合物。
示例性聚合物包括(但不限于)含有环糊精的聚合物,尤其含有阳离子环糊精的聚合物,如美国专利第6,509,323号所述的那些;由内酯制备的聚合物,如聚(己内酯)(PCL);多羟基酸和其共聚物,如聚(乳酸)(PLA)、聚(L-乳酸)(PLLA)、聚(乙醇酸)(PGA)、聚(乳酸-共-乙醇酸)(PLGA)、聚(L-乳酸-共-乙醇酸)(PLLGA)、聚(D,L-丙交酯)(PDLA)、聚(D,L-丙交酯-共-己内酯)、聚(D,L-丙交酯-共-己内酯-共-乙交酯)、聚(D,L-丙交酯-共-PEO-共-D,L-丙交酯)、聚(D,L-丙交酯-共-PPO-共-D,L-丙交酯)以及其掺合物;聚烷基氰基丙烯酸酯;聚氨基甲酸酯;聚氨基酸,如聚-L-赖氨酸(PLL)、聚(戊酸)以及聚-L-谷氨酸;甲基丙烯酸羟丙酯(HPMA);聚酸酐;聚酯;聚原酸酯;聚(酯酰胺);聚酰胺;聚(酯醚);聚碳酸酯;聚亚烷基,如聚亚乙基和聚亚丙基;聚亚烷基二醇(如聚(乙二醇)(PEG))聚亚烷基氧化物(PEO)和其嵌段共聚物,如聚氧基环氧乙烷;聚对苯二甲酸亚烷基酯,如聚(对苯二甲酸乙二酯);乙烯乙酸乙烯酯聚合物(EVA);聚乙烯醇(PVA);聚乙烯醚;聚乙烯酯,如聚(乙酸乙烯酯);聚卤乙烯,如聚(氯乙烯)(PVC);聚乙烯吡咯烷酮;聚硅氧烷;聚苯乙烯(PS;纤维素,包括衍生纤维素,如烷基纤维素、羟烷基纤维素、纤维素醚、纤维素酯、硝基纤维素、羟丙基纤维素以及羧甲基纤维素;丙烯酸的聚合物,如聚((甲基)丙烯酸甲酯)(PMMA)、聚((甲基)丙烯酸乙酯)、聚((甲基)丙烯酸丁酯)、聚((甲基)丙烯酸异丁酯)、聚((甲基)丙烯酸己酯)、聚((甲基)丙烯酸异癸酯)、聚((甲基)丙烯酸月桂酯)、聚((甲基)丙烯酸苯酯)、聚(丙烯酸甲酯)、聚(丙烯酸异丙酯)、聚(丙烯酸异丁酯)、聚(丙烯酸十八酯)(本文中合称为“聚丙烯酸”);聚二噁烷酮和其共聚物;聚羟基烷酸酯;聚富马酸丙二醇酯;聚甲醛;泊洛沙姆(poloxamer);聚(丁酸);三亚甲基碳酸酯;以及聚磷氮烯。优选天然聚合物的实例包括蛋白质(如白蛋白)、胶原、明胶以及醇溶谷蛋白(例如玉米蛋白)以及多糖(如海藻酸盐)。还可以使用以上各者的共聚物(如随机、嵌段或接枝共聚物)或上列聚合物的掺合物。
聚合物上的官能团可经加帽以改变所述聚合物的性质和/或改变(例如减小或增大)所述官能团的反应性。举例来说,含甲酸聚合物(如含有丙交酯和含有乙交酯的聚合物)的羧基端可任选地例如通过酯化来加帽,且羟基端可任选地例如通过醚化或酯化来加帽。
PEG或其衍生物与上述聚合物中的任一者的共聚物可用于制造聚合粒子。在某些实施例中,PEG或衍生物可位于共聚物的内部位置。或者,PEG或衍生物可位于共聚物的末端位置附近或共聚物的末端位置处。举例来说,以上聚合物中的一或多者可用聚乙二醇嵌段封端。在一些实施例中,核心聚合物为聚乙二醇化聚合物和非聚乙二醇化聚合物的掺合物,其中基础聚合物是相同的(例如PLGA和PLGA-PEG)或不同的(例如PLGA-PEG和PLA)。在某些实施例中,微米粒子或纳米粒子是在允许PEG的区域相分离或以其它方式定位于粒子表面的条件下形成的。仅定位于表面的PEG区域可表现出表面改变剂或包括表面改变剂的功能。在特定实施例中,粒子是由经作为表面改变材料的聚乙二醇嵌段封端的一或多种聚合物制备的。
给定聚合物的重量平均分子量可以不同,但通常为约1000道尔顿(Dalton)到1,000,000道尔顿、1000道尔顿到500,000道尔顿、1000道尔顿到250,000道尔顿、1000道尔顿到100,000道尔顿、5,000道尔顿到100,000道尔顿、5,000道尔顿到75,000道尔顿、5,000道尔顿到50,000道尔顿或5,000道尔顿到25,000道尔顿。
在一些实施例中,粒子可用作纳米粒子基因载体。在这些实施例中,粒子可由与一或多种带负电荷的核酸复合的一或多种聚阳离子聚合物形成。阳离子聚合物可为每分子带有至少两个正电荷的任何合成或天然聚合物,且其具有足够的电荷密度和分子大小以在生理条件(即,在体内或在细胞内遇到的pH值和盐条件)下结合于核酸。在某些实施例中,聚阳离子聚合物含有一或多个胺残基。
B.经涂布药物粒子
在一些实施例中,治疗剂、诊断剂、防治剂和/或营养药剂的粒子经粘膜渗透增强涂层涂布。粒子可为微米粒子或纳米粒子。以下更详细地描述示例性治疗剂、诊断剂、防治剂和/或营养药剂。药物粒子可使用此项技术中已知的技术经粘膜渗透增强涂层材料涂布。可如下所述评估涂层的密度和形态。粘膜渗透增强涂层可与药剂共价或非共价地缔合。在一些实施例中,其是非共价缔合的。在其它实施例中,活性剂含有反应性官能团或并入粘膜渗透增强涂层可共价结合者。
C.促进扩散通过粘液的材料
微米粒子和/或纳米粒子优选地包衣有或含有一或多种表面改变剂或材料。如本文中所用的“表面改变剂”是指针对表面修改粒子的一或多种性质的试剂或材料,所述性质包括(但不限于)亲水性(例如使粒子更亲水或更不亲水)、表面电荷(例如使表面中性或接近中性或更负性或正性)和/或增强在体液和/或组织(如粘液)中或通过其的转运。在一些实施例中,表面改变材料提供直接的治疗性作用,如减少炎症。
表面改变剂的实例包括(但不限于)蛋白质,包括阴离子蛋白质(例如白蛋白);表面活性剂;糖或糖衍生物(例如环糊精);治疗剂;以及聚合物。优选的聚合物包括肝素、聚乙二醇(“PEG”)以及泊洛沙姆(聚环氧乙烷嵌段共聚物)。最优选的材料是PEG或PLURONIC(一种可自BASF获得的聚环氧乙烷嵌段共聚物)。
表面活性剂的实例包括(但不限于)L-α-磷脂酰胆碱(PC)、1,2-二棕榈酰磷脂酰胆碱(DPPC)、油酸、脱水山梨糖醇三油酸酯、脱水山梨糖醇单油酸酯、脱水山梨糖醇单月桂酸酯、聚氧乙烯(20)脱水山梨糖醇单月桂酸酯、聚氧乙烯(20)脱水山梨糖醇单油酸酯、天然卵磷脂、油烯基聚氧乙烯(2)醚、硬脂酰聚氧乙烯(2)醚、月桂基聚氧乙烯(4)醚、环氧乙烷和环氧丙烷的嵌段共聚物、合成卵磷脂、二甘醇二油酸脂、油酸四氢糠酯、油酸乙酯、肉豆蔻酸异丙酯、甘油单油酸酯、甘油单硬脂酸酯、甘油单蓖麻油酸酯、鲸蜡醇、硬脂醇、聚乙二醇400、氯化十六烷基吡啶、苯扎氯铵、橄榄油、甘油单月桂酸酯、玉米油、棉籽油以及葵花籽油、卵磷脂、油酸以及脱水山梨糖醇三油酸酯。
在一个实施例中,粒子包衣有或含有聚乙二醇(PEG)或F127。或者,PEG或F127可呈与用于形成粒子的核心聚合物共价结合(例如在内部或在一端或两端)的嵌段的形式。在特定实施例中,粒子由含有PEG的嵌段共聚物形成。在更特定实施例中,粒子由含有PEG的嵌段共聚物制备,其中PEG共价结合于基础聚合物的末端。代表性PEG分子量包括300Da、600Da、1kDa、2kDa、3kDa、4kDa、6kDa、8kDa、10kDa、15kDa、20kDa、30kDa、50kDa、100kDa、200kDa、500kDa以及1MDa以及在300道尔顿到1MDa范围内的所有值。在优选实施例中,PEG的分子量为约5kD。任何给定分子量的PEG可在其它特征(如长度、密度以及分支)方面不同。
1.评估表面密度
微米粒子和/或纳米粒子上聚(乙二醇)(PEG)的表面密度是测定其体内成功施用的关键参数。(如本文中所用,通常提及粒子表面上的PEG可推测为F127。药物到粘膜表面的受控递送是个难题,因为存在保护性粘液层,且粘液渗透性粒子在粘膜表面处改进的阻力分布、滞留以及功效方面展示出前景。生物可降解纳米粒子上PEG的致密涂层因粘液组分与纳米粒子之间大大减小的粘附相互作用而可允许快速渗透通过粘液。
在一个优选实施例中,核磁共振(NMR)用于在定性和定量两者上评估本文中所述的含PEG的聚合纳米粒子上的表面PEG密度(PEG峰通常观察为约3.65ppm)。当纳米粒子分散在NMR溶剂D2O内时,仅表面PEG(而非包埋在核心内的PEG)可直接通过NMR检测。因此,NMR提供了用于直接测量PEG表面密度的手段。
在一些实施例中,PEG表面密度可通过从PEG化和非PEG化粒子的混合物制备粒子进行控制。举例来说,PLGA纳米粒子上PEG的表面密度可通过从聚(乳酸-共-乙醇酸)与聚(乙二醇)的混合物(PLGA-PEG)制备粒子来精确控制。定量1H核磁共振(NMR)可用于测量纳米粒子上的表面PEG密度。人类粘液中的多个粒子追踪以及小鼠阴道中粘蛋白结合和组织分布的研究揭露了对于在渗透粘液方面有效的PLGA-PEG纳米粒子来说,存在PEG密度阈值,所述阈值约为每100平方纳米10-16条PEG链。这一密度阈值可不同,取决于各种因素,包括用于制备粒子的核心聚合物、粒径和/或PEG分子量。
涂层的密度可基于各种因素变化,包括表面改变材料和粒子组分。在一个实施例中,表面改变材料(如PEG)的密度如利用1H NMR测量是至少0.1、0.2、0.5、0.8、1、2、5、8、10、15、20、25、40、50、60、75、80、90或100条链/平方纳米。以上范围包括从0.1到100个单元/平方纳米的所有值在内。在特定实施例中,表面改变材料(如PEG)的密度是约1到约25条链/平方纳米、约1到约20条链/平方纳米、约5到约20条链/平方纳米、约5到约18条链/平方纳米、约5到约15条链/平方纳米或约10到约15条链/平方纳米。在其它特定实施例中,密度为约0.05到约0.5条PEG链/平方纳米。
表面改变材料(如PEG)的浓度也可改变。在特定实施例中,表面改变材料(例如PEG)的密度使得表面改变材料(例如PEG)采用延伸的刷子配置。在其它实施例中,表面改变部分的质量是粒子质量的至少1/10,000、1/7500、1/5000、1/4000、1/3400、1/2500、1/2000、1/1500、1/1000、1/750、1/500、1/250、1/200、1/150、1/100、1/75、1/50、1/25、1/20、1/5、1/2或9/10。以上范围包括从1/10,000到9/10的所有值在内。
D.乳化剂
本文中所述的粒子可含有乳化剂,尤其低分子量乳化剂。乳化剂在粒子形成过程中结合到粒子中并且因此成为成品粒子的组分。乳化剂可囊封在粒子内,完全或部分地分散在聚合物基体内(例如乳化剂的一部分从聚合物基体中伸出)和/或与粒子表面缔合(例如以共价方式或以非共价方式)。
如本文中所用的“低分子量”通常是指分子量不到1500、1400、1300、1200、1100、1000、900、800、700、600、500、400或300amu的乳化剂。在一些实施例中,分子量不到1300amu。在一些实施例中,分子量为约300amu到约1200amu。
乳化剂可为带正电的、带负电的或不带电的。带负电的乳化剂的实例包括(但不限于)胆酸钠盐(CHA,MW=430)和磺基琥珀酸钠二辛酯(DSS,MW=455)。带正电的乳化剂的实例包括(但不限于)溴化十六烷基三甲基铵(CTAB,MW=364)。不带电的乳化剂的实例包括(但不限于)皂苷(MW=1191)、TWEEN 20(MW=1,225)、TWEEN 80(MW=1310)以及糖酯D1216(蔗糖月桂酸脂,SE,MW=524)。除具有低分子量之外,乳化剂必须能够在粒子形成过程中适当地使乳液小滴稳定以免粒子聚集。除适当稳定乳液小滴以防止聚集体形成之外,稳定剂必须小到足以在粒子表面处被表面改变材料冠环(例如PEG)完全遮蔽,从而提供中性或接近中性的表面电荷。带电粒子的转运可因体内带电荷粒子与带相反电荷物质的相互作用而受到阻碍。举例来说,粒子快速渗透粘液的能力至少部分取决于粒子的表面电荷。为了有助于其扩散通过粘液,本文中所述的纳米粒子通常具有接近中性的表面电荷。在某些实施例中,纳米粒子的ζ-电位在约10mV与约-10mV之间,优选地在约5mV与约-5mV之间,优选地在约3mV与约-3mV之间,更优选地在约2mV与约-2mV之间。
虽然本文中所述粒子被称为纳米粒子,且因此平均直径通常在1nm到(但不包括)约1微米范围内,更优选地为约5nm到约500nm,最优选地为约5nm到约100nm。在某些实施例中,粒子的平均直径形成约100nm到约150nm。然而,可制备大小在微米范围内的粒子。用于制备粒子的条件和/或材料可改变以改变粒子的大小。
在某些实施例中,纳米粒子在4℃下雾化或储存至少1个月、更优选至少2个月、最优选至少3个月后保持其粒径和ζ-电位。
2.乳化剂对转运能力的作用
在一些实施例中,粒子经投与以渗透粘液以用于对黏膜的药物递送。本文中所述粒子含有可增强通过粘液的转运的表面改变材料。举例来说,含PEG的嵌段共聚物可自装配,从而在利用乳化方法形成的乳液小滴表面上形成致密、粘惰性PEG涂层。
E.治疗剂、防治剂、营养药剂和/或诊断剂
1.治疗剂
在一些实施例中,粒子具有一或多种治疗剂囊封于其中、分散于其中和/或以共价方式或以非共价方式与表面缔合。治疗剂可为小分子、蛋白质、多糖或糖类、核酸分子和/或脂质。
i.小分子治疗剂
小分子治疗剂的示例性种类包括(但不限于)止痛剂、抗炎药物、解热剂、抗抑郁剂、抗癫痫剂、抗精神病剂、神经保护剂、抗增生剂(如抗癌剂)、抗感染剂(如抗细菌剂和抗真菌剂)、抗组胺剂、抗偏头痛药物、抗毒蕈碱剂、抗焦虑剂、镇静剂、催眠药、抗精神病药、支气管扩张剂、抗哮喘药物、心血管药物、皮质类固醇、多巴胺能剂、电解质、胃肠药物、肌肉松弛药、营养剂、维生素、拟副交感神经药、兴奋剂、减食欲剂以及抗嗜睡剂。还可并入营养药剂。这些营养药剂可为维生素、如钙或生物素的补充剂或如植物提取物或植物激素的天然成分。
ii.核酸
在一些实施例中,药剂是一或多种核酸。所述核酸可改变、矫正或置换内源性核酸序列。核酸用于治疗癌症,矫正其它肺疾病和影响肺功能的代谢疾病中的基因、如用于治疗帕金森氏病(Parkinsons)和ALS的基因的基因中的缺陷,其中所述基因通过经鼻递送到达脑。
基因疗法是一种用于矫正造成疾病发展的缺陷性基因的技术。研究人员可使用以下若干方法中的一种来矫正有缺陷的基因:正常基因可被插入基因组内的非特定位置中以置换非功能基因。异常基因可通过同源重组交换正常基因。异常基因可通过选择性回复突变修复,所述回复突变使基因回到其正常功能。可改变特定基因的调节(基因被打开或关闭的程度)。
核酸可为DNA、RNA、经化学修饰的核酸或其组合。举例来说,用于增强核酸半衰期的稳定性和对酶促裂解的抗性的方法为本领域中已知,且可包括对核碱基、糖或聚核苷酸键合的一或多种修饰或取代。核酸可经定制合成以含有适合于适应所需用途的性质。常见修饰包括(但不限于)使用锁核酸(LNA)、非锁核酸(UNA)、吗啉代、肽核酸(PNA)、硫代磷酸酯键合、磷酰基乙酸酯键合、丙炔类似物、2'-O-甲基RNA、5-Me-dC、2'-5'连接的磷酸二酯键合、嵌合键合(混合硫代磷酸酯和磷酸二酯键合和修饰)、与脂质和肽结合以及其组合。
在一些实施例中,核酸包括核苷酸间键合修饰,如具有非手性且不带电的亚基间键合的磷酸酯类似物(例如斯特查克E.P.(Sterchak,E.P.)等人,有机化学(OrganicChem.),52:4202,(1987))或具有非手性亚基间键合的不带电的基于吗啉代的聚合物(参见例如美国专利第5,034,506号)。一些核苷酸间键合类似物包括吗啉酸酯、乙缩醛以及聚酰胺连接的杂环。其它主链和键合修饰包括(但不限于)硫代磷酸酯、肽核酸、三环-DNA、诱骗寡核苷酸、核糖酶、镜像异构体(含有L核酸,具有高结合亲和力的适配体)或CpG寡聚物。
硫代磷酸酯(或S-oligo)是正常DNA的变体,其中非桥接氧中的一者经硫置换。核苷酸间键的硫化显著减小核酸内切酶和核酸外切酶(包括5'到3'和3'到5'DNA POL1核酸外切酶、核酸酶S1和P1、RNase、血清核酸酶以及蛇毒磷酸二酯酶)的作用。另外,越过脂双层的潜力增大。由于这些重要改进,已发现硫代磷酸酯在细胞调节中的增强应用。硫代磷酸酯通过两条主要路线制得:元素硫于二硫化碳中的溶液对氢膦酸酯的作用,或用二硫化四乙基秋兰姆(TETD)或3H-1,2-苯并二硫醇-3-酮1,1-二氧化物(BDTD)对亚磷酸三酯进行硫化的更新近方法。后一方法避免了元素硫不可溶于大多数有机溶剂中和二硫化碳毒性的问题。TETD和BDTD方法还产生较高纯度的硫代磷酸酯。
肽核酸(PNA)是寡核苷酸的磷酸酯主链全部被重复的N-(2-氨基乙基)-甘氨酸单元置换且磷酸二酯键被肽键置换的分子。各种杂环碱基利用亚甲基羰基键与主链连接。PNA维持与寡核苷酸类似的杂环碱基的间隙,但为非手性且电荷中性的分子。肽核酸通常包含肽核酸单体。杂环碱基可为标准碱基(尿嘧啶、胸腺嘧啶、胞嘧啶、腺嘌呤以及鸟嘌呤)中的任一者或下文所述经修饰的杂环碱基中的任一者。PNA还可具有一或多个肽或氨基酸变体和修饰。因此,PNA的主链组分可为肽键合,或者可替代地,其可为非肽键合。实例包括乙酰基帽、氨基间隔子如8-氨基-3,6-二氧杂辛酸(本文中称为O-连接子)等。用于PNA化学装配的方法为熟知的。
在一些实施例中,核酸包括一或多种经化学修饰的杂环碱基,包括(但不限于)肌苷、5-(1-丙炔基)尿嘧啶(pU)、5-(1-丙炔基)胞嘧啶(pC)、5-甲基胞嘧啶、8-氧代-腺嘌呤、假胞嘧啶、假异胞嘧啶、5和2-氨基-5-(2'-脱氧-β-D-呋喃核糖基)吡啶(2-氨基吡啶)以及各种吡咯并和吡唑并嘧啶衍生物、4-乙酰胞嘧啶、8-羟基-N-6-甲基腺苷、氮杂环丙烯基胞嘧啶、5-(羧羟甲基)尿嘧啶、5-溴尿嘧啶、5-羧甲基氨甲基-2-硫尿嘧啶、5-羧甲基氨甲基尿嘧啶、二氢尿嘧啶、N6-异戊烯基腺嘌呤、1-甲基腺嘌呤、1-甲基假尿嘧啶、1-甲基鸟嘌呤、1-甲基肌苷、2,2-二甲基鸟嘌呤、2-甲基腺嘌呤、2-甲基鸟嘌呤、3-甲基胞嘧啶、N6-甲基腺嘌呤、7-甲基鸟嘌呤、5-甲基氨甲基尿嘧啶、5-甲氧基-氨甲基-2-硫尿嘧啶、β-D-甘露糖Q核苷、5'-甲氧基羰基甲基尿嘧啶、5-甲氧基尿嘧啶、2-甲硫基-N6-异戊烯基腺嘌呤、尿嘧啶-5-羟乙酸甲酯、尿嘧啶-5-羟乙酸、羟丁氧基核苷、假尿嘧啶、Q核苷、2-硫胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4-硫尿嘧啶、5-甲基尿嘧啶、N-尿嘧啶-5-羟乙酸甲酯、2,6-二氨基嘌呤以及2'-修饰的类似物,如(但不限于)O-甲基、氨基-以及荧光修饰的类似物。用2'-氟(2'-F)嘧啶修饰的抑制性RNA似乎在体外具备有利的性质。
在一些实施例中,核酸包括一或多种糖部分修饰,包括(但不限于)2'-O-氨基乙氧基、2'-O-氨基乙基(2'-OAE)、2'-O-甲氧基、2'-O-甲基、2-胍基乙基(2'-OGE)、2'-O,4-C-亚甲基(LNA)、2'-O-(甲氧基乙基)(2'-OME)以及2'-O-(N-(甲基)乙酰胺基)(2'-OMA)。
基因疗法的方法通常依赖于将会改变细胞基因型的核酸分子引入细胞中。核酸分子的引入可经由基因重组来矫正、置换或以其它方式改变内源性基因。方法可包括引入缺陷基因、异源基因或小核酸分子(如寡核苷酸)的整个置换拷贝。这一方法通常需要将置换基因引入细胞中的递送系统,如基因工程化的病毒载体。
构建含有基因序列和适当转录和翻译控制元件的表达载体的方法为本领域中所熟知。这些方法包括体外重组DNA技术、合成技术以及体内基因重组。表达载体通常含有用于翻译和/或转录所插入编码序列的调节性序列必需元件。举例来说,编码序列优选地可操作地连接于启动子和/或增强子以帮助控制所需基因产物的表达。根据预定基因表达控制类型,生物技术中所用的启动子属于不同类型。其通常可分为组成性启动子、组织特异性或发展阶段特异性启动子、诱导型启动子以及合成启动子。
病毒载体包括腺病毒、腺病毒相关病毒、疱疹病毒、牛痘病毒、脊髓灰质炎病毒、AIDS病毒、神经元营养病毒、辛德毕斯病毒(Sindbis)以及其它RNA病毒,包括具有HIV主链的这些病毒。还适用的是与这些病毒具有共同的使其适于用作载体的性质的任何病毒家族。通常,病毒载体含有非结构性早期基因、结构性晚期基因、RNA聚合酶III转录物、复制和壳体化必需的反向末端重复序列以及控制病毒基因组的转录和复制的启动子。当被工程化为载体时,通常要去除病毒的一或多个早期基因,并将基因或基因/启动子盒插入到病毒基因组中代替被去除的病毒DNA。
经由目标重组(如同源重组(HR))的基因靶向是用于基因矫正的另一策略。在目标基因座处的基因矫正可利用与目标基因同源的供体DNA片段介导(胡(Hu)等人,分子生物技术(Mol.Biotech.),29:197-210(2005);奥尔森(Olsen)等人,基因医学杂志(J.GeneMed.),7:1534-1544(2005))。靶向重组的一种方法包括使用三链形成寡核苷酸(TFO),所述寡核苷酸作为第三条链以序列特异性方式结合于双链DNA中的同型嘌呤/同型嘧啶位点。三链形成寡核苷酸可与双链或单链核酸相互作用。当三链分子与目标区域相互作用时,形成一种称为三链的结构,其中取决于沃森-克里克(Watson-Crick)和胡思町(Hoogsteen)碱基配对两者存在形成复合体的三条DNA链。三链分子是优选的,因为其可以高亲和力和特异性结合目标区域。优选的是三链形成分子以低于10-6、10-8、10-10或10-12的Kd结合目标分子。使用三链形成寡核苷酸(TFO)和肽核酸(PNA)用于靶向基因疗法的方法描述于美国公开申请案第20070219122号中,且其用于治疗感染性疾病(如HIV)的用途描述于美国公开申请案第2008050920号中。三链形成分子还可以是尾夹肽核酸(tcPNA),如美国公开申请案第2011/0262406号中所述的那些。
双重双链形成分子(如一对假互补寡核苷酸)还可诱导在染色体位点以供体寡核苷酸重组。假互补寡核苷酸在靶向基因疗法中的用途描述于美国公开申请案第2011/0262406号中。
2.诊断剂
示例性诊断物质包括顺磁性分子、荧光化合物、磁性分子以及放射性核素。适合的诊断剂包括(但不限于)x射线成像剂和造影剂。放射性核素也可用作成像剂。其它适合的造影剂的实例包括气体或气体发射性化合物(其是不透射线的)。纳米粒子可进一步包括适用于测定所投与粒子位置的试剂。适用于这一目的的试剂包括荧光标记、放射性核素以及造影剂。
III.医药组合物
对于一或多种治疗剂、防治剂和/或诊断剂被囊封在聚合纳米粒子内和/或与纳米粒子表面缔合的那些实施例,药物负载量百分比为约1重量%到约80重量%,约1重量%到约50重量%,优选地约1重量%到约40重量%,更优选地约1重量%到约20重量%,最优选地约1重量%到约10重量%。以上范围包括从1%到80%的所有值在内。对于试剂与粒子表面缔合的那些实施例,负载量百分比可更高,因为药物的量不受囊封方法限制。在一些实施例中,待递送药剂可囊封在纳米粒子内且与粒子表面缔合。
本文所述的调配物在适于投与粘膜表面的医药载剂中含有有效量的纳米粒子(“MPP”),其中所述医药载剂被调节成低渗的。一旦鉴别出所需待治疗组织,本领域普通技术人员即可基于本文所述的优选张力范围常规地调节医药载剂的张力。
张力是‘有效渗透压摩尔浓度’且等于能够发挥跨膜的渗透力的溶质的浓度总和。许多不同物质可用于调节张力。举例来说,USP 29-NF 24列出五种归类为“张力”剂的赋形剂,包括右旋糖、丙三醇;氯化钾;甘露糖醇;和氯化钠。参见,例如美国药典委员会公司(United States Pharmacopeial Convention).美国药典29-国家处方集24(Pharmacopeia29-National Formulary 24).马里兰州罗克维尔(Rockville MD):美国药典委员会公司;2005:3261;戴A(Day,A.)右旋糖.在:罗RC(Rowe RC),谢斯基PJ(Sheskey PJ)和欧文SC(Owen SC)编医药赋形剂手册(Handbook of Pharmaceutical Excipients).第5版.华盛顿哥伦比亚特区(Washington DC):美国医药协会(American PharmaceuticalAssociation);2005:231-233中;普莱斯JC(Price JC.)丙三醇.在:罗RC,谢斯基PJ和欧文SC编医药赋形剂手册.第5版.华盛顿哥伦比亚特区:美国医药协会;2005:301-303中;普莱斯JC(Price JC.)丙三醇.在:罗RC,谢斯基PJ和欧文SC编医药赋形剂手册.第5版.华盛顿哥伦比亚特区:美国医药协会;2005:301-303中;阿姆斯特朗NA(Armstrong NA.)甘露糖醇.在:罗RC,谢斯基PJ和欧文SC编医药赋形剂手册.第5版.华盛顿哥伦比亚特区:美国医药协会;2005:449-453中;欧文SC氯化钠.在:罗RC,谢斯基PJ和欧文SC编医药赋形剂手册.第5版.华盛顿哥伦比亚特区:美国医药协会;2005:671-674中。甘露糖醇是在欧洲接受用作食物添加剂的GRAS所列成分的一个实例,包括在FDA非活性成分数据库中(FDA InactiveIngredientsDatabase;IP、IM、IV和SC注射;灌注;颊内、口服和舌下片剂、粉末和胶囊;眼用制剂;局部溶液),包括在英国特许的非注射用和肠胃外药品中且包括在加拿大天然健康产品成分数据库(Canadian Natural Health Products Ingredients Database)中。5.07%w/v水溶液是与血清等渗的。
优选介于20-220mOsm/kg范围内的最低限度低渗调配物使MPP快速并均匀地递送到整个阴道表面且上皮毒性风险最小。结肠中的渗透压摩尔浓度较高,使得渗透压摩尔浓度高于血浆渗透压摩尔浓度(通常视为在约300mOsm/kg下等渗)的媒剂引起在结肠中的分布方面的改进。用于在结肠中以低渗媒剂改进结肠分布的范围是约20mOsm/kg-450mOsm/kg,如果溶质在调配物中的主要部分由Na+离子组成,那么由于这些Na+离子将被上皮主动吸收(吸附),因此使得调配物有效低渗,尽管其相对于血液是高渗透压摩尔浓度的。
A.经肺调配物
用于向患者经肺投与活性剂的医药调配物和方法为本领域中已知。
呼吸道为涉及大气与血流之间气体交换的结构。呼吸道涵盖上气道,包括口咽和喉;接着为下气道,其包括接着分支成支气管和细支气管的气管。上气道和下气道称作传导气道。末端细支气管接着分成呼吸细支气管,其接着导向最终呼吸区、肺泡或肺深处,其中发生气体交换。
调配物可分成干粉调配物和液体调配物。干粉和液体调配物均可用于形成气溶胶调配物。如本文所用的术语气溶胶是指粒子细雾的任何制剂,其可在溶液或悬浮液中,无论其是否使用推进剂制造。
1.干粉调配物
干粉调配物为细粉状固体调配物,其含有适用于经肺投与的纳米粒子载体。干粉调配物至少包括一或多种适用于经肺投与的纳米粒子载体。所述干粉调配物可通过经肺吸入来投与患者而不利用除空气或适合推进剂以外的任何载体。
在其它实施例中,干粉调配物含有一或多种纳米粒子基因载体以及医药学上可接受的载剂。在这些实施例中,纳米粒子基因载体和医药载剂可形成到纳米或微米粒子中以用于递送到肺。
医药载剂可包括填充剂或脂质或表面活性剂。天然表面活性剂如二棕榈酰磷脂酰胆碱(DPPC)为最优选的。合成和动物来源的肺表面活性剂包括:Exosurf-一种作为展布剂加入的DPPC与十六醇和泰洛沙泊(tyloxapol)的混合物;Pumactant(人工肺扩张化合物或ALEC)-一种DPPC和PG的混合物;KL-4-由DPPC、棕榈酰基-油酰基磷脂酰甘油以及棕榈酸组成,与模拟SP-B结构特征的21个氨基酸合成肽组合;Venticute-DPPC、PG、棕榈酸以及重组SP-C;Alveofact-提取自母牛肺灌洗液;Curosurf-提取自从切碎的猪肺获得的材料;Infasurf-提取自小牛肺灌洗液;和Survanta-提取自切碎的母牛肺,具有另外的DPPC、棕榈酸以及棕榈精。Exosurf、Curosurf、Infasurf以及Survanta为当前FDA批准用于在美国使用的表面活性剂。
医药载剂还可包括一或多种稳定剂或分散剂。医药载剂还可包括一或多种pH值调节剂或缓冲剂。适合的缓冲剂包括由有机酸和碱制备的有机盐,如柠檬酸钠或抗坏血酸钠。医药载剂还可包括一或多种盐,如氯化钠或氯化钾。
干粉调配物通常通过将一或多种纳米粒子载体与一或多种医药学上可接受的载剂掺合来制备。任选地,另外的活性剂可并入如下所论述的混合物中。混合物接着使用本领域中已知的技术形成到适用于经肺投与的粒子中,所述技术如冻干、喷雾干燥、团聚、喷涂、凝聚、低温浇铸、碾磨(例如空气磨碎机(喷射研磨)、球磨)、高压均质化和/或超临界流体结晶。
可基于所需粒径、粒径分布以及调配物所需的粒子形态选择适当的粒子形成方法。在一些情况下,选择粒子形成方法以便制造具有所需粒径、粒径分布的粒子群体以用于经肺投与。或者,粒子形成方法可制造粒子群体,具有所需粒径、粒径分布以用于经肺投与的粒子群体例如通过筛选与所述粒子群体分离。
本领域中已知粒子形态影响粒子渗透到肺中的深度。因此,将干粉调配物加工成具有适当质量中值空气动力学直径(MMAD)、振实密度以及表面粗糙度的粒子以实现一或多种活性剂到所需肺区域的递送。举例来说,优选的用于递送到肺深处的粒子形态为本领域中已知,且例如描述于颁予凡贝维(Vanbever)等人的美国专利第7,052,678号中。
质量中值空气动力学直径(MMAD)大于约5微米的粒子通常并不到达肺;相反,其倾向于影响咽喉后部且被吞咽。直径约为3到约5微米的粒子足够小从而到达上部到中部肺区域(传导气道),但对于到达肺泡可能过大。较小粒子(即,约0.5到约3微米)能够有效地到达肺泡区域。直径小于约0.5微米的粒子还可通过沉降而沉积在肺泡区域中。
有效实现递送到肺泡区域的确切粒径范围将取决于若干因素,包括所递送粒子的振实密度。一般说来,随着振实密度减小,能够有效到达肺的肺泡区域的粒子的MMAD增大。因此,在具有低振实密度的粒子的情况下,直径为约3到约5微米、约5到约7微米或约7到约9.5微米的粒子可有效递送到肺。可计算用于在肺中最大沉积的优选空气动力学直径。参见,例如颁予凡贝维等人的美国专利第7,052,678号。
微米粒子无法扩散通过粘液,即使其表面是粘惰性的。然而,粘液渗透性粒子可囊封在微米粒子中以撞击上肺,且随后释放纳米粒子。在一些情况下,粒子的形状是球形或卵形的。粒子可具有平滑或粗糙的表面质地。粒子还可包衣有聚合物或其它适合的材料以控制一或多种活性剂在肺中的释放。
干粉调配物可使用本领域中已知的适合方法以干粉状投与。或者,干粉调配物可悬浮于如下所述的液体调配物中,且使用本领域中已知的用于递送液体调配物的方法投与肺。
2.液体调配物
液体调配物含有悬浮于液体医药载剂中的一或多种纳米粒子载体。适合的液体载剂包括(但不限于)水、盐水以及含有盐和/或缓冲剂的其它生理学上可接受的水溶液(如磷酸盐缓冲盐水(PBS)、林格氏溶液(Ringer's solution)以及等渗氯化钠),或适用于投与动物或人类的任何其它水溶液,其被调节成如通过经由上皮从内腔(粘膜)表面渗透驱动地流动到浆膜表面的水所指示的所需低渗性。在某些粘膜表面(如结肠)处,“高渗透压摩尔浓度”流体载剂(以常规意义定义,相对于血液渗透压摩尔浓度)可实际上在结肠中利用低渗并诱导流体被上皮吸收。实际上,等渗调配物在肺中和某些疾病病况(如囊肿性纤维化)中尚未被定义,肺液的渗透压摩尔浓度是高渗透压摩尔浓度的(比血液渗透压摩尔浓度高)。
优选地,液体调配物相对于生理体液轻度低渗且具有大致相同的pH值,例如在约pH 4.0到约pH 7.4范围内,更优选地在约pH 6.0到pH 7.0范围内。液体医药载剂可包括一或多种生理学上可相容的缓冲液,如磷酸盐缓冲液。本领域普通技术人员可容易地确定用于经肺投与的水溶液的适合的盐水含量和pH值。
液体调配物可包括一或多种悬浮剂,如纤维素衍生物、海藻酸钠、聚乙烯吡咯烷酮、黄蓍胶或卵磷脂。液体调配物还可包括一或多种防腐剂,如对羟基苯甲酸乙酯或对羟基苯甲酸正丙酯。
在一些情况下,液体调配物可含有一或多种溶剂,所述溶剂为低毒性有机(即非水)3类残留溶剂,如乙醇、丙酮、乙酸乙酯、四氢呋喃、乙基醚以及丙醇。这些溶剂可基于其易于气溶胶化调配物的能力选择。液体调配物中包括的任何这种溶剂不应与液体调配物中存在的一或多种活性剂不利地反应。溶剂应具有充分地挥发性以能够形成溶液或悬浮液的气溶胶。其它溶剂或气溶胶化剂(如氟利昂(freon)、乙醇、乙二醇、聚乙二醇或脂肪酸)也可根据需要包括于液体调配物中以增大挥发性和/或改变溶液或悬浮液的气溶胶化行为。
液体调配物还可含有少量聚合物、表面活性剂或本领域人员所熟知的其它赋形剂。在这种情况下,“少量”意指不存在可不利地影响一或多种活性剂在肺中吸收的赋形剂。
3.气溶胶调配物
上述干粉和液体调配物可用于形成气溶胶调配物以用于经肺投与。用于将治疗剂递送到呼吸道的气溶胶为本领域中已知。如本文所用的术语气溶胶是指悬浮于气体中的固体或液体粒子细雾的任何制剂。在一些情况下,气体可为推进剂;然而,这不是必需的。气溶胶可使用许多标准技术制造,包括如超声波处理或高压处理。
在一些情况下,装置用于将调配物投与肺。适合的装置包括(但不限于)干粉吸入器、加压定剂量吸入器、喷雾器以及电流体动力学气溶胶装置。吸入可经由患者的鼻和/或口进行。投与可通过在吸入的同时自身投与调配物或通过经由呼吸器将调配物投与依靠呼吸器的患者来进行。
B.局部和眼用调配物
局部或肠内调配物可使用本领域中已知的技术制备为水性组合物。通常,所述组合物可制备为可注射调配物,例如溶液或悬浮液;适用于在注射之前在加入复原介质时制备溶液或悬浮液的固体形式;乳液,如油包水(w/o)乳液、水包油(o/w)乳液和其微乳液、脂质体、乳脂体、喷雾剂、凝胶、乳膏或软膏。
载剂可为溶剂或分散介质,其含有例如水;乙醇;一或多种多元醇(例如甘油、丙二醇以及液体聚乙二醇);油,如植物油(例如花生油、玉米油、芝麻油等)以及其组合。可例如通过使用包衣(如卵磷脂)、通过维持所需粒径(在分散液的情况下)和/或通过使用表面活性剂来维持适当的流动性。在许多情况下,将优选包括等渗剂,例如糖或氯化钠以调节张力。
呈游离酸或碱或其药理学上可接受的盐形式的活性化合物的溶液和分散液可在与一或多种医药学上可接受的赋形剂适当混合的水或另一溶剂或分散介质中制备,所述医药学上可接受的赋形剂包括(但不限于)表面活性剂、分散剂、乳化剂、pH值调节剂以及其组合。
适合的表面活性剂可为阴离子性、阳离子性、两性或非离子性表面活性剂。适合的阴离子性表面活性剂包括(但不限于)含有羧酸根、磺酸根以及硫酸根离子的那些。阴离子性表面活性剂的实例包括长链烷基磺酸盐和烷基芳基磺酸盐的钠、钾、铵盐,如十二烷基苯磺酸钠;二烷基磺基琥珀酸钠,如十二烷基苯磺酸钠;二烷基磺基琥珀酸钠,如双-(2-乙基硫氧基)-磺基琥珀酸钠;以及烷基硫酸盐,如月桂基硫酸钠。阳离子性表面活性剂包括(但不限于)季铵化合物如苯扎氯铵、苄索氯铵、西曲溴铵、硬脂酰基二甲基苄基氯化铵、聚氧乙烯以及椰子胺。非离子性表面活性剂的实例包括乙二醇单硬脂酸酯、丙二醇肉豆蔻酸酯、单硬脂酸甘油酯、硬脂酸甘油酯、聚甘油-4-油酸酯、脱水山梨糖醇酰化物、蔗糖酰化物、PEG-150月桂酸酯、PEG-400单月桂酸酯、聚氧乙烯单月桂酸酯、聚山梨醇酯、聚氧乙烯辛基苯基醚、PEG-1000十六烷基醚、聚氧乙烯十三烷基醚、聚丙二醇丁基醚、硬脂酰单异丙醇酰胺以及聚氧乙烯氢化牛油酰胺。两性表面活性剂的实例包括N-月桂基-β-丙氨酸钠、N-月桂基-β-亚氨基二丙酸钠、肉豆蔻酰两性乙酸酯、月桂基甜菜碱以及月桂基磺基甜菜碱。
调配物可含有防腐剂以防止微生物生长。适合的防腐剂包括(但不限于)对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸以及硫柳汞。调配物还可含有抗氧化剂以防止活性剂降解。
调配物通常被缓冲成pH 3-8以用于在复原时投与。适合的缓冲液包括(但不限于)磷酸盐缓冲液、乙酸盐缓冲液以及柠檬酸盐缓冲液。
水溶性聚合物通常用于医药调配物。适合的水溶性聚合物包括(但不限于)聚乙烯吡咯烷酮、葡聚糖、羧甲基纤维素以及聚乙二醇。
无菌溶液可通过以下方式制备:将呈所需量的活性化合物视需要与上列一或多种赋形剂一起并入适当溶剂或分散介质中,随后过滤灭菌。通常,分散液通过以下方式制备:将各种经灭菌的活性成分并入含有碱性分散介质和来自上文列举的那些的所需其它成分的无菌媒剂中。在使用无菌粉末制备无菌可注射溶液的情况下,优选制备方法为真空干燥和冷冻干燥技术,其由其先前无菌过滤溶液获得活性成分附加任何其它所需成分的粉末。粉末可以此方式制备使得粒子的性质为多孔的,这可增大粒子的溶解。制造多孔粒子的方法为本领域所熟知。
用于眼投与的医药调配物优选地呈由一或多种聚合物-药物结合物形成的粒子的无菌水溶液或悬浮液的形式。可接受的溶剂包括例如水、林格氏溶液、渗透压摩尔浓度(PBS)和等渗透压摩尔浓度氯化钠溶液,其接着使用MPP调节成如所测定的眼的所需低渗度,从而观测水(泪液)的渗透诱导的流动。调配物还可为于无毒性、肠胃外可接受的稀释剂或溶剂(如1,3-丁二醇)中的无菌溶液、悬浮液或乳液。
在一些情况下,调配物以液体或半固体(如溶液(滴眼剂)、悬浮液、凝胶、乳膏或软膏)形式分布或包装。或者,用于眼投与的调配物可作为固体封装,例如通过适合的液体调配物的冻干来获得。固体可在投与之前用适当载剂或稀释剂复原。
用于眼投与的溶液、悬浮液或乳液可用维持适用于眼投与的pH值所必需的有效量的缓冲液缓冲。适合的缓冲液为本领域普通技术人员所熟知,且适用的缓冲液的一些实例是乙酸盐、硼酸盐、碳酸盐、柠檬酸盐以及磷酸盐缓冲液。用于眼部投与的溶液、悬浮液或乳液还可含有一或多种张力剂以将调配物的张力调整在适当低渗范围内。适合的张力剂为本领域所熟知,且一些实例包括甘油、甘露糖醇、山梨糖醇、氯化钠以及其它电解质。
用于眼投与的溶液、悬浮液或乳液还可含有一或多种防腐剂以防止眼用制剂的细菌污染。适合的防腐剂为本领域中已知,且包括聚六亚甲基双胍(PHMB)、苯扎氯铵(BAK)、稳定化氧氯络合物(或者称为)、乙酸苯汞、氯丁醇、山梨酸、氯己定、苯甲醇、对羟基苯甲酸酯、硫柳汞以及其混合物。
用于眼投与的溶液、悬浮液或乳液还可含有本领域已知的一或多种赋形剂,如分散剂、湿润剂以及悬浮剂。
在其它实施例中,纳米粒子经调配以用于局部投与粘膜。适用于局部投与的剂型包括乳膏、软膏、油膏、喷雾剂、凝胶、洗剂和乳液。组合物可含有一或多种化学渗透增强剂、膜渗透剂、膜转运剂、润滑剂、表面活性剂、稳定剂以及其组合。在一些实施例中,纳米粒子可以液体调配物(如溶液或悬浮液)、半固体调配物(如凝胶、洗剂或软膏)或固体调配物形式投与。“凝胶”是其中分散相已与连续相合并从而产生半固体物质(如胶状物)的胶体。
在一些实施例中,纳米粒子被调配为液体,包括溶液和悬浮液,如滴眼剂,或调配为半固体调配物,如软膏或洗剂以用于局部施用到粘膜(如眼睛)或经阴道或经直肠。
调配物可含有一或多种赋形剂,如润滑剂、表面活性剂和乳化剂。
“润滑剂”是使皮肤软化或舒缓的外部施用的药剂,且通常为本领域中已知,且列于如“医药赋形剂手册(Handbook of Pharmaceutical Excipients)”,第4版,医药出版社(Pharmaceutical Press),2003的纲要中。这些润滑剂包括(但不限于)杏仁油、蓖麻油、长角豆提取物、十六醇十八醇混合物、十六烷醇、十六烷基酯蜡、胆固醇、棉籽油、环聚二甲基硅氧烷、乙二醇棕榈酰硬脂酸酯、甘油、单硬脂酸甘油酯、单油酸甘油酯、肉豆蔻酸异丙酯、棕榈酸异丙酯、羊毛脂、卵磷脂、轻质矿物油、中链三甘油酯、矿物油和羊毛脂醇、石蜡油、石蜡油和羊毛脂醇、大豆油、淀粉、十八烷醇、向日葵油、木糖醇以及其组合。在一个实施例中,润滑剂是硬脂酸乙基己酯和棕榈酸乙基己酯。
“表面活性剂”是降低表面张力且由此增强产物的乳化、发泡、分散、展布以及润湿性质的表面活性剂。适合的非离子性表面活性剂包括乳化蜡、单油酸甘油酯、聚氧乙烯烷基醚、聚氧乙烯蓖麻油衍生物、聚山梨醇酯、脱水山梨糖醇酯、苯甲醇、苯甲酸苯甲酯、环糊精、单硬脂酸甘油酯、泊洛沙姆、聚维酮以及其组合。在一个实施例中,非离子性表面活性剂是十八烷醇。
“乳化剂”是促进一种液体悬浮于另一液体中且促进油和水的稳定混合物或乳液形成的表面活性物质。常见乳化剂是:金属皂、某些动物和植物油以及各种极性化合物。适合的乳化剂包括阿拉伯胶、阴离子乳化蜡、硬脂酸钙、卡波姆、十六醇十八醇混合物、十六烷醇、胆固醇、二乙醇胺、乙二醇棕榈酰硬脂酸酯、单硬脂酸甘油酯、单油酸甘油酯、羟丙基纤维素、羟丙甲纤维素、羊毛脂、水合物、羊毛脂醇、卵磷脂、中链三甘油酯、甲基纤维素、矿物油和羊毛脂醇、磷酸二氢钠、单乙醇胺、非离子性乳化蜡、油酸、泊洛沙姆、泊洛沙姆、聚氧乙烯烷基醚、聚氧乙烯蓖麻油衍生物、聚氧乙烯脱水山梨糖醇脂肪酸酯、聚氧乙烯硬脂酸酯、海藻酸丙二醇酯、自乳化单硬脂酸甘油酯、柠檬酸钠脱水物、月桂基硫酸钠、脱水山梨糖醇酯、硬脂酸、向日葵油、黄蓍胶、三乙醇胺、三仙胶以及其组合。在一个实施例中,乳化剂是硬脂酸甘油酯。
适合的渗透增强剂种类为本领域中已知且包括(但不限于)脂肪醇、脂肪酸酯、脂肪酸、脂肪醇醚、氨基酸、磷脂、卵磷脂、胆酸盐、酶、胺和酰胺、络合剂(脂质体、环糊精、改性纤维素以及二酰亚胺)、巨环(如巨环内酯)、酮、和酸酐和环状脲、表面活性剂、N-甲基吡咯烷酮和其衍生物、DMSO和相关化合物、离子化合物、氮酮和相关化合物、以及溶剂(如乙醇、酮、酰胺、多元醇(例如乙二醇))。这些种类的实例为本领域中已知。
“油”是含有至少95重量%亲脂性物质的组合物。亲脂性物质的实例包括(但不限于)天然存在的油和合成油、脂肪、脂肪酸、卵磷脂、三甘油酯以及其组合。
“连续相”是指其中悬浮有固体或分散有另一种液体的液滴的液体,且有时称为外相。这也指胶体的流体相,在所述流体相内分布有固体或流体粒子。如果连续相是水(或另一亲水性溶剂),那么水溶性或亲水性药物将溶解于连续相中(如与分散相对)。在多相调配物(例如乳液)中,不连续相悬浮或分散于连续相中。
“乳液”是含有均匀掺合在一起的不混溶的组分的混合物的组合物。在特定实施例中,不混溶的组分包括亲脂性组分和水性组分。乳液是一种液体以小球体形式分布在整个第二液体的主体中的制剂。所分散的液体是不连续相,且分散介质是连续相。在油是分散的液体且水溶液是连续相时,其称为水包油乳液,而在水或水溶液是分散相且油或含油物质是连续相时,其称为油包水乳液。油相和水相中的任一者或两者可含有一或多种表面活性剂、乳化剂、乳液稳定剂、缓冲剂以及其它赋形剂。优选的赋形剂包括表面活性剂,尤其非离子性表面活性剂;乳化剂,尤其乳化蜡;以及液体非挥发性非水性物质,尤其乙二醇,如丙二醇。油相可含有其它油性医药学上批准的赋形剂。举例来说,如羟基化蓖麻油或芝麻油的物质可作为表面活性剂或乳化剂用于油相中。
乳液是一种液体以小球体形式分布在整个第二液体的主体中的制剂。所分散的液体是不连续相,且分散介质是连续相。在油是分散的液体且水溶液是连续相时,其称为水包油乳液,而在水或水溶液是分散相且油或含油物质是连续相时,其称为油包水乳液。油相可至少部分地由推进剂(如HFA推进剂)组成。油相和水相中的任一者或两者可含有一或多种表面活性剂、乳化剂、乳液稳定剂、缓冲剂以及其它赋形剂。优选的赋形剂包括表面活性剂,尤其非离子性表面活性剂;乳化剂,尤其乳化蜡;以及液体非挥发性非水性物质,尤其乙二醇,如丙二醇。油相可含有其它油性医药学上批准的赋形剂。举例来说,如羟基化蓖麻油或芝麻油的物质可作为表面活性剂或乳化剂用于油相中。
乳液的子集是自乳化系统。这些药物递送系统通常是胶囊(硬壳或软壳),其包含分散或溶解于表面活性剂和亲脂液体(如油或其它水不混溶液体)的混合物中的药物。当胶囊暴露于水性环境且外部明胶壳溶解时,水性介质与胶囊内含物之间的接触立即产生极小的乳液小滴。这些通常是在胶束或纳米粒子的大小范围内。不需要混合力来产生乳液,因为这通常是乳液调配过程的情况。
“洗剂”是低到中等粘度的液体调配物。洗剂可含有细粉状物质,所述物质通过使用悬浮剂和分散剂而可溶于分散介质中。或者,洗剂可具有分散相液体物质,所述物质不与媒剂混溶且通常借助于乳化剂或其它适合的稳定剂分散。在一个实施例中,洗剂是呈乳液的形式,所述乳液的粘度在100与1000厘沲(centistoke)之间。洗剂的流动性允许在较宽表面区域上的快速和均匀的施用。洗剂通常意欲在皮肤上干燥,在皮肤表面上留下其医药组分的薄包被。
“乳膏”是“水包油”或“油包水型”的粘稠液体或半固体乳液。乳膏可含有乳化剂和/或其它稳定剂。在一个实施例中,调配物是呈乳膏形式,所述乳膏的粘度大于1000厘沲,通常在20,000-50,000厘沲范围内。乳膏相较于软膏通常是时间优选的,因为其通常易于展布且易于去除。
乳膏与洗剂之间的差异是粘度,其取决于各种油的量/使用以及用于制备调配物的水的百分比。乳膏通常比洗剂浓稠,可具有各种用途且通常使用更多样化的油/黄油,取决于在皮肤上的所需作用。在乳膏调配物中,对于总共100%来说,水基百分比为约60%-75%,且油基为全部的约20%-30%,且其余百分比是乳化剂、防腐剂以及添加剂。
“软膏”是含有软膏基质和任选地一或多种活性剂的半固体制剂。适合的软膏基质的实例包括烃基质(例如石蜡油、白凡士林、黄色软膏以及矿物油);吸收基质(亲水性石蜡油、无水羊毛脂、羊毛脂以及冷膏);水可去除的基质(例如亲水性软膏)以及水溶性基质(例如聚乙二醇软膏)。糊状物通常与软膏不同,因为其含有较大百分比的固体。糊状物与用相同组分制备的软膏相比通常更具吸收性且较不油腻。
“凝胶”是半固体系统,其在液体媒剂中含有小或大分子的分散液,所述液体媒剂通过增稠剂或聚合物质溶解或悬浮于液体媒剂中的作用而变成半固体。液体可包括亲脂性组分,水性组分或两者。一些乳液可为凝胶或另外包括凝胶组分。然而,一些凝胶不为乳液,因为其并不含有不混溶组分的均质化掺合物。适合的胶凝剂包括(但不限于)改性纤维素,如羟丙基纤维素和羟乙基纤维素;卡波姆均聚物和共聚物;以及其组合。液体媒剂中的适合溶剂包括(但不限于)二乙二醇单乙醚、亚烷基二醇,如丙二醇;二甲基异山梨醇;乙醇,如异丙醇和乙醇。溶剂通常针对其溶解药物的能力加以选择。还可并入改善皮肤感觉和/或软化调配物的其它添加剂。所述添加剂的实例包括(但不限于)肉豆蔻酸异丙酯、乙酸乙酯、苯甲酸C12-C15烷酯、矿物油、角鲨烷、环聚二甲基硅氧烷、癸酸/辛酸三甘油酯以及其组合。
发泡体由乳液以及气体推进剂或气体排放组件组成。
缓冲剂用于控制组合物的pH值。优选地,缓冲剂将组合物从约4的pH值缓冲到约7.5的pH值,更优选地从约4的pH值缓冲到约7的pH值,且最优选地从约5的pH值缓冲到约7的pH值。
D.肠内调配物
适合的口服剂型包括片剂、胶囊、溶液、悬浮液、糖浆以及口含剂。片剂可使用本领域中熟知的压缩或模制技术制造。明胶或非明胶胶囊可制备为硬或软胶囊壳,其可使用本领域中熟知的技术囊封液体、固体以及半固体填充材料。调配物可使用一或多种医药学上可接受的赋形剂制备,包括稀释剂、防腐剂、粘合剂、润滑剂、崩解剂、膨润剂、填充剂、稳定剂以及其组合。
赋形剂(包括增塑剂、色素、着色剂、稳定剂以及助流剂)还可用于形成经包衣组合物以用于肠内投与。延迟释放剂量调配物可如标准参考文献中所述制备,如“医药剂型片剂(Pharmaceutical dosage form tablets)”,利伯曼(Liberman)等人编(纽约,马塞尔德克尔公司,1989),“雷明顿-药学的科学和实践(Remington-The science and practice ofpharmacy)”,第20版,马里兰州巴尔的摩的利平科特威廉姆斯和威尔金斯公司(LippincottWilliams&Wilkins,Baltimore,MD),2000以及“医药剂型和药物递送系统(Pharmaceuticaldosage forms and drug delivery systems)”,第6版,安斯艾尔(Ansel)等人,(宾夕法尼亚州美迪亚(Media,PA):威廉姆斯和威尔金斯公司(Williams and Wilkins),1995)。这些参考文献提供了关于用于制备片剂和胶囊的赋形剂、材料、设备和工艺以及片剂、胶囊和颗粒的延迟释放剂型的信息。
纳米粒子可经包衣,例如以当粒子已通过胃的酸性环境时延迟释放。适合的包衣材料的实例包括(但不限于)纤维素聚合物,如邻苯二甲酸乙酸纤维素、羟丙基纤维素、羟丙基甲基纤维素、羟丙基甲基纤维素邻苯二甲酸酯以及羟丙基甲基纤维素乙酸酯琥珀酸酯;聚乙酸乙烯酯邻苯二甲酸酯、丙烯酸聚合物和共聚物、以及可以商标名(德国韦斯特施泰德的罗士制药公司(Roth Pharma,Westerstadt,Germany))购得的甲基丙烯酸树脂、玉米蛋白、虫胶以及多糖。
稀释剂(也称为“填充剂”)通常是必需的以增大固体剂型的体积,以便为片剂的压缩或小珠和颗粒的形成提供切实可行的大小。适合的稀释剂包括(但不限于)二水合磷酸二钙、硫酸钙、乳糖、蔗糖、甘露糖醇、山梨糖醇、纤维素、微晶纤维素、高岭土、氯化钠、无水淀粉、水解淀粉、预胶凝化淀粉、二氧化硅、氧化钛、硅酸镁铝以及糖粉。
粘合剂用于赋予固体剂量调配物以粘结性质量,且由此确保片剂或小珠或颗粒在剂型形成之后保持完整。适合的粘合剂材料包括(但不限于)淀粉、预胶凝化淀粉、明胶、糖(包括蔗糖、葡萄糖、右旋糖、乳糖以及山梨糖醇)、聚乙二醇、蜡、天然和合成胶(如阿拉伯胶、黄蓍胶)、海藻酸钠、纤维素(包括羟丙基甲基纤维素、羟丙基纤维素、乙基纤维素以及维格姆(veegum))以及合成聚合物(如丙烯酸和甲基丙烯酸共聚物、甲基丙烯酸共聚物、甲基丙烯酸甲酯共聚物、甲基丙烯酸氨基烷酯共聚物、聚丙烯酸/聚甲基丙烯酸和聚乙烯吡咯烷酮)。
润滑剂用于促进片剂制造。适合的润滑剂的实例包括(但不限于)硬脂酸镁、硬脂酸钙、硬脂酸、山嵛酸甘油酯、聚乙二醇、滑石以及矿物油。
崩解剂用于促进剂型在投与之后崩解或“分解”,且通常包括(但不限于)淀粉、羟基乙酸淀粉钠、羧甲基淀粉钠、羧甲基纤维素钠、羟丙基纤维素、预胶凝化淀粉、粘土、纤维素、海藻素(alginine)、胶或交联聚合物,如交联PVP(来自GAF化学公司(GAF ChemicalCorp)的XL)。
稳定剂用于抑制或阻滞药物分解反应(包括例如氧化反应)。适合的稳定剂包括(但不限于)抗氧化剂、丁基化羟基甲苯(BHT);抗坏血酸,其盐和酯;维生素E、生育酚和其盐;亚硫酸盐,如偏亚硫酸氢钠;半胱氨酸和其衍生物;柠檬酸;没食子酸丙酯和丁基化羟基苯甲醚(BHA)。
IV.制造MPP的方法
用于制造纳米粒子的技术为本领域中已知且包括(但不限于)溶剂蒸发、溶剂去除、喷雾干燥、相转换、低温浇铸以及纳米沉淀。以下简述了粒子调配的适合方法。医药学上可接受的赋形剂(包括pH值调节剂、崩解剂、防腐剂以及抗氧化剂)可在粒子形成过程中任选地并入粒子中。如上所述,一或多种其它活性剂也可在粒子形成过程中并入纳米粒子中。
V.使用MPP-低渗调配物的方法
将含有粒子的调配物以治疗有效量投与粘膜表面,从而缓解一或多种症状,其中所述调配物是低渗的以增强粒子经由粘膜吸收且不会引起毒性。这可使用单次投与无菌包装,其含有溶液或悬浮液(如滴眼剂)或干粉、凝胶、软膏、乳膏或洗剂(其用于局部投与眼部区域、口腔区域(颊内、舌下)、阴道、直肠)或喷雾剂的施用器,或其可被调配成用于口服投药。
通过参考以下非限制性实例将进一步了解本发明。
实例
实例1-6展示粘液渗透性粒子(“MPP”)的制备和表征。实例7-9展示低渗调配物对投与到粘膜组织的MPP的吸收和毒性的作用。
材料和方法
胆酸钠盐、溴化十六烷基三甲基铵(CTAB)、磺基琥珀酸钠二辛酯(DSS)、聚乙二醇35氢化蓖麻油(Cremophor EL)以及D-α-生育酚聚乙二醇1000(维生素E-TPGS)是购自西格玛公司(Sigma;密苏里州圣路易斯(St.Louis,MO))。
聚(乙烯醇)(Mw=25kDa,其中88%水解,和6kDa,其中80%水解)和Mw约400kDa的聚(乙烯-马来酸酐,1:1摩尔比)是购自多科学公司(PolySciences;宾夕法尼亚州瓦令顿(Warrington,PA))。
糖酯D1216(SE)是来自三菱化学食品公司(Mitsubishi-Kagaku Foods Co.;日本东京(Tokyo,Japan))的礼物。
Alexa Fluor 555尸胺是购自英杰公司(Invitrogen;纽约州大岛(Grand Island,NY))。
固有粘度为0.15-0.25dL/g的聚(乳酸-共-乙醇酸)(PLGA;LA:GA 50:50)(MW约15kDa)是购自湖滨生物材料公司(Lakeshore Biomaterials;阿拉巴马州伯明翰(Birmingham,AL))。PEG MW为10、5、2以及1kDa的PLGA(LA:GA 50:50)-PEG共聚物、PLA-PEG5k以及PCL-PEG5k是由济南岱罡生物材料有限公司(Jinan Daigang Biomaterial Co.,Ltd;中国济南(Jinan,China))定制合成的且利用1H NMR和凝胶渗透色谱法(GPC)表征。使用了配备有折光率检测器和两根WatersHR4和HR5柱的Shimadzu设备。使用四氢呋喃(THF)作为洗脱剂以0.5mL/min流动速率在35℃下进行分析。GPC用聚苯乙烯标准品(密苏里州圣路易斯的西格玛公司)校准。
PLGA-PEG嵌段共聚物的化学组成和分子量(MW)利用1H NMR表征。将聚合物溶解于CDCl3中,且使用Bruker 400REM仪器在400MHz下记录1H NMR光谱。共聚物在CDCl3中的1HNMR光谱展示于图3中。对来自LA单元的CH(5.22ppm)、来自GA单元的CH2(4.83ppm)以及来自环氧乙烷单元的CH2CH2(3.65ppm)的峰值进行积分,其中15.22、14.83、13.65分别是在5.22、4.83以及3.65ppm处的峰值的积分强度。LA:GA的比率被估算为I5.22:(I4.83/2)。
如下估算PLGA-PEG的MW:
(I3.65/4)/(I4.83/2)-(MWPEG/44)/(MWGA/58)
(I3.65/4)/(I5.22/1)-(MWPEG/44)/(MWLA/72)
MWPLGA-PEG=MWPEG+(MWGA+MWLA),其中MWPEG为1、2、5以及10kDa。
类似地,如下估算PLA-PEG和PCL-PEG的分子量:
(I3.65/4)/(I5.22/l)=(MWPEG/44)/(MWLA/72)
MWPLA-PEG=MWPEG+MWLA
(I3.65/4)/((I4.06+I2.31)/4)=(MWPEG/44)/(MWCL/114)
MWPCL-PEG=MWPEG+MWCL),
其中MWPEG为5kDa,I4.06和I2.31分别为在4.06和2.31ppm处来自PCL的峰值的积分强度。
各种含PEG的嵌段共聚物的特征展示于表1中。
表1:含PEG的嵌段共聚物的特征
[a]LA:GA的摩尔比通过在5.22ppm(丙交酯上的-CH-)、1.59ppm(丙交酯上的-CH3)以及4.83ppm(乙交酯上的-CH2-)比较1H NMR积分强度来测量。
[b]嵌段共聚物中的PEG含量通过1H NMR测定。
[c]PLGA-PEG分子量(Mn)利用1H NMR通过比较在5.22ppm(丙交酯中的-CH-)、1.59ppm(丙交酯上的-CH3)、4.83ppm(乙交酯中的-CH2-)以及3.65ppm(PEG中的-CH2CH2-)处的积分并且通过考虑PEG的已知Mn来测定。针对PCL-PEG,分析在4.06ppm(-O-CH2-)和2.31ppm(-CH2-CO-)处的积分。
[d]Mn、Mw以及多分散性(PDI)利用GPC测量。
[e]PLGA-PEG10kDa纳米粒子通过将PLGA15kDa与PLGA-PEG10kDa(21.6%PEG含量)掺合来制成,其中纳米粒子中的总PEG含量为6重量%。
纳米粒子内的总PEG含量使用Bruker 400REM仪器在400mHz下利用1H NMR测定。将冻干的纳米粒子精确称重且溶解于含有1重量%六氘代二甲亚砜(TMS)作为内标的CDCl3中。PEG含量通过与使用TMS作为内标从1H NMR光谱获得的PEG5kDa校准曲线比较来测定。
在新鲜人类子宫颈阴道粘液(CVM)中进行追踪荧光标记的纳米粒子。简言之,将在适合稀释度下的0.6μl纳米粒子混合到20μl粘液中且孵育1小时,随后用显微镜检查。影片是使用硅强化的目标相机(VE-1000,Dage-MTI)以66.7ms的时间分辨率捕获的,所述相机安装于配备有100×油浸物镜的倒置落射荧光显微镜上。每个实验n>150个粒子的轨迹使用MetaMorph软件(通用成像公司(Universal Imaging))提取。追踪影片(20s)使用metamorph软件(通用成像公司,威斯康星州格伦代尔(Glendale,WI))分析。每一粒子的时间平均均方位移(MSD)和有效扩散率作为时标的函数计算。针对每一条件进行三次实验。单侧、不等方差史都登氏t检验(Student's t-test)用于评估显著性(P<0.05)。
在25℃下,使用VP-ITC微热量计(美国微凯尔公司(MicroCal Inc.,USA))进行ITC实验。实验通过以下方式进行:将2mg/ml粘蛋白于DI水中的溶液在481rpm的搅拌速度下在水中以1mg/ml的浓度注射到含有具有不同PEG表面密度的纳米粒子的2mL样品池中。全部28次注射是在间隔s和参考功率μcal/s下进行的。首先注射2μl粘蛋白溶液,随后是27次10μl粘蛋白溶液注射。结合等温线使用Origin软件作图并分析,其中将ITC测量值拟合于一位点结合模型。将化学计量应用于计算纳米粒子表面上粘蛋白的结合含量,以毫克粘蛋白/平方米形式呈现。
实例1.制备纳米粒子
材料和方法
生物可降解纳米粒子通过如以下中所述的o/w单一乳液或w/o/w双重乳液方法制备:R.C.蒙大奇(R.C.Mundargi)等人,控制释放杂志(J.Control Release)125,193(2008),M.李(M.Li)等人,国际药理学杂志(Int.J.Pharm.)363,26(2008),C.E.阿斯泰特(C.E.Astete)和C.M.萨布里欧夫(C.M.Sabliov),生物材料科学聚合物杂志(J.Biomater.Sci.Polymer)版,17,247(2006)以及R.A.耆那(R.A.Jain),生物材料(Biomaterials),21,2475(2000)。
针对大小、表面性质以及药物负载量(针对囊封药物的纳米粒子)对纳米粒子进行表征。使用多个粒子追踪在新鲜、未稀释的人类CVM中追踪纳米粒子的位移。
用不同量的PEG制备的纳米粒子
使用乳化用不同目标PEG含量(0重量%、2重量%、3重量%、5重量%、8重量%、10重量%以及25重量%,称为PLGA、PLGA-PEG2%、PLGA-PEG3%、PLGA-PEG5%、PLGA-PEG8%、PLGA-PEG10%以及PLGA-PEG25%)制备PLGA-PEG纳米粒子。选择PEG分子量5kDa,因为在相同PEG含量下,PEG在1kDa到10kDa范围内的6重量%PLGA-PEG纳米粒子均可快速渗透粘液。目标PEG含量通过在纳米粒子制备过程中改变PLGA与PLGA-PEG的比率来控制。纳米粒子的粒径通过调整聚合物浓度和乳化程序而控制为约100nm,且所有纳米粒子在动态光散射下均展示出多分散性指数小(不到0.1)的单分散直径。基于TEM研究,纳米粒子是球形的,且具有最高目标PEG含量的PLGA-PEG25%纳米粒子在粒子边界处展示出较小对比度,这可能由位于表面上的高含量的较低电子密度PEG引起。
结果
表2展示了如上所述制备的粒子的特征。
表2:纳米粒子特征
[a]纳米粒子的直径和多分散性指数(PDI)通过动态激光散射来测量。
[b]转运速率还可利用双对数MSD相对于时标图的斜率反映(α=1表示不受阻的布朗转运(Brownian transport),而更小的α反映了对粒子运动的阻碍增大)。
[c]在1s的时标下计算纳米粒子在粘液(Dm)中与在水中(Dw)比较的整体平均扩散系数的比率以及有效扩散率值。
数据为平均值±SD。
增大目标PEG含量引起纳米粒子表面电荷实质性减小(表2),且当PEG含量达到8重量%和8重量%以上时获得几乎中性的表面电荷(约4mV)。减小的表面电荷反映出表面PEG覆盖率增大,因为致密PEG涂层可有效地遮蔽纳米粒子的表面电荷。然而,表面电荷(ζ-电位)测量值不能提供用于评估PEG表面密度在粒子表面上PEG链数目方面的定量信息。另外,表面电荷测量值可受核心材料和测量介质影响。
1H NMR用于直接定量纳米粒子上的PEG表面密度。如表3中所示,纳米粒子上的表面PEG含量随目标PEG含量增加而增加。表3展示具有不同PEG含量的PLGA-PEG纳米粒子的PEG表面密度。表面PEG水平如与标准DSS(1重量%)相比在D2O中通过1H NMR检测。纳米粒子中的总PEG含量如与标准TMS(1重量%)相比在CDCl3中通过1H NMR测量。N/A,不适用。
表3:纳米粒子上的表面PEG含量
[a]PEG密度[Γ]意指通过假定表面上的所有PEG链均为全长PEG 5kDa所计算的每100平方纳米的PEG分子数目。
[b]PEG密度/完全表面覆盖率[Γ/Γ*]。完全蘑菇覆盖率[Γ*]意指每100平方纳米不受拘束的PEG分子数目。(值<1指示具有低PEG密度的蘑菇覆盖率,而>1表示刷子状态;当值>>1时表示具有极高PEG密度的致密刷子状态)。
数据(平均值±SD)为至少三个不同批次样品的平均值。
实例2:用不同乳化剂制备的纳米粒子
材料和方法
Alexa Fluor 555尸胺(AF555)以化学方式结合于聚合物。使用乳化制备纳米粒子。通常,将PLGA-PEG5k和AF555标记的PLGA-PEG5k的混合物(总共50mg)溶解于1mL二氯甲烷(DCM)中。将油相在冰-水浴中在30%振幅下持续2分钟在声波处理(VibraCell,康涅狄格州纽敦的声学和材料公司(Sonics&Materials Inc.,Newtown,CT))下倾入含有1%乳化剂的5mL水溶液中,从而形成水包油乳液。
将乳液在磁力搅拌下在700rpm下持续至少3小时倾入乳化剂溶液的另一40mL水相中以允许溶剂蒸发。溶剂通过将溶液在真空室中置放30分钟而进一步蒸发。最终纳米粒子悬浮液通过1μm针筒过滤器过滤,在20,000g下离心25分钟且用水充分洗涤。
在1%w/v的浓度下测试乳化剂,包括胆酸钠盐(CHA)、磺基琥珀酸钠二辛酯(DSS)、溴化十六烷基三甲基铵(CTAB)、聚乙烯醇(PVA)、聚(乙烯-马来酸酐)(PEMA)、皂苷、TWEEN20、TWEEN80以及糖酯D1216(SE)。0.01%-0.5%w/v的CHA溶液也能成功地制造纳米粒子。还测试了F127、F68溶液以及其它低MW乳化剂(如Cremophor EL和维生素ETPGS),但不稳定的乳液产生较大聚集的粒子。
表4展示了使用PLGA-PEG(Mn约83kDa)和PLGA(Mn约15kDa)以及各种乳化剂(1%w/v)制备的纳米粒子的特征。
表4.使用PLGA-PEG5k(Mn约83kDa)和PLGA(Mn约15kDa)以及代表性乳化剂(1%w/v)通过乳化方法制备的生物可降解纳米粒子的特征.
[a]在1s的时标下在水(Dw)中与在粘液中(Dm)比较的整体平均扩散系数的比率。
为了评估聚乙二醇分子量(PEG MW)对通过乳化制备的纳米粒子的粘液渗透性质的作用,选择CHA作为代表性低MW强乳化剂。在0.5%CHA溶液中制备在约6重量%PEG含量下具有不同PEG MW的PLGA-PEG纳米粒子。为了针对PLGA-PEG10k纳米粒子获得总体6重量%PEG含量,使用PLGA-PEG10k(21.6重量%)和PLGA15k的掺合物。
结果
由各种分子量的PEG制备的纳米粒子(约6重量%PEG含量)的性质展示于表5中。
表5.通过乳化方法使用各种MW的PEG制备的生物可降解纳米粒子(约6重量%PEG含量)的特征.
[a]PEG密度[Γ]指示每100平方纳米PEG分子数目。表面PEG含量通过D2O中纳米粒子的1H NMR定量。
[b]PEG密度与完全表面覆盖率的比率[Γ/Γ*]。完全表面覆盖率[Γ*]指示完全包覆100nm表面所需的不受拘束的PEG分子的理论数目。([Γ/Γ*]<1指示具有低表面PEG密度的蘑菇状态,而>1表示具有高表面PEG密度的刷子状态)
表6中展示了由各种浓度的含有6重量%PEG的CHA和PLGA-PEG5k制备的纳米粒子的性质。
表6:使用不同浓度乳化剂(CHA)通过乳化方法制备的生物可降解纳米粒子的表征。使用含有6重量%PEG的PLGA-PEG5k。
实例3:制备囊封药物的纳米粒子
材料和方法
选择姜黄素作为模型疏水性药物,其与聚合物一起溶解于DCM中。所述程序类似于制备未负载纳米粒子的程序。所制备的姜黄素-纳米粒子因姜黄素的固有荧光而在粘液中可视。
将BSA用作模型亲水性药物,因为其代表大分子生物学。将BSA-FITC和BSA(10%比率的BSA-FITC)在37℃下溶解于0.2mL 16%w/v水溶液中。将这一溶液在探针声波处理(30%振幅,1min,其中脉冲为1s)过程中在冰-水浴中加入1mL含100mg/ml PLGA-PEG5k的DCM溶液中。将所得W/O主乳液在声波处理(20%振幅,持续2min)下立即加入第二水相(5mL1%皂苷溶液)。将双重乳液在磁力搅拌3小时下转移到另一份40mL 1%皂苷溶液中。将纳米粒子通过1μm注射器过滤器过滤,洗涤且通过离心收集。BSA-FITC允许在粘液中追踪负载有BSA的纳米粒子的可能性。
结果
姜黄素纳米粒子和BSA纳米粒子的目标药物负载量分别是9.1%和16.7%。
实例4.乳化能力的估计
材料和方法
将PLGA-PEG5k(MW约83kDa)用作模型聚合物且以50mg/ml溶解于DCM中。将0.5mlPLGA-PEG5k于DCM中的溶液在声波处理下在30%振幅下加入含有1%(w/v)乳化剂的5ml水相,从而使用上述相同方法制备乳液。将所形成的乳液在磁力搅拌下在700rpm下持续3小时加入另一份20ml 1%乳化剂溶液。每一乳化剂的乳化能力通过其防止聚集粒子形成的能力估计。聚集粒子通过在500g下离心20min来收集,且上清液中的剩余纳米粒子通过在30,000g下离心25min来收集。计算纳米粒子与聚集粒子的重量比,且用作估计乳化剂的乳化能力的指数。
直径和表面电荷
纳米粒子的直径和ζ-电位(表面电荷)使用Zetasizer Nano ZS90测量。将纳米粒子重悬于10mM NaCl溶液中。TEM样品通过将纳米粒子的稀悬浮液滴加在TEM栅格上且使其风干来制备。粒子形态使用H7600透射电子显微镜(日本日立公司(Hitachi,Japan))表征。
囊封效率
姜黄素在纳米粒子中的囊封效率通过以下方式测量:将冻干的纳米粒子溶解于DMSO中,且在430nm下使用Biotek Synergy MX读板器测量吸光度。药物含量通过与姜黄素校准曲线(浓度范围0-50μg/ml)相比来测定。减去在相同聚合物浓度下在DMSO中的空白纳米粒子的吸光度。在碱性消化之后分析BSA-FITC的囊封效率。已知量的冻干纳米粒子在1M氢氧化钠中经历完全水解。使用Biotek Synergy MX读板器在490nm激发波长和525nm发射波长下分析所得溶液。在相同加工条件下制备含有相同量聚合物和增加量BSA-FITC的标准溶液。BSA在纳米粒子中的量通过与BSA-FITC校准曲线比较来测定。
如下计算药物负载量(DL)和囊封效率(EE):
结果
各种乳化剂的结果展示于表7中。
表7:模型疏水性药物(姜黄素)和模型亲水性药物(BSA)使用PLGA-PEG5k(6重量%PEG)囊封在MPP(CHA和皂苷作为乳化剂)和CP(PVA作为乳化剂)两者中
[a]药物负载量(DL%)表示纳米粒子中药物的重量含量。
[b]药物囊封效率(EE%)表示最终药物负载量与理论药物负载量相比的比率。
表面聚乙二醇(PEG)密度的定量
纳米粒子上的表面PEG密度使用Bruker 400REM仪器在400MHz下通过1H NMR测定。将弛豫时间设置在10s,且ZG在90°。将具有不同PEG含量的纳米粒子直接制备于0.5%CHAD2O溶液中且悬浮于具有1重量%3-(三甲基硅烷基)-1-丙烷磺酸钠盐作为用于1H NMR分析的内标的D2O中。
将已知重量的PEG 5kDa(密苏里州圣路易斯的西格玛公司)均聚物在具有1%3-(三甲基硅烷基)-1-丙烷磺酸钠盐的D2O中连续稀释成不同浓度,从而针对1H NMR中的PEG信号建立校准曲线,且这一校准曲线用于计算纳米粒子上的表面PEG含量。
将0.2ml纳米粒子于D2O中的溶液冻干且称重。通过假设所有表面PEG链均为全长的PEG 5kDa,将表面PEG密度计算为纳米粒子上每100平方纳米表面积PEG分子数目。还用通过相同方法制备的PLGA纳米粒子进行对照1H NMR实验,且对于PLGA纳米粒子不存在可检测的CHA峰值。PEG密度[Γ]是纳米粒子表面上每100平方纳米PEG分子数目。其可通过如下将利用1H NMR检测的总PEG含量(MPEG,以摩尔为单位)除以所有纳米粒子的总表面积来计算:
其中WNP是纳米粒子的总质量,dNP是纳米粒子的密度(将纳米粒子的密度假设为等于聚合物的密度,针对PLGA 1.21g/ml),且D是如利用动态光散射测量的粒径。
完全表面蘑菇覆盖率[Γ*]是占据100nm2粒子表面积的不受拘束的PEG分子数目。为了测定[Γ*],估算由单一PEG链占据的表面积。使用随机游走统计,单一PEG链占据在利用直径ζ的球体给出的界面处的面积:
其中m是PEG链的分子量。由一个PEG分子占据的表面积可由(ζ/2)2测定。PEG5kDa具有直径为5.4nm的不受拘束的分子球体,且占据22.7nm2的表面积。因此,完全覆盖100nm2表面积的PEG分子数目[Γ*]是4.4。
[Γ/Γ*]可用作测量纳米粒子表面上PEG密度的指数,其中值<1指示低PEG密度,其中PEG分子呈蘑菇构象;而值>1指示高PEG密度,其中PEG分子呈刷子样构象。类似地,PEG10kDa、2kDa以及1kDa的[Γ*]分别是2.2、11以及22。结果展示于上表2中。
表8展示具有不同PEG含量的PLGA-PEG纳米粒子的PEG表面密度。表面PEG水平如与标准DSS(1重量%)相比在D2O中通过1H NMR检测。纳米粒子中的总PEG含量如与标准TMS(1重量%)相比在CDCl3中通过1H NMR测量。N/A,不适用。
表8.具有不同PEG含量的PLGA-PEG纳米粒子的PEG表面密度
[a]PEG密度[Γ]意指通过假定表面上的所有PEG链均为全长PEG 5kDa所计算的每100平方纳米的PEG分子数目。
[b]PEG密度/完全表面覆盖率[Γ/Γ*]。完全蘑菇覆盖率[Γ*]意指每100平方纳米不受拘束的PEG分子数目。(<1指示具有低PEG密度的蘑菇覆盖率,而>1表示刷子状态;当值>>1时表示具有极高PEG密度的致密刷子状态)。
数据(平均值±SD)为至少三个不同批次样品的平均值。
计算表面PEG密度([Γ,每100平方纳米PEG链数目)且与完全表面蘑菇覆盖率([Γ*],每100平方纳米不受拘束的PEG分子数目)相比。PLGA-PEG3%纳米粒子展示2.6重量%的表面PEG含量,密度为6.5个PEG/100平方纳米,等于[Γ]/[Γ*]=1.5,其使PLGA-PEG3%具有刷子构象的表面PEG涂层。高度致密刷子构象的PEG涂层([Γ]/[Γ*]>3)在高于10个PEG/100平方纳米(PLGA-PEG5%)的PEG表面密度下获得。
通过将冻干的PLGA-PEG纳米粒子溶解于NMR溶剂CDCl3中,利用1H NMR测量纳米粒子内的总PEG含量,且已发现纳米粒子中的总PEG含量(表面PEG和嵌入纳米粒子核心内的PEG两者)极其接近表面PEG含量,如表5中所示。在粒子表面上检测通过乳化方法制备的PLGA-PEG纳米粒子中的几乎所有PEG链。乳化方法涉及蒸发来自乳液小滴的有机溶剂(二氯甲烷)且随后固化聚合物核心。有机溶剂的缓慢蒸发为亲水性PEG链在纳米粒子表面上扩散和装配提供了足够的时间,这产生了PEG与表面的高分配比。然而,在利用乳化方法制备纳米粒子的过程中存在PEG的显著损失,且对于PLGA-PEG25%纳米粒子,PEG损失比率可高达50%。
类似于前述报导,PEG的损失可归因于由共聚物中PLGA-PEG的低分子量部分形成胶束,其具有较高PEG含量和较高亲水性。离心和洗涤步骤之后无法收集含有较高PEG含量聚合物的大小极小的粒子的这一部分,这可由纳米粒子形成后与原料聚合物相比利用凝胶渗透色谱法测量的聚合物增大的平均分子量证实。在对照实验中通过纳米沉淀方法(溶剂扩散方法)制备的PLGA-PEG10%纳米粒子(117nm)展示出纳米粒子中6.5重量%总PEG含量,且在表面仅检测到89%PEG链(等于5.8重量%表面PEG含量)。
实例5.纳米粒子的粘液渗透追踪
材料和方法
收集人类子宫颈阴道粘液(CVM)。简言之,根据经约翰霍普金斯大学的机构审查委员会(Institutional Review Board of the Johns Hopkins University)批准的方案,使用自身采样的月经收集装置获得具有正常阴道菌群的来自女性的未经稀释的子宫颈阴道分泌物。将装置插入阴道中持续60s,移出且置放于50ml离心管,且在1000rpm下离心2min以收集分泌物。
进行在新鲜人类子宫颈阴道粘液(CVM)中的荧光标记的纳米粒子的追踪。简言之,将在适合稀释度下的0.6μl纳米粒子加入定制腔室玻片内的20μl粘液中,且在室温下孵育1小时,随后用显微镜检查。纳米粒子在CVM中的轨迹通过使用多个粒子追踪(MPT)来记录。20s影片是使用硅强化的目标相机(VE-1000,Dage-MTI)以66.7ms的时间分辨率捕获的,所述相机安装于配备有100×油浸物镜(N.A.,1.3)的倒置落射荧光显微镜上。追踪影片(20s)使用metamorph软件(通用成像公司,威斯康星州格伦代尔)分析。
每一粒子的时间平均均方位移(MSD)和有效扩散率作为时标的函数计算:
<Δr2(τ)>=[x(t+τ)-x(t)]2+[y(t+τ)-y(t)]2
其中x和y表示作为时间函数的纳米粒子坐标,且τ是时滞。
使用来自囊封的姜黄素或BSA-FITC的荧光以相同方式在人类CVM中追踪负载有姜黄素的纳米粒子和负载有FITC-BSA的纳米粒子。粒子渗透到粘液层中使用菲克氏第二定律(Fick's second law)和从追踪实验获得的扩散系数建模。
结果
通过乳化制备的含有CHA和PVA的PLA-PEG和PCL-PEG纳米粒子的人类CVM转运的比较展示于图1a-h中。图1a和1b展示了含有CHA和PVA的PLA-PEG和PCL-PEG纳米粒子的代表性轨迹。图1e和1d是展示随时标变化的整体平均几何均方位移(<MSD>)的图式。图1e和1f是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图1g和1h是展示随时间能够渗透生理学30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。这份数据展示了使用PVA制得的纳米粒子的固定以及使用低MW乳化剂CHA制得的纳米粒子的快速粘液渗透,其中有效扩散率类似于针对PLGA-PEG5k纳米粒子测量的那些。
PEG分子量对MPP在CVM中的转运速率的作用展示于图2a和2b中。图2a和2b展示了PEG MW对MPP在人类子宫颈阴道粘液中的转运速率的作用。图2a是展示整体平均几何均方位移<MSD>随时标而变的图式。图2b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。粒子使用PLGA-PEG(6重量%PEG)用乳化方法制备。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。这些粒子均快速渗透粘液(也参见表5)。
纳米粒子表面电荷与PEG MW成反比且在-18mV(1kDa)到-2.3mV(10kDa)之间变化。利用1H NMR测量的表面PEG密度[Γ](每100平方纳米PEG数目)随PEG MW增大而减小。然而,表面PEG密度与形成刷子样PEG涂层所需的理论PEG密度[Γ*]的比率[Γ/Γ*][11]大于2(表5),与PEG MW无关,指示在PLGA-PEG(1-10kDa)/CHA纳米粒子表面上存在致密的刷子样PEG涂层。
图3a-3c展示了负载有姜黄素和BSA的MPP和常规粒子(CP)的转运速率。图3a是展示整体平均几何均方位移<MSD>随时标而变的图式。图3b是展示在1s的时标下个别粒子有效扩散率(Deff)的对数分布的图式。图3c是展示随时间预测能够渗透30μm厚粘液层的粒子的估计分率的图式。数据代表了三次独立实验,其中针对每一实验追踪≥120个纳米粒子。误差线呈现为s.e.m.。负载有姜黄素和BSA的纳米粒子以比在τ=1s下在水中慢仅6和36倍的速率在粘液中快速扩散(图3a)。相比之下,用PVA制备的纳米粒子固定在CVM中(图3b),其中转运速率比在水中慢超过2,000倍。
无PEG涂层的PLGA纳米粒子完全固定在粘液内,其中扩散率比相同大小的纳米粒子在水中的扩散率慢38,000倍。纳米粒子上存在PEG表面涂层显著改进了其通过高度粘弹性粘液的扩散,表面PEG密度为6.5个PEG/100平方纳米的PLGA-PEG3%展示出高达142的增大的Dw/Dm值。将表面PEG密度进一步增加到10.4个PEG/100平方纳米,PLGA-PEG5%纳米粒子仅比其在水中的扩散慢17倍。当表面PEG密度高于16.4个PEG/100平方纳米(PLGA-PEG8%)时,超过90%的纳米粒子是扩散的。表面PEG密度的进一步增加很可能将不显著改进粘液内的粒子扩散率,因为16.4个PEG/100平方纳米的表面密度已能够有效遮蔽粘液组分的结合。PLGA-PEG8%、10%以及25%的约50%-70%纳米粒子能够在60分钟内渗透生理学30μm厚粘液层,速率比PLGA-PEG5%、PLGA-PEG3%(致密涂层)、PLGA-PEG2%(低涂层)以及PLGA(无涂层)高得多。
实例6:纳米粒子在粘液中的稳定性.
材料和方法
通过使粒子与粘液组分之间的粘附相互作用减到最少而使纳米粒子在粘液中稳定是其作为粘液渗透药物载体在体内应用的重要准则。研究作为粘蛋白结合指示的纳米粒子大小在粘蛋白存在下的变化,从而测定在粘蛋白存在下具有不同PEG表面密度的纳米粒子的稳定性。选择提取自牛颌下腺的粘蛋白作为模型粘蛋白,因为粘蛋白是粘液的主要成分,且来自牛颌下腺的粘蛋白与人类CVM在结构和生理学性质两个方面具有相似性。
纳米粒子与粘蛋白溶液(10mg/ml)一起孵育,且监测粒径随时间推移的变化。
结果
PEG表面密度≥16.4个PEG/100平方纳米的PLGA-PEG纳米粒子在粘蛋白溶液中是稳定的,在整个3小时孵育过程中保持其流体动力学直径,且在这些PEG表面密度下,PEG涂层呈高度致密刷子构象([Γ]/[Γ*]>3)。相比之下,表面密度为6.5个PEG/100平方纳米的PLGA-PEG5%纳米粒子在与粘蛋白溶液一起孵育甚至仅5分钟之后也展示出约5%的粒径增加,且这些PLGA-PEG5%纳米粒子上的PEG表面密度已产生刷子PEG涂层([Γ]/[Γ*]>1)。因此,仅刷子PEG涂层不足以完全遮蔽粘蛋白结合。在从刷子构象到蘑菇构象的减小的PEG表面密度下,存在粒径的递增。在无PEG涂层的情况下,PLGA纳米粒子在粘蛋白中孵育的5分钟内展示出从109±2nm到207±9nm的显著大小增加。
图4a是说明表面PEG覆盖率([Γ/Γ*])对纳米粒子的粘液渗透的影响的示意图。上方的图展示以渐增覆盖率制备具有表面PEG涂层的PLGA-PEG纳米粒子。随着表面PEG覆盖率增加,PEG状态从蘑菇(邻近PEG链不重叠,[Γ/Γ*]<1,图4a)变成刷子(邻近PEG链重叠,1<[Γ/Γ*]<3,图4b)变成致密刷子([Γ/Γ*]>3,图4c)。中间的图说明了PEG覆盖率如何决定粘液暴露后的粘-粘附相互作用。在低PEG覆盖率([Γ/Γ*]<1)下,粘蛋白纤维强力粘附于纳米粒子核心。在中等PEG覆盖率(1<[Γ/Γ*]<3)下,粘蛋白纤维仍可部分吸收到纳米粒子核心。在高([Γ/Γ*]>3)PEG覆盖率下,纳米粒子核心完全由生物惰性PEG冠环遮蔽,使得无粘蛋白吸收到纳米粒子中。下方的图展示了具有低PEG覆盖率的纳米粒子固定于粘液中,具有中等PEG覆盖率的纳米粒子受到阻碍或甚至固定在粘液中,具有高和极高PEG覆盖率的纳米粒子能够快速渗透粘液。
实例7:粒子溶液的渗透压摩尔浓度对纳米粒子在阴道和结肠粘膜组织中的分布和滞留的作用.
将避免被粘膜表面上存在的粘液层以粘附方式截留的粘液渗透性纳米粒子(MPP)用于研究在粘膜表面处的这种作用。低分子量(5kDa)聚乙二醇(PEG)的极致密涂层共价连接于荧光100nm羧基改性的聚苯乙烯(PS)粒子的表面以产生粘液渗透性PS-PEG纳米粒子。未经涂布的纳米粒子(“常规粒子”或“CP”)粘着于粘蛋白。CP并不充分渗透粘液层,且取而代之聚集在快速冷冻的整个小鼠结肠和阴道组织的管腔中。然而,MPP渗透粘液屏障一直到下层上皮,在小鼠直肠和阴道组织两者中产生粒子的连续“层”。如果粒子是在低渗透压摩尔浓度溶剂(如纯水)中投与的,那么粘膜表面极大的吸收能力可经由粘液层快速“吸入”MPP而非CP。在低渗透压摩尔浓度溶液(如超纯(UP)水)中投与粒子使流体被粘液层的下层组织吸收以便到达渗透平衡,由此通过对流吸引在MPP中。
近来报导已详述投与用于阴道和直肠递送的高度高渗透压摩尔浓度调配物的负面副作用,这可引起显著的毒性和上皮侵蚀(富克斯等人感染病杂志195,703-710(2007);莱西(Lacey)等人国际STD和AIDS杂志(Int J STD AIDS)21,714-717(2007))。然而,适度低渗透压摩尔浓度流体并未展示具有相同的毒性概况。
材料和方法
检查在(A)1×PBS或(B)超纯水中投与的荧光100nm粘液渗透性聚乙二醇化聚苯乙烯粒子在快速冷冻的整个结肠组织的横截面上的分布。组织在投与之后立即切离并用DAPI染色以展示细胞核。
还检查了在(A)1×PBS或(B)超纯水中投与的荧光100nm粘液渗透性聚乙二醇化聚苯乙烯粒子在快速冷冻的整个阴道组织的横截面上的分布。组织在投与之后立即切离并用DAPI染色以展示细胞核。
接着评估在最初投与UP水(低渗透压摩尔浓度)或PBS(等渗透压摩尔浓度)中的荧光纳米粒子之后整个小鼠阴道和结肠直肠组织的荧光。
为了评估纳米粒子滞留,阴道内投与5μL红色荧光CP或MPP。在0、2、4和6小时下获得整个子宫颈阴道且将其置放在标准组织培养盘中。对于每个条件和时间点,使用n>7只小鼠。组织的荧光图像使用Xenogen IVIS Spectrum成像装置(卡立泊生命科学公司(CaliperLife Sciences))获得。每单位面积荧光计数的定量使用Xenogen Living Image 2.5软件计算。
结果
MPP在以低渗透压摩尔浓度溶液形式投与时快速开始顺阴道和结肠直肠上皮排列。
测量在UP水中投与后随时间推移小鼠阴道中滞留的MPP(PSPEG)和CP(PS)的百分比。6小时后,57%MPP和7%CP保持在CV道中。
MPP以高得多的量在小鼠阴道中滞留至少6小时。
含有FITC的可生物降解MPP在UP水中阴道内投与。作为比较,投与在标准等渗透压摩尔浓度安慰剂凝胶羟乙基纤维素(HEC)中的FITC。24小时后,切离阴道组织并将其展平在两块载玻片之间。低渗递送的MPP似乎完全涂布上皮,而FITC分布稀疏。MPP显著改进否则会不良分布的实体的上皮分布。
实例8:MPP在阴道组织中与渗透压摩尔浓度有关的分布
实例7中的研究证实并不粘附于粘液的MPP能够经由人类和小鼠子宫颈阴道粘液(CVM)快速扩散,引起深入渗透到皱襞中的较缓慢清除的粘液层中,涂布整个阴道表面并滞留在阴道中长于常规粘膜粘附性纳米粒子(CP),由恩瑟等人科学·转化医学(Sci TranslMed)4,138ral79(2012)公开。
利用MPP改进阴道分布和滞留的一个关键在于投与呈低渗溶液形式的纳米粒子。在以低渗溶液形式递送时,MPP在整个阴道表面上快速聚集,仅基于扩散与预期相比快得多地到达那里。在流体经压力诱导以经由粘液凝胶流动时,MPP与流动流体一起(即,通过溶剂拖动)经由粘液流动。进行研究以确定在药物和MPP以低渗调配物形式递送到阴道中时是否将出现相似作用。这项研究调查了用于确定是否低渗递送的游离药物以及通过MPP的低渗阴道递送可提供改进的分布、滞留和保护。
材料和方法
动物模型
雌性6-8周大的CF-1小鼠是购自哈兰公司(Harlan;印第安纳州印第安纳波利斯(Indianapolis,IN))。将小鼠圈养在反转光循环设施(12小时光/12小时暗)中从而能够选择呈自然循环动情状态的小鼠。在动情周期的动情期期间的小鼠阴道与人类阴道最相似。纳米粒子在动情期小鼠粘液中的屏障性质紧密模拟纳米粒子在人类CVM中的屏障性质。因此,将如以肉眼通过阴道口外观所判定处于动情期的小鼠用于所有分布和滞留研究。在实验前7天给予用于阴道HSV-2保护和易感性研究的小鼠在100μL磷酸盐缓冲盐水(PBS)中的2.5mg Depo-Provera(纽约州纽约的法玛西亚与普强公司(Pharmacia&Upjohn Company,New York,NY)的皮下侧腹注射。这种处理常用于增加对阴道HSV-2感染的易感性。所有实验方案均由约翰霍普金斯动物护理和使用委员会(Johns Hopkins Animal Care and UseCommittee)批准。
纳米粒子制备和表征
荧光羧基(COOH)改性的聚苯乙烯(PS)纳米粒子(直径100nm)是购自分子探针公司(Molecular Probes;俄勒冈州尤金(Eugene,OR))。为了制造MPP,PS粒子如由南斯(Nance)等人科学·转化医学4,149ral19(2012)先前所述用5kDa胺改性的PEG(北卡罗来纳州温斯顿塞伦的创新PEG工作公司(Creative PEGworks,Winston Salem,NC))共价改性。使用Zetasizer Nano ZS90(马萨诸塞州索思伯勒的马尔文仪器公司(Malvern Instruments,Southborough,MA),分别通过动态光散射和激光多普勒风速测量法测定粒径和ζ-电位。大小测量在25℃下以90°的散射角进行。样品在10mM NaCl溶液(pH 7)中稀释并根据仪器说明进行测量。近中性ζ-电位用于确认PEG共轭,且如赖等人美国国家科学院院刊104,1482-1487(2007)和王(Wang)等人应用化学国际英文版(Angew Chem Int Ed Engl)47,9726-9729(2008)先前所述测试粒子在人类CVM中的粘液渗透性能力。这些粒子先前展示出快速渗透动情期小鼠阴道粘液。溶液的渗透压摩尔浓度使用Wescor Vapro蒸气压渗透计测量。
阴道中的药物和纳米粒子分布
将阿霉素(Doxorubicin;北卡罗来纳州德罕的奈特快姆公司(NetQem,Durham,NC))以1mg/ml浓度溶解在PBS(相对于血液等渗透压摩尔浓度)或超纯水(低渗透压摩尔浓度)中。对于1升1×PBS,800ml蒸馏水;8g NaCl;0.2g KC1;1.44g Na2HPO4;0.24g KH2PO4;用HC1将pH值调节到7.4,加入蒸馏水到1升的总体积。
阿霉素在两种不同条件中以等渗透压摩尔浓度形式和以低渗透压摩尔浓度形式两者经阴道投与小鼠。“非可走动的”组用腹膜内注射阿费丁工作液(Avertin workingsolution;根据约翰霍普金斯ACUC指南(Johns Hopkins ACUC guidelines)制备)进行麻醉且保持仰卧1小时,随后进行组织收集。“可走动的”组用快速起效的可吸入异氟醚麻醉,使得小鼠立即醒来且可走动10分钟,随后进行组织收集。接着收集阴道组织,纵向切开,展平,且夹持在用超级胶水密封封闭的两块载玻片之间。这一程序完全展平组织,暴露由管腔包进的表面。组织在落射荧光显微镜(Nikon E6100)上以2×放大倍数成像。阿霉素是荧光的(激发/发射470/590)。对未处理的对照组织进行成像以确保来自阿霉素的荧光信号充分高于组织自身荧光。低放大倍数捕获组织的较大部分,故仅需要2-3张图像来观测整个组织表面。对图像‘设阈限’以围绕荧光信号画出所关注的区域边界,且接着使用ImageJ软件定量覆盖的面积。测定每只小鼠的平均覆盖率百分比,且在n=5只小鼠的组中对这些值求平均。
为了捕获MPP因即刻流体吸收动力学所致的分布,经阴道投与20μl等渗透压摩尔浓度(PBS)或低渗透压摩尔浓度(超纯水)MPP溶液。较高溶液体积有助于确保管腔将经流体填充,且粒子被稀释(0.01%w/v)使得浓度梯度将是在视觉上明显的。小鼠经异氟醚麻醉,且在粒子投与后立即处死。将阴道组织快速切离且快速冷冻在Tissue-Tek O.C.T化合物中。使用Leica CM-3050-S低温恒温器沿着组织长度在各点处获得横断面切片。将切片厚度设定成6μm以实现单细胞层厚度。切片接着用ProLong Gold抗荧光衰减试剂与DAPI染色以观察细胞核且保持粒子荧光。切片的荧光图像用倒置式落射荧光显微镜(Zeiss AxioObserver)获得。对于在不同溶液渗透压摩尔浓度情况下的MPP分布,从不同比率的PBS和超纯水制备粒子溶液(0.08%w/v)。小鼠用异氟醚麻醉,且经阴道投与5μl粒子溶液。10分钟后,收集组织,快速冷冻,切片且按照为了观测流体吸收动力学概述的程序染色。为了定量MPP阴道组织覆盖率,小鼠用异氟醚麻醉,且经阴道投与5μl纳米粒子溶液。在10分钟内,切离组织,纵向切开,且接着展平,如为了药物分布实验所述。将对照组织成像以确保荧光信号充分高于组织自身荧光。组织使用倒置式落射荧光显微镜(Zeiss Axio Observer)以10×放大倍数成像,且每个组织获得8张图像。如先前为了药物分布实验所概述对覆盖率进行定量。
阴道中的药物和纳米粒子滞留
将阿霉素以1mg/ml浓度溶解于磷酸盐缓冲盐水(“PBS”)(相对于血液等渗透压摩尔浓度)或超纯水(低渗透压摩尔浓度)中。小鼠用腹膜内注射阿费丁进行麻醉,随后阴道内投与5μl阿霉素溶液。小鼠保持仰卧10分钟以确保溶液“滴出”将不影响滞留测量。接着,将整个子宫颈阴道切离且置放于标准组织培养盘中。组织的荧光图像使用Xenogen IVISSpectrum成像装置(卡立泊生命科学公司)获得。为了顾及阿霉素溶液荧光中的电位差异,将等渗透压摩尔浓度和低渗透压摩尔浓度阿霉素两种溶液的小瓶包括于图像中。使用两种溶液的强度比率来归一化每一组的组织荧光。每单位面积荧光计数的定量使用XenogenLiving Image 2.5软件计算。将等渗透压摩尔浓度和低渗透压摩尔浓度组的平均值归一化成等渗透压摩尔浓度组。
将红色荧光MPP以0.2%(w/v)悬浮于PBS(等渗透压摩尔浓度)或超纯水(低渗透压摩尔浓度)中。小鼠用腹膜内注射阿费丁(“非可走动的”)或通过吸入异氟醚(“可走动的”)进行麻醉,如先前为了药物分布实验所述。阴道内投与5μl等渗透压摩尔浓度或低渗透压摩尔浓度MPP溶液。非可走动的小鼠1小时后或可走动的小鼠10分钟后,将整个子宫颈阴道切离且置放于标准组织培养盘中。采集荧光图像且如为了药物滞留所述进行定量。作为MPP滞留的参照点,在整个子宫颈阴道已经去除且置放于组织培养盘中之后,小心地用移液管移取5μl MPP溶液到阴道中。这种方法用于MPP(而非阿霉素),因为纳米粒子并不渗透组织;因此不同组织渗透对荧光信号无电位作用。滞留接着被计算为平均参考组织信号的百分比。
HSV-2感染小鼠模型
小鼠在即将使用之前接受20μl溶解于PBS(等渗透压摩尔浓度)或超纯水(低渗透压摩尔浓度)中的10mg/ml阿昔洛韦单磷酸盐(acyclovir monophosphate)。这种药物展示出在小鼠阴道HSV-2感染模型中给出部分保护。小鼠在病毒接种物之前1分钟或60分钟给药。小鼠接着用10μl含有HSV-2株系G(ATCC#VR-724,2.8×107TCID50/ml)的接种物攻击。针对保护研究,HSV-2用巴特尔氏培养基(Bartel's medium)稀释10倍以递送10ID50,一种通常感染85%-90%对照小鼠的剂量。针对渗透诱导的易感性测试,病毒用巴特尔氏培养基稀释10倍且在巴特尔氏培养基(等渗透压摩尔浓度)或去离子水(低渗透压摩尔浓度)中进一步稀释10倍到ID50,一种感染一半小鼠的剂量。通过在人类包皮成纤维细胞(诊断杂合公司(Diagnostic Hybrids),MRHF批次#440318W)上培养PBS阴道灌洗来在接种之后感染三天后评估小鼠。在这种模型中,如果输入(攻击)病毒在攻击之后收集超过12小时,那么其在灌洗液中不再是可检测的。
统计
威尔科克森秩和检验(Wilcoxon rank-sum test)用于比较数据集。这种测试是非参数的,且更适于无法呈现高斯分布(Gaussian distribution)的情形。针对HSV-2感染研究,统计显著性使用费舍尔精确检验(Fisher's exact test)双尾分布判定。
结果
张力对阴道药物分布的作用
当小鼠是非可走动的(仰卧1小时)时,仅15%阴道组织面积被以等渗透压摩尔浓度溶液形式投与的阿霉素覆盖,而在以低渗透压摩尔浓度溶液形式投与时覆盖88%(图5A)。当小鼠可走动10分钟,随后进行组织收集时,等渗透压摩尔浓度溶液递送阿霉素到25%阴道表面面积,而低渗透压摩尔浓度溶液递送阿霉素到86%面积(图5B)。等渗透压摩尔浓度溶液仅将药物递送到面向管腔的阴道表面,而非含在折叠阴道褶皱内的表面,由此产生未暴露组织呈现黑色的“条纹”图案。相比之下,低渗透压摩尔浓度溶液将阿霉素分布到整个阴道表面。
张力对阴道药物滞留的作用
将等渗透压摩尔浓度和低渗透压摩尔浓度阿霉素溶液阴道内投与经麻醉小鼠以避免任何溶液渗漏作用。在处于仰卧位置10分钟之后,将整个生殖道切离并用荧光成像定量分析。在仅10分钟之后,以低渗透压摩尔浓度溶液形式投与的阿霉素的相对荧光信号为以等渗透压摩尔浓度溶液形式投与的阿霉素的相对荧光信号的一半(图6)。
张力对预防阴道HSV-2感染的作用
测试在较短时间下低渗投与的药物的增强的分布以及在较长时间下减少的滞留将如何影响经阴道投与的药物的功效。使用阿昔洛韦单磷酸盐(ACVp,一种适当保护药物,其在小鼠阴道HSV-2感染模型中病毒接种物前30分钟投与时提供部分保护),因为其将很可能揭示任何改进的分布的益处。与阿霉素类似,ACVp是水溶性的且在细胞内起作用。首先,其确保低渗流体不增加对通过投与悬浮于等渗或低渗溶液中的ID50剂量病毒(通常感染约50%小鼠)所致的感染的易感性。当病毒以等渗或低渗溶液形式投与时,60%(9/15)小鼠受感染。这种对照实验指示感染率变化是归因于存在药物而不是依靠对病毒或组织易感性的低渗作用。针对保护研究10ID50,使用通常感染约90%小鼠的剂量。
当在病毒之前1分钟投与1%ACVp时,在等渗投与ACVp时49%(22/45)小鼠受感染,且在低渗投与ACVp时31%(14/45)小鼠受感染(图7)。尽管这种结果表明,低渗溶液可具有增加的阴道保护,但这种差异在统计学上不显著(p=0.1)。当在病毒之前1小时投与1%ACVp时,在等渗投与ACVp时45%(27/60)小鼠受感染,且在低渗投与ACVp时73%(33/45)小鼠受感染(图7)。这种差异在统计学上显著,表明尽管低渗递送可具有改进的即刻保护,但经由上皮的渗透流动似乎从阴道去除ACVp,引起保护降低。
渗透驱动的对流对阴道纳米粒子分布的作用
低渗递送游离药物引起阴道中的分布改进,但流体的渗透诱导的吸收可引起可渗透阴道上皮的药物通过溶剂拖动被去除。相比之下,阴道上皮是纳米粒子基本上不可渗透的,且如果其是粘液渗透性,那么渗透流动将其递送到上皮表面。MPP能够渗透阴道粘液,在以低渗溶液形式递送后10分钟内涂布整个阴道表面。即使以低渗流体形式递送,粘膜粘附性纳米粒子(CP)仍聚集在管腔粘液层中且不通过渗透诱导的对流经由阴道粘液运送到阴道上皮。渗透驱动的MPP分布对张力的依赖性在投与之后立即测定。通过在MPP投与之后立即冷冻阴道组织,能够采集初始粒子分布动力学的“快照”。
在以等渗溶液形式投与MPP时,发现纳米粒子分布在整个管腔中,但在以低渗溶液形式递送时,粒子浓度的梯度很明显,且MPP集中在阴道上皮表面处。从MPP的表面分布,显而易见低渗诱导的流体流动引起MPP被快速吸引到阴道表面,且无跨上皮的吸收。
张力对阴道纳米粒子滞留的作用
假设与以低渗溶液形式投与的游离药物对比,MPP的阴道滞留将在低渗递送情况下改进。由于预期流体渗漏将在纳米粒子滞留中起一定作用,故比较非可走动的和可走动的两种条件。就非可走动的小鼠(仰卧1小时)而论,69%以等渗溶液形式投与的MPP和83%以低渗溶液形式投与的MPP滞留(图8A)。很可能1小时期间允许流体吸收和去除重力作用,减少渗漏。尽管较高百分比的MPP在以低渗溶液形式投与时滞留,但差异在统计学上不显著。
然而,在小鼠是可走动时,以等渗溶液形式投与的MPP滞留显著减少。在走动10分钟之后,与75%以低渗溶液形式投与的MPP相比,仅22%以等渗溶液形式投与的MPP滞留(图8B)。似乎MPP到阴道表面的快速递送引起滞留增加,因为许多阴道中的流体在走动期间被快速排放。
渗透压摩尔浓度对阴道纳米粒子分布的作用
众所周知,张力可强烈影响细胞,且近来的证据强调了强高渗凝胶对阴道和直肠上皮两者的毒性,尤其在反复暴露情况下。低渗溶液也可引起毒性。为了避免电位毒性作用,研究适度水平的低渗性是否仍可改进阴道中的粒子分布。在投与10分钟内,呈涵盖10倍范围(20-220mOsm/kg)的低渗溶液形式的MPP将MPP递送到阴道表面)。与使MPP粒子分布在整个阴道管腔中且很少被吸引到上皮表面的等渗溶液(294mOsm/kg)对比,适当低渗溶液(220mOsm/kg)引起到上皮表面的快速运送。此外,存在随着低渗性递增阴道覆盖率增加的趋势:在最低渗溶液(20mOsm/kg)中,MPP在10分钟之后涂布88%阴道上皮,而仅60%阴道表面经以294mOsm/kg溶液形式投与的MPP涂布(图9)。在所有所测试的张力下,MPP与粘-粘附性(CP)粒子相比到达较大部分的上皮表面,且最低限度地低渗溶液(220mOsm/kg)将粒子递送到76%的阴道表面,与等渗溶液(294mOsm/kg)的60%覆盖率相比显著增加。
总之,调查低渗溶液对于对流增强的药物递送到阴道的用途的研究展示尽管阿霉素的低渗递送改进阴道分布,但药物经由上皮吸收,减少阴道滞留。相比之下,已发现粘惰性粘液渗透性纳米粒子(MPP)的低渗递送改进分布和滞留两者。另外,已发现甚至最低限度地低渗递送也显著改进MPP的阴道分布。结果指示,低渗调配物与传统高渗调配物相比对于药物递送到阴道来说更有效,且低渗递送的MPP为无毒持续的药物递送到整个阴道表面提供重要前景。
尽管呈低渗溶液形式的药物的分布改进,但流体吸收可潜在地引起药物通过流体运送经由阴道上皮快速去除。使用阿昔洛韦单磷酸盐(ACVp),证实由在HSV-2病毒之前立即经阴道投与的呈低渗溶液形式的ACVp提供的改进的保护的趋势。改进的保护很可能归因于以低渗溶液形式投与的药物的阴道覆盖率的增加。相比之下,在HSV-2在药物之后1小时投与时,以低渗溶液形式投与的ACVp提供的保护与呈等渗溶液形式的ACVp相比显著减少。在渗透诱导的流体流动情况下跨上皮的药物吸收在1小时之后引起药物清除和保护减少。MPP提供一种利用低渗递送来实现改进的拖动分布的方式,因为纳米粒子聚积在阴道上皮的表面上,且含有ACVp的MPP在HSV-2病毒前30分钟经阴道投与时与10倍较高浓度的游离药物相比展示更好的保护。MPP在以最低限度低渗溶液形式投与时被立即吸引到阴道上皮。
流体吸收和分泌也可影响阴道滞留。先前已展示在人类中阴道凝胶的渗漏率随着高渗性递增成直线地增加(蔡特林等人避孕68,139-155(2003))。在这种情况下,滞留通过渗透诱导的流体分泌而减少,引起产品渗漏。这指示了低渗产品将引起流体吸收和渗漏减少,且可由此改进阴道滞留。已发现这对于可经由阴道上皮吸收的药物(不同于MPP)未必正确。MPP通过渗透到阴道褶皱深处的更缓慢清除的粘液层中而滞留长于粘膜粘附性CP。如由这项研究所示,MPP在以低渗溶液形式投与时如与以等渗溶液形式投与相比通过减少阴道渗漏而更好地滞留在可走动的小鼠的阴道中。结果指示含有MPP的低渗凝胶调配物将很可能促进人类阴道中的药物分布和滞留两者。
实例9:渗透压摩尔浓度对结肠中粒子吸收的作用的比较
材料和方法
如实例7和9中所述进行研究,比较呈具有不同张力的溶液形式的MPP在小鼠结肠中的分布。研究比较在20mOsm、260mOsm、350mOsm、450mOsm、860mOsm和2200mOsm溶液情况下结肠中的粒子吸收。在高渗透压摩尔浓度溶液情况下获得上皮的对流运送的唯一原因是其是否在Na情况下高渗透压摩尔浓度。
还测定了各种大小的CP和MPP在直肠共投与患有TNBS诱导的结肠炎的小鼠之后的分布。分析在低渗直肠投与含有各种大小(100nm、200nm、500nm)的CP(红色)和MPP(绿色)的混合物的溶液之后展平的结肠组织的荧光图像。还制备了200nm CP和MPP的横断面结肠冷冻切片(细胞核用DAPI染成蓝色)。
结果
结肠的有效渗透压摩尔浓度似乎在400与530mOsm/kg之间,高于血浆渗透压摩尔浓度(约300mOsm/kg)。这一较高范围由比利希(Billich)和莱维坦(Levitan),临床研究杂志(J Clinical Invest)(1969)支持。渗透压摩尔浓度为400mOsm/kg和400mOsm/kg以下的媒剂提供MPP在结肠组织表面上改进的分布。
实例10:测定低渗MPP调配物的毒性
近来研究指示回应于某些阴道产品,阴道上皮可分泌可增强对性传播感染的易感性的免疫介体。还已确立了其它病况(如早产)与生殖道发炎相关。因此,阴道产品并不诱发此类免疫反应(尤其在反复给药之后)很重要。高渗透压摩尔浓度的调配物先前已展示为对阴道和直肠上皮有毒性,这可抵消所投与药物的保护性或治疗性益处。因此,进行这项研究以确保低渗透压摩尔浓度调配物在投与粘膜上皮时并不引起毒性。
材料和方法
将使用纯低渗(约20mOsm/kg)流体(携带Pluronic F127或MPP)和标准等渗透压摩尔浓度羟乙基纤维素的七次每日治疗与无治疗相比。高渗凝胶(含有20%甘油的媒剂,用于临床试验)。基于阴道横截面图像将含有MPP的低渗凝胶调配物(HEC凝胶,其中含水量增加20%以抵消水吸收)与常规高渗凝胶调配物(含有20%甘油的HEC,用于阴道凝胶调配物的标准甘油浓度相比。
向DP小鼠模型阴道内投与20μL各测试药剂,一天一次,持续七天。HEC凝胶和N9由T.芒什(T.Moench;再保护公司(Reprotect))提供,且TFV媒剂凝胶由C.德祖蒂(C.Dezzutti;匹兹堡大学(University of Pittsburgh))友情提供。在第八天,各小鼠用50μL PBS灌洗两次。各灌洗样品再用200μL PBS稀释且离心以去除粘液栓。移出上清液(200μL)且为了四种(IL-1β、IL-1α、TNF-α和IL-6)Quantikine ELISA试剂盒(R&D系统公司(R&DSystems))中的每一者分成50μL。根据制造商的说明进行ELISA。
结果
使用纯低渗(约20mOsm/kg)流体(携带Pluronic F127或MPP)和标准等渗透压摩尔浓度羟乙基纤维素的七次每日治疗与无治疗相比并不引起阴道细胞因子(IL-1α/β)增加。高渗凝胶(含有20%甘油的媒剂,用于临床试验)引起这些阴道细胞因子的显著增加。基于阴道横截面图像将含有MPP的低渗凝胶调配物与常规高渗凝胶调配物相比。看来好像在6小时之后MPP的阴道分布和滞留如与高渗(在6小时之后约20%滞留)凝胶调配物(含有20%甘油的HEC,用于阴道凝胶调配物的标准甘油浓度)相比在低渗(在6小时之后81%滞留)凝胶(HEC凝胶,其中含水量增加20%以抵消水吸收)情况下得到改进。

Claims (20)

1.一种低渗调配物,其包含粘液渗透性纳米粒子,所述纳米粒子包含:
增强所述纳米粒子扩散通过粘液的粘液渗透增强涂层,所述涂层包括聚乙二醇或含有聚乙二醇的嵌段共聚物;和
治疗剂、防治剂、或诊断剂;
其中在所述纳米粒子上的所述粘液渗透增强涂层的表面密度在通过1H NMR测量时是每平方纳米0.05到100条链;
其中所述纳米粒子在悬于10mM NaCl溶液中时的ζ-电位在10mV与-10mV之间;
所述纳米粒子用于在赋形剂中投与粘膜组织,其中所述赋形剂对于其所递送到的粘膜上皮是低渗的,导致所述粘液渗透性纳米粒子快速运送到所述上皮表面。
2.根据权利要求1所述的调配物,其中所述纳米粒子提供所述药剂的持续粘膜递送。
3.根据权利要求1所述的调配物,其中所述粘液渗透性纳米粒子包含聚合纳米粒子,所述聚合纳米粒子包含核心聚合物和其表面上的粘液渗透增强涂层,所述纳米粒子含有所述用于投与粘膜组织的治疗剂、防治剂或诊断剂。
4.根据权利要求3所述的调配物,其中所述粘液渗透增强涂层共价结合于所述核心聚合物,其中所述核心聚合物是含有所述粘液渗透增强涂层的一或多个嵌段的嵌段共聚物,或其中所述核心聚合物包含共价结合在所述核心聚合物的一端的粘液渗透增强涂层材料的单一嵌段。
5.根据权利要求1所述的调配物,其中所述纳米粒子包含经所述粘液渗透增强涂层涂布的所述用于投与粘膜组织的治疗剂、防治剂或诊断剂的纳米粒子。
6.根据权利要求1所述的调配物,其中所述聚乙二醇的分子量是1kD到100kD,且所述聚乙二醇的密度在通过1H NMR测量时是每平方纳米0.05到0.5条链。
7.根据权利要求1到6中任一权利要求所述的调配物,其中所述粘液渗透增强涂层是以一定的量存在,所述量有效地使所述纳米粒子的表面电荷中性或基本上中性。
8.根据权利要求1到6中任一权利要求所述的调配物,其用于施用到阴道,其渗透压摩尔浓度在20与220mOsm/kg之间。
9.根据权利要求8所述的调配物,其中所述粘液渗透性纳米粒子包含用于阴道递送的呈有效量的治疗剂。
10.根据权利要求1到6中任一权利要求所述的调配物,其用于施用到结肠或直肠,其中所述渗透压摩尔浓度是在20mOsm/kg与450mOsm/kg之间,且其中钠离子构成超过220mOsm/kg的所述渗透压摩尔浓度的至少30%。
11.根据权利要求10所述的调配物,其中所述粘液渗透性纳米粒子包含用于投与到直肠和/或结肠的呈有效量的治疗剂。
12.根据权利要求1到6中任一权利要求所述的调配物,其选自由以下组成的群组:溶液、悬浮液、凝胶、软膏、乳膏、洗剂、片剂或胶囊和粉末。
13.根据权利要求1到6中任一权利要求所述的调配物在制备用于向有需要的人类或动物投与一或多种治疗剂、防治剂和/或诊断剂的的药物中的应用。
14.根据权利要求13所述的应用,其中所述调配物是肠内投与的。
15.根据权利要求13所述的应用,其中所述调配物被投与眼睛或与其邻接的组织或其区室中。
16.根据权利要求13所述的应用,其中所述调配物是局部投与的。
17.根据权利要求13所述的应用,其中所述调配物被投与肺道。
18.根据权利要求13所述的应用,其中所述调配物经鼻内投与。
19.根据权利要求13所述的应用,其中所述调配物被投与直肠或结肠。
20.根据权利要求13所述的应用,其中所述调配物是经颊、舌下或口服投与的。
CN201380015484.0A 2012-01-19 2013-01-21 增强粘膜渗透的纳米粒子调配物 Active CN104936620B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261588350P 2012-01-19 2012-01-19
US61/588,350 2012-01-19
PCT/US2012/024344 WO2012109363A2 (en) 2011-02-08 2012-02-08 Mucus penetrating gene carriers
USPCT/US2012/024344 2012-02-08
USPCT/US2012/069882 2012-12-14
PCT/US2012/069882 WO2013090804A2 (en) 2011-12-14 2012-12-14 Nanoparticles with enhanced mucosal penetration or decreased inflammation
PCT/US2013/022387 WO2013110028A1 (en) 2012-01-19 2013-01-21 Nanoparticle formulations with enhanced mucosal penetration

Publications (2)

Publication Number Publication Date
CN104936620A CN104936620A (zh) 2015-09-23
CN104936620B true CN104936620B (zh) 2019-08-09

Family

ID=48799733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380015484.0A Active CN104936620B (zh) 2012-01-19 2013-01-21 增强粘膜渗透的纳米粒子调配物

Country Status (9)

Country Link
US (2) US9415020B2 (zh)
EP (1) EP2804632B1 (zh)
KR (1) KR101811917B1 (zh)
CN (1) CN104936620B (zh)
AU (2) AU2013209452B2 (zh)
CA (1) CA2863632C (zh)
HK (1) HK1215380A1 (zh)
RU (1) RU2598627C2 (zh)
WO (1) WO2013110028A1 (zh)

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072710A2 (en) * 2004-01-28 2005-08-11 Johns Hopkins University Drugs and gene carrier particles that rapidly move through mucous barriers
CA2791278C (en) 2010-02-25 2015-11-24 The Johns Hopkins University Sustained delivery of therapeutic agents to an eye compartment
WO2012039979A2 (en) 2010-09-10 2012-03-29 The Johns Hopkins University Rapid diffusion of large polymeric nanoparticles in the mammalian brain
US9327037B2 (en) 2011-02-08 2016-05-03 The Johns Hopkins University Mucus penetrating gene carriers
CA2859046C (en) * 2011-12-14 2019-10-22 The Johns Hopkins University Nanoparticles with enhanced mucosal penetration or decreased inflammation
AU2013209452B2 (en) * 2012-01-19 2015-11-05 The Johns Hopkins University Nanoparticle formulations with enhanced mucosal penetration
EP2825206A1 (en) 2012-03-16 2015-01-21 The Johns Hopkins University Controlled release formulations for the delivery of hif-1 inhibitors
US10159743B2 (en) 2012-03-16 2018-12-25 The Johns Hopkins University Non-linear multiblock copolymer-drug conjugates for the delivery of active agents
EP3808339A1 (en) 2012-05-03 2021-04-21 Kala Pharmaceuticals, Inc. Pharmaceutical nanoparticles showing improved mucosal transport
US9827191B2 (en) 2012-05-03 2017-11-28 The Johns Hopkins University Compositions and methods for ophthalmic and/or other applications
EP4008355A1 (en) 2012-05-03 2022-06-08 Kala Pharmaceuticals, Inc. Pharmaceutical nanoparticles showing improved mucosal transport
US11596599B2 (en) 2012-05-03 2023-03-07 The Johns Hopkins University Compositions and methods for ophthalmic and/or other applications
EP2849728A1 (en) 2012-05-04 2015-03-25 The Johns Hopkins University Lipid-based drug carriers for rapid penetration through mucus linings
WO2014124006A1 (en) 2013-02-05 2014-08-14 The Johns Hopkins University Nanoparticles for magnetic resonance imaging tracking and methods of making and using thereof
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
RU2015144011A (ru) * 2013-03-15 2017-04-21 Конрад Фармацевтические составы с низким содержанием глицерина для лечения и профилактики вич-инфекции
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
AU2014315287A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015073579A1 (en) * 2013-11-12 2015-05-21 University Of Washington Through Its Center For Commercialization Random copolymer therapeutic agent carriers and assemblies thereof
US11033493B2 (en) 2013-12-02 2021-06-15 Intelgenx Corp. Film dosage form with extended release mucoadhesive particles
WO2015127389A1 (en) 2014-02-23 2015-08-27 The Johns Hopkins University Hypotonic enema formulations and methods of use
WO2015175545A1 (en) 2014-05-12 2015-11-19 The Johns Hopkins University Highly stable biodegradable gene vector platforms for overcoming biological barriers
WO2015200054A2 (en) 2014-06-24 2015-12-30 The Trustees Of Princeton University Process for encapsulating soluble biologics, therapeutics, and imaging agents
WO2016004290A1 (en) * 2014-07-03 2016-01-07 Bind Therapeutics, Inc. Targeted therapeutic nanoparticles and methods of making and using same
EP4159741A1 (en) 2014-07-16 2023-04-05 ModernaTX, Inc. Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage
US20170210788A1 (en) 2014-07-23 2017-07-27 Modernatx, Inc. Modified polynucleotides for the production of intrabodies
EP3193827A1 (en) * 2014-08-13 2017-07-26 The Johns Hopkins University Glucocorticoid-loaded nanoparticles for prevention of corneal allograft rejection and neovascularization
WO2016077625A1 (en) 2014-11-12 2016-05-19 Stayton Patrick S Stabilized polymeric carriers for therapeutic agent delivery
AU2015362621B2 (en) 2014-12-15 2019-01-17 The Johns Hopkins University Sunitinib formulations and methods for use thereof in treatment of ocular disorders
AU2016211696B2 (en) 2015-01-27 2018-05-10 The Johns Hopkins University Hypotonic hydrogel formulations for enhanced transport of active agents at mucosal surfaces
EP3340982B1 (en) 2015-08-26 2021-12-15 Achillion Pharmaceuticals, Inc. Compounds for treatment of immune and inflammatory disorders
AR106018A1 (es) 2015-08-26 2017-12-06 Achillion Pharmaceuticals Inc Compuestos de arilo, heteroarilo y heterocíclicos para el tratamiento de trastornos médicos
WO2017044759A1 (en) * 2015-09-11 2017-03-16 The Johns Hopkins University Compositions and methods to improve nanoparticle distribution within the brain interstitium
US9808531B2 (en) 2015-09-22 2017-11-07 Graybug Vision, Inc. Compounds and compositions for the treatment of ocular disorders
KR20180096593A (ko) 2015-10-22 2018-08-29 모더나티엑스, 인크. 단순 포진 바이러스 백신
TN2018000152A1 (en) 2015-10-22 2019-10-04 Modernatx Inc Nucleic acid vaccines for varicella zoster virus (vzv)
EP3364981A4 (en) 2015-10-22 2019-08-07 ModernaTX, Inc. VACCINE AGAINST THE HUMAN CYTOMEGALOVIRUS
CN109310751A (zh) 2015-10-22 2019-02-05 摩登纳特斯有限公司 广谱流感病毒疫苗
EP4011451A1 (en) 2015-10-22 2022-06-15 ModernaTX, Inc. Metapneumovirus mrna vaccines
CA3002820A1 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Respiratory syncytial virus vaccine
WO2017070491A1 (en) * 2015-10-23 2017-04-27 Applied Genetic Technologies Corporation Ophthalmic formulations
US10668025B2 (en) * 2015-10-30 2020-06-02 The Johns Hopkins University Mucus penetrating particles with high molecular weight and dense coatings
CN114469872A (zh) 2015-11-12 2022-05-13 灰色视觉公司 用于治疗的聚集性微粒
WO2017112943A1 (en) 2015-12-23 2017-06-29 Modernatx, Inc. Methods of using ox40 ligand encoding polynucleotides
US20190241658A1 (en) 2016-01-10 2019-08-08 Modernatx, Inc. Therapeutic mRNAs encoding anti CTLA-4 antibodies
US11484506B2 (en) * 2016-02-18 2022-11-01 Cour Pharmaceuticals Development Company, Inc. Process for the preparation of tolerizing immune-modulating particles
RU2018145364A (ru) 2016-06-27 2020-07-28 Ачиллион Фармасьютикалс, Инк. Хиназолиновые и индольные соединения для лечения медицинских нарушений
US20210284688A1 (en) * 2016-07-15 2021-09-16 Board Of Regents, The University Of Texas System Mucus-penetrating peptides and screening assay
WO2018169960A1 (en) * 2017-03-17 2018-09-20 The Johns Hopkins University Nanoparticle formulations for enhanced drug delivery to the bladder
BR112019019452A2 (pt) 2017-03-23 2020-04-14 Graybug Vision Inc composto, e, uso de um composto
US11160870B2 (en) 2017-05-10 2021-11-02 Graybug Vision, Inc. Extended release microparticles and suspensions thereof for medical therapy
EP4253544A3 (en) 2017-05-18 2023-12-20 ModernaTX, Inc. Modified messenger rna comprising functional rna elements
JP7285220B2 (ja) 2017-05-18 2023-06-01 モデルナティエックス インコーポレイテッド 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子
MA49395A (fr) 2017-06-14 2020-04-22 Modernatx Inc Polynucléotides codant pour le facteur viii de coagulation
WO2019055539A1 (en) 2017-09-12 2019-03-21 Prudhomme Robert K CELLULOSIC POLYMER NANOPARTICLES AND METHODS OF FORMING THE SAME
WO2019104195A1 (en) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
JP7423521B2 (ja) 2017-11-22 2024-01-29 モダーナティエックス・インコーポレイテッド フェニルケトン尿症の治療用のフェニルアラニンヒドロキシラーゼをコードするポリヌクレオチド
JP7423522B2 (ja) 2017-11-22 2024-01-29 モダーナティエックス・インコーポレイテッド 尿素サイクル異常症の治療のためのオルニチントランスカルバミラーゼをコードするポリヌクレオチド
WO2019136241A1 (en) 2018-01-05 2019-07-11 Modernatx, Inc. Polynucleotides encoding anti-chikungunya virus antibodies
WO2019200171A1 (en) 2018-04-11 2019-10-17 Modernatx, Inc. Messenger rna comprising functional rna elements
CN112367974A (zh) * 2018-05-15 2021-02-12 DNALite治疗学公司 粘液穿透肽、递送媒介和治疗方法
WO2019226650A1 (en) 2018-05-23 2019-11-28 Modernatx, Inc. Delivery of dna
US11731099B2 (en) 2018-07-20 2023-08-22 The Trustees Of Princeton University Method for controlling encapsulation efficiency and burst release of water soluble molecules from nanoparticles and microparticles produced by inverse flash nanoprecipitation
WO2020023390A1 (en) 2018-07-25 2020-01-30 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
US20230022157A1 (en) 2018-08-20 2023-01-26 Achillion Pharmaceuticals, Inc. Pharmaceutical compounds for the treatment of complement factor d medical disorders
US20220110966A1 (en) 2018-09-02 2022-04-14 Modernatx, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
MA53609A (fr) 2018-09-13 2021-07-21 Modernatx Inc Polynucléotides codant la glucose-6-phosphatase pour le traitement de la glycogénose
US20220243182A1 (en) 2018-09-13 2022-08-04 Modernatx, Inc. Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease
EP3850102A1 (en) 2018-09-14 2021-07-21 ModernaTX, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
US20220152225A1 (en) 2018-09-27 2022-05-19 Modernatx, Inc. Polynucleotides encoding arginase 1 for the treatment of arginase deficiency
EP3866773A4 (en) 2018-10-16 2022-10-26 Georgia State University Research Foundation, Inc. CARBON MONOXIDE PRODRUGS FOR THE TREATMENT OF MEDICAL CONDITIONS
WO2020097409A2 (en) 2018-11-08 2020-05-14 Modernatx, Inc. Use of mrna encoding ox40l to treat cancer in human patients
MA55899A (fr) 2019-05-08 2022-03-16 Modernatx Inc Polynucléotides codant pour la méthylmalonyl-coa mutase pour le traitement de l'acidémie méthylmalonique
JP2022532078A (ja) 2019-05-08 2022-07-13 アストラゼネカ アクチボラグ 皮膚及び創傷のための組成物並びにその使用の方法
EP3987027A1 (en) 2019-06-24 2022-04-27 ModernaTX, Inc. Endonuclease-resistant messenger rna and uses thereof
WO2020263985A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Messenger rna comprising functional rna elements and uses thereof
EP4041894A1 (en) 2019-09-23 2022-08-17 Omega Therapeutics, Inc. COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4a) GENE EXPRESSION
CN114391040A (zh) 2019-09-23 2022-04-22 欧米茄治疗公司 用于调节载脂蛋白b(apob)基因表达的组合物和方法
JP2023517326A (ja) 2020-03-11 2023-04-25 オメガ セラピューティクス, インコーポレイテッド フォークヘッドボックスp3(foxp3)遺伝子発現をモジュレートするための組成物および方法
JP2023527875A (ja) 2020-06-01 2023-06-30 モダーナティエックス・インコーポレイテッド フェニルアラニンヒドロキシラーゼバリアント及びその使用
IL298874A (en) 2020-06-12 2023-02-01 Univ Rochester Encoding and expression of ACE-tRNAs
RU2747401C1 (ru) * 2020-06-22 2021-05-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный университет" Способ получения фармацевтических лекарственных форм на основе сополимеров метилметакрилата
US20230406895A1 (en) 2020-11-13 2023-12-21 Modernatx, Inc. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis
RU2748999C1 (ru) * 2021-01-28 2021-06-02 Александр Ливиевич Ураков Искусственная мокрота для моделирования респираторной обструкции при COVID-19
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2022204371A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
WO2022204369A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
WO2022204380A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
WO2022204390A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
EP4314260A1 (en) 2021-03-24 2024-02-07 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency
EP4355882A2 (en) 2021-06-15 2024-04-24 Modernatx, Inc. Engineered polynucleotides for cell-type or microenvironment-specific expression
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
WO2023283359A2 (en) 2021-07-07 2023-01-12 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
WO2023043813A1 (en) * 2021-09-14 2023-03-23 The American University In Cairo Nanoguard
WO2023056044A1 (en) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
CN114324380A (zh) * 2021-12-03 2022-04-12 南京迪威尔高端制造股份有限公司 水下采油锻件内孔堆焊层的渗透检测系统及渗透检测方法
WO2023150753A1 (en) 2022-02-07 2023-08-10 University Of Rochester Optimized sequences for enhanced trna expression or/and nonsense mutation suppression
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023177904A1 (en) 2022-03-18 2023-09-21 Modernatx, Inc. Sterile filtration of lipid nanoparticles and filtration analysis thereof for biological applications
WO2023183909A2 (en) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia
WO2023196399A1 (en) 2022-04-06 2023-10-12 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding argininosuccinate lyase for the treatment of argininosuccinic aciduria
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
WO2024026254A1 (en) 2022-07-26 2024-02-01 Modernatx, Inc. Engineered polynucleotides for temporal control of expression
WO2024044147A1 (en) 2022-08-23 2024-02-29 Modernatx, Inc. Methods for purification of ionizable lipids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2559208A1 (en) * 2004-03-17 2005-09-29 Mpex Pharmaceuticals, Inc. Use and administration of bacterial efflux pump inhibitors

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US4997652A (en) 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US5196522A (en) 1990-11-01 1993-03-23 Board Of Regents, The University Of Texas System Anthracycline analogues bearing latent alkylating substituents
US5565215A (en) 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US6007845A (en) 1994-07-22 1999-12-28 Massachusetts Institute Of Technology Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US6413539B1 (en) 1996-10-31 2002-07-02 Poly-Med, Inc. Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof
ATE278700T1 (de) 1995-06-27 2004-10-15 Pharmachemie Bv Anthracyclin prodrugs, verfahren zu deren herstellung und deren verwendung in der selektiven chemotherapie
US5869130A (en) 1997-06-12 1999-02-09 Mac Dermid, Incorporated Process for improving the adhesion of polymeric materials to metal surfaces
US7052678B2 (en) 1997-09-15 2006-05-30 Massachusetts Institute Of Technology Particles for inhalation having sustained release properties
US6509323B1 (en) 1998-07-01 2003-01-21 California Institute Of Technology Linear cyclodextrin copolymers
US6287588B1 (en) 1999-04-29 2001-09-11 Macromed, Inc. Agent delivering system comprised of microparticle and biodegradable gel with an improved releasing profile and methods of use thereof
US6589549B2 (en) 2000-04-27 2003-07-08 Macromed, Incorporated Bioactive agent delivering system comprised of microparticles within a biodegradable to improve release profiles
US6495164B1 (en) 2000-05-25 2002-12-17 Alkermes Controlled Therapeutics, Inc. I Preparation of injectable suspensions having improved injectability
ES2382636T3 (es) 2000-10-31 2012-06-12 Surmodics Pharmaceuticals, Inc. Método para producir composiciones para la administración mejorada de moléculas bioactivas
GB0122318D0 (en) 2001-09-14 2001-11-07 Novartis Ag Organic compounds
US20050176945A1 (en) * 2002-02-28 2005-08-11 Mount, Jr. David B. Cloning and characterization of slc26a7 and slc26a9 anion exchangers
US6899890B2 (en) * 2002-03-20 2005-05-31 Kv Pharmaceutical Company Bioadhesive drug delivery system
US20050009910A1 (en) 2003-07-10 2005-01-13 Allergan, Inc. Delivery of an active drug to the posterior part of the eye via subconjunctival or periocular delivery of a prodrug
WO2005072710A2 (en) * 2004-01-28 2005-08-11 Johns Hopkins University Drugs and gene carrier particles that rapidly move through mucous barriers
ES2246694B1 (es) 2004-04-29 2007-05-01 Instituto Cientifico Y Tecnologico De Navarra, S.A. Nanoparticulas pegiladas.
WO2005107708A1 (en) 2004-04-30 2005-11-17 Allergan, Inc. Biodegradable intravitreal tyrosine kinase inhibitors implants
US7771742B2 (en) 2004-04-30 2010-08-10 Allergan, Inc. Sustained release intraocular implants containing tyrosine kinase inhibitors and related methods
US20050244469A1 (en) 2004-04-30 2005-11-03 Allergan, Inc. Extended therapeutic effect ocular implant treatments
EP1856179B1 (en) 2004-12-10 2013-05-15 Kala Pharmaceuticals, Inc. Functionalized poly (ether-anhydride) block copolymers
EP1912676A2 (en) 2005-07-28 2008-04-23 (Osi) Eyetech, Inc. Cyclitol linker polymer conjugate
ITRM20050443A1 (it) * 2005-08-12 2007-02-13 Opocrin Spa Preparati oftalmici a base di polisaccaridi mucoadesivi con capacita' riepitelizzante della cornea.
US20070071756A1 (en) 2005-09-26 2007-03-29 Peyman Gholam A Delivery of an agent to ameliorate inflammation
US8658608B2 (en) 2005-11-23 2014-02-25 Yale University Modified triple-helix forming oligonucleotides for targeted mutagenesis
EP1962803A1 (en) 2005-12-23 2008-09-03 Alcon, Inc. PHARMACEUTICAL FORMULATION FOR DELIVERY OF RECEPTOR TYROSINE KINASE INHIBITING (RTKi) COMPOUNDS TO THE EYE
WO2007084418A2 (en) 2006-01-13 2007-07-26 Surmodics, Inc. Microparticle containing matrices for drug delivery
US20070231360A1 (en) 2006-03-28 2007-10-04 Minu, L.L.C. Neural conduit agent dissemination
US20080166411A1 (en) 2006-04-10 2008-07-10 Pfizer Inc Injectable Depot Formulations And Methods For Providing Sustained Release Of Poorly Soluble Drugs Comprising Nanoparticles
BRPI0714880A2 (pt) 2006-07-24 2013-05-21 Gilead Sciences Inc inibidores da transcriptase reversa do hiv
EP2061433B1 (en) * 2006-09-08 2011-02-16 Johns Hopkins University Compositions for enhancing transport through mucus
US8394488B2 (en) 2006-10-06 2013-03-12 Cordis Corporation Bioabsorbable device having composite structure for accelerating degradation
ZA200902587B (en) 2006-11-09 2010-06-30 Alcon Res Ltd Water insoluble polymer matrix for drug delivery
WO2009100176A2 (en) 2008-02-07 2009-08-13 Abbott Laboratories Pharmaceutical dosage form for oral administration of tyrosine kinase inhibitor
SG195531A1 (en) 2008-10-10 2013-12-30 Bionic Ear Inst Biodegradable polymer - bioactive moiety conjugates
WO2010091187A2 (en) 2009-02-04 2010-08-12 The Brigham And Women's Hospital, Inc. Polymeric nanoparticles with enhanced drug-loading and methods of use thereof
ES2508290T3 (es) 2009-03-03 2014-10-16 Alcon Research, Ltd. Composición farmacéutica para la administracón de compuestos de inhibición del receptor de tirosina cinasa (RTKI) al ojo
US10952965B2 (en) 2009-05-15 2021-03-23 Baxter International Inc. Compositions and methods for drug delivery
WO2011109384A2 (en) 2010-03-02 2011-09-09 Allergan, Inc. Biodegradable polymers for lowering intraocular pressure
WO2011133803A1 (en) 2010-04-21 2011-10-27 Helix Therapeutics, Inc. Compositions and methods for targeted inactivation of hiv cell surface receptors
AU2013209452B2 (en) * 2012-01-19 2015-11-05 The Johns Hopkins University Nanoparticle formulations with enhanced mucosal penetration
US20140107025A1 (en) 2012-04-16 2014-04-17 Jade Therapeutics, Llc Ocular drug delivery system
EP3808339A1 (en) 2012-05-03 2021-04-21 Kala Pharmaceuticals, Inc. Pharmaceutical nanoparticles showing improved mucosal transport
CN104661647A (zh) 2012-05-03 2015-05-27 卡拉制药公司 显示提高的粘膜转移的药物纳米粒子
AU2013315125B2 (en) 2012-09-17 2018-07-26 Pfizer Inc. Therapeutic nanoparticles comprising a therapeutic agent and methods of making and using same
AU2013317899A1 (en) 2012-09-20 2015-05-07 Akina, Inc. Biodegradable microcapsules containing filling material
WO2014152959A1 (en) 2013-03-14 2014-09-25 Forsight Vision4, Inc. Systems for sustained intraocular delivery of low solubility compounds from a port delivery system implant
KR20150139899A (ko) 2013-04-01 2015-12-14 알러간, 인코포레이티드 지속적인 안구내 방출을 위한 마이크로스피어 약물 전달 시스템

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2559208A1 (en) * 2004-03-17 2005-09-29 Mpex Pharmaceuticals, Inc. Use and administration of bacterial efflux pump inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Addressing the PEG Mucoadhesivity Paradox to Engineer Nanoparticles that "Slip" through the Human Mucus Barrier;Ying-ying Wang;《Angewandte Chemie Internatioal Edition》;20081031;第9726-9729页 *

Also Published As

Publication number Publication date
CA2863632A1 (en) 2013-07-25
WO2013110028A1 (en) 2013-07-25
KR20140138639A (ko) 2014-12-04
HK1215380A1 (zh) 2016-08-26
EP2804632A1 (en) 2014-11-26
RU2598627C2 (ru) 2016-09-27
AU2016200707B2 (en) 2017-04-20
AU2016200707A1 (en) 2016-02-25
US9629813B2 (en) 2017-04-25
RU2014133858A (ru) 2016-03-20
CN104936620A (zh) 2015-09-23
US9415020B2 (en) 2016-08-16
KR101811917B1 (ko) 2017-12-22
CA2863632C (en) 2017-07-11
US20160317459A1 (en) 2016-11-03
AU2013209452B2 (en) 2015-11-05
AU2013209452A1 (en) 2014-08-28
US20150297531A1 (en) 2015-10-22
EP2804632B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
CN104936620B (zh) 增强粘膜渗透的纳米粒子调配物
US20210196829A1 (en) Nanoparticles with enhanced mucosal penetration or decreased inflammation
JP6392209B2 (ja) 粘液内層を通過する迅速な透過のための脂質ベース薬物キャリア
DE60035211T2 (de) Mikrokugeln mit kontinuierlicher Freisetzung
KR102140989B1 (ko) 개선된 점막 수송을 나타내는 제약 나노입자
CN108472250A (zh) 高分子量粘液穿透颗粒和致密涂层
Boushra et al. Methocel-lipid hybrid nanocarrier for efficient oral insulin delivery
ZA200502452B (en) Remedy
CN107638405A (zh) 一种眼内递药组合物及其制备方法
Çelik et al. Preparation of superoxide dismutase loaded chitosan microspheres: characterization and release studies
US20230277511A1 (en) Rapamycin (rapa) composition and preparation method thereof
CN102379850B (zh) 一种穿越人体粘液屏障的靶向给药脂质体
DE60026571T2 (de) Durchflussverfahren zur herstellung von mikropartikeln
CN105517560A (zh) 多粘菌素脂质纳米颗粒
CN112641757B (zh) 一种用于跨膜递送分子的载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1215380

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant