CN104919293A - 压阻式mems传感器 - Google Patents

压阻式mems传感器 Download PDF

Info

Publication number
CN104919293A
CN104919293A CN201380063807.3A CN201380063807A CN104919293A CN 104919293 A CN104919293 A CN 104919293A CN 201380063807 A CN201380063807 A CN 201380063807A CN 104919293 A CN104919293 A CN 104919293A
Authority
CN
China
Prior art keywords
displacement portion
depth
pressure
mems sensor
drag component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380063807.3A
Other languages
English (en)
Inventor
小西隆宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN104919293A publication Critical patent/CN104919293A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0044Constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Micromachines (AREA)

Abstract

压力传感器由Si基板(10a)、SiO2层(10b)、表面Si膜(10c)所构成的SOI基板构成。Si基板(10a)上形成有通过蚀刻而形成的开口部(13),膜片结构的位移部(12)由该部分的表面Si膜(10c)和SiO2层(10b)构成。位移部(12)形成有压阻元件(11)。位移部(12)根据要检测的压力而弯曲,压阻元件的电阻值随之而发生变化。膜片结构的位移部(12)的厚度尺寸ts为1μm以上10μm以下,压阻元件(11)的杂质浓度的峰值位置(深度)Pd为比0.5μm要深、比位移部(12)的厚度尺寸的1/2的深度要浅的位置。

Description

压阻式MEMS传感器
技术领域
本发明涉及作为传感器来使用的MEMS,特别涉及利用压阻元件的电阻值变化来检测压力、加速度等的压阻式MEMS传感器。
背景技术
例如,专利文献1公开了一种利用MEMS(Micro Electro MechanicalSystems:微机电系统)的传感器。专利文献1中公开了由形成有隔膜的SOI基板、以及形成在SOI基板上的4个压阻元件所构成的半导体压力传感器。
现有技术文献
专利文献
专利文献1:日本专利特开2006-30158号公报
发明内容
发明所要解决的技术问题
为了提高灵敏度,将压阻式传感器的压阻元件形成在构成膜片、梁等位移部的Si的表面附近的极浅的位置上。Si的表面有时还形成有保护膜、屏蔽膜。虽然不存在记载有该压阻元件的深度(杂质浓度的峰值深度)的现有技术文献,但通常距离去除保护膜等后的Si表面为0.3μm以下。
这样,若压阻元件的深度(杂质浓度的峰值深度)为距离Si表面0.3μm以下,则在提高传感器灵敏度这点上是有效的,但当膜片、梁等位移部的厚度产生偏差时,存在传感器灵敏度受其影响而产生较大偏差的问题。这是由于,位移部的表面所产生的应力与其厚度的平方成反比。下面将对传感器灵敏度与偏差之间的关系进行详细说明。
在重视传感器灵敏度的偏差的用途中,需要单独对该偏差进行校正的工序,从而会导致成本上升。
因此,本发明鉴于上述情况,其目的在于提供一种压阻式MEMS传感器,该压阻式MEMS传感器降低了形成有压阻元件的位移部的厚度的偏差对传感器灵敏度的变动所造成的影响。
解决技术问题所采用的技术手段
(1)本发明的压阻式MEMS传感器
包括由厚度为1μm以上的Si构成并根据检测量而发生位移的位移部,所述位移部的内部形成有由杂质扩散而形成的压阻元件,所述压阻式MEMS传感器的特征在于,
所述压阻元件在与所述位移部的表面的距离比0.5μm要深、且比所述位移部的厚度尺寸的1/2的深度要浅的位置上具有杂质浓度的峰值。
(2)优选为所述位移部的厚度为1μm以上10μm以下。
(3)优选为所述位移部的表面形成有Si氧化膜或Si氮化膜。
发明效果
根据本发明,由于能降低膜片、梁等位移部的厚度偏差对传感器灵敏度的影响,因此,能构成具有所希望的传感器灵敏度的压阻式MEMS传感器。
附图说明
图1是表示膜片、梁等位移部(活性层)12中的压阻元件11的位置关系的图。
图2(A)是表示位移部12的厚度尺寸ts与施加于位移部12的最大应力σ之间的定性关系的图。图2(B)是表示位移部12的厚度尺寸ts与压阻元件11的深度(杂质浓度的峰值的深度)位置上的应力效率E之间的定性关系的图。图2(C)是表示位移部12的厚度尺寸ts与灵敏度S之间的定性关系的图。
图3是表示将位移部的厚度尺寸作为参数的、通过FEM来求出压阻元件11的深度(杂质浓度的峰值的深度)与灵敏度之间的关系的结果的图。
图4是表示压阻元件11的杂质浓度(B conc.)的分布的示例的图。
图5是实施例1所涉及的压力传感器的剖视图。
图6(A)、图6(B)、图6(C)是表示图5所示的压力传感器的制造过程的剖视图。
图7是实施例2所涉及的压力传感器的剖视图。
图8(A)、图8(B)、图8(C)是表示图7所示的压力传感器的制造过程的剖视图。
图9是实施例3所涉及的加速度传感器的剖视图。
图10(A)、图10(B)、图10(C)是表示图9所示的加速度传感器的制造过程的剖视图。
具体实施方式
图1是表示膜片、梁等位移部(活性层)12中的压阻元件11的位置关系的图。位移部12由Si层构成。压阻元件11通过杂质的扩散而形成。位移部的厚度尺寸用ts来表示,压阻元件11的杂质浓度的峰值的深度用Pd来表示。
图2(A)是表示位移部12的厚度尺寸ts与施加于位移部12的最大应力σ之间的定性关系的图。若用数学式来表示该关系,则如下所示。
σ=(1/ts2
这里α是由位移部12的尺寸来决定的系数。
图2(B)是表示位移部12的厚度尺寸ts与压阻元件11的深度(杂质浓度的峰值的深度)位置上的应力效率E之间的定性关系的图。若用数学式来表示该关系,则如下所示。
E=(ts/2-Pd)/(ts/2)
=(ts-2Pd)/ts
图2(C)是表示位移部12的厚度尺寸ts与灵敏度S之间的定性关系的图。若用数学式来表示该关系,则如下所示。
S=σ×E
=α(ts-2Pd)/ts3
这里,若用tsmax来表示位移部12的厚度尺寸最厚的情况,用tsmin来表示位移部12的厚度尺寸最薄的情况,则各自的灵敏度Smax、Smin如下所示。
Smax=α(tsmax-2Pd)/tsmax 3
Smin=α(tsmin-2Pd)/tsmin 3
若决定压阻元件的深度(杂质浓度的峰值的深度)Pd的值而使得Smax=Smin,则对位移部的厚度尺寸的偏差所对应的灵敏度的影响最小。
Smax=Smin
α(tsmax-2Pd)/tsmax 3=α(tsmin-2Pd)/tsmin 3
Pd=tsmaxtsmin(tsmax 2-tsmin 2)/{2(tsmax 3-tsmin 3)}
图3是表示将位移部的厚度尺寸作为参数的、通过FEM来求出压阻元件11的深度(杂质浓度的峰值的深度)与灵敏度之间的关系的结果的图。若压阻元件11的深度是位移部的厚度尺寸的1/2的深度(中性面),则灵敏度最低,压阻元件11的深度越浅,灵敏度越大。而且,压阻元件11的深度越浅,灵敏度偏差与位移部的厚度尺寸偏差之比越大。
在现有结构的情况下,膜片、梁等位移部的厚度为10μm,若用通常的工艺来制作,则该厚度会产生±0.5μm的偏差。在现有结构中,由于位移部的表面形成有压阻,因此,传感器灵敏度会受到位移部的厚度的平方的影响而产生偏差。即,灵敏度偏差为±10%以上。
与之相对,在本发明的结构中,在位移部的厚度为10μm、将压阻的杂质浓度的峰值位置形成在与位移部表面的距离为0.5μm的深度位置的情况下,与现有结构相比,不容易受到位移部的厚度偏差的影响。在本发明的结构中,如图3所示,在位移部12的厚度尺寸为10±0.5μm(tsmax=10.5μm,tsmin=9.5μm)的情况下,当压阻元件的深度Pd=2μm时,灵敏度偏差为±6%。
如图3所示,位移部12越厚,压阻元件的深度偏差所对应的灵敏度偏差越小,但位移部12的厚度越厚,灵敏度越低。为了减小传感器的尺寸,需要提高传感器的检测灵敏度。在传感器的灵敏度与位移部12的厚度之间存在如上所述的关系,为了提高灵敏度,需要将位移部12变薄。一般用于民用用途的MEMS传感器中,膜片、梁的厚度为10μm以下。因此,优选为位移部12的厚度尺寸为10μm以下。
图4是表示压阻元件11的杂质浓度的分布的示例的图。横轴是深度,纵轴是载流子浓度。在现有的压阻式MEMS传感器中,如分布P所示的那样,杂质浓度的峰值的深度为0.2μm,但在本发明中,如分布N1、N2所示的那样,杂质浓度的峰值的深度为0.8μm、1.65μm。
实施例
《实施例1》
图5是实施例1所涉及的压力传感器的剖视图。该压力传感器由Si基板10a、SiO2层10b、表面Si膜10c所构成的SOI基板构成。Si基板10a上形成有通过蚀刻而形成的开口部13,膜片结构的位移部12由该部分的表面Si膜10c和SiO2层10b构成。位移部12中形成有通过离子注入而形成的压阻元件11。位移部12根据要检测的压力而弯曲,压阻元件的电阻值随之而发生变化。
这里,膜片结构的位移部12的厚度尺寸ts为1μm以上10μm以下,压阻元件11的杂质浓度的峰值位置(深度)Pd为比0.5μm要深、比位移部12的厚度尺寸的1/2的深度要浅的位置。
图6(A)、图6(B)、图6(C)是表示图5所示的压力传感器的制造过程的剖视图。首先,如图6(A)所示,准备由Si基板10a、SiO2层10b、表面Si膜10c所构成的SOI基板10。接着,如图6(B)所示,从表面Si膜10c注入离子,从而形成压阻元件11。之后,如图6(C)所示,通过蚀刻在Si基板10a上形成开口部13。由此形成膜片结构的位移部12。
《实施例2》
图7是实施例2所涉及的压力传感器的剖视图。在该示例中,形成有压阻元件11的Si膜10c的表面形成有保护膜14。其它结构与图5所示的压力传感器相同。
图8(A)、图8(B)、图8(C)、图8(D)是表示图7所示的压力传感器的制造过程的剖视图。首先,如图8(A)所示,准备由Si基板10a、SiO2层10b、表面Si膜10c所构成的SOI基板10。接着,如图8(B)所示,从表面Si膜10c注入离子,从而形成压阻元件11。之后,如图8(C)所示,在表面上通过热氧化或CVD法形成由Si氧化膜或Si氮化膜所构成的保护膜14。之后,如图8(D)所示,通过蚀刻在Si基板10a上形成开口部13。由此形成膜片结构的位移部12。
《实施例3》
图9是实施例3所涉及的加速度传感器的剖视图。该加速度传感器由Si基板10a、SiO2层10b、表面Si膜10c所构成的SOI基板构成。Si基板10a上形成有通过蚀刻而形成的开口部13,梁结构的位移部12由该部分的表面Si膜10c和SiO2层10b构成。另外,Si基板10a中,通过梁结构的位移部12进行连接的一方作为固定部而起作用,Si基板10a中的另一方作为锤而起作用。位移部12中形成有通过离子注入而形成的压阻元件11。位移部12根据要检测的加速度而屈曲,压阻元件的电阻值随之而发生变化。
这里,膜片结构的位移部12的厚度尺寸ts为1μm以上10μm以下,压阻元件11的杂质浓度的峰值位置(深度)Pd为比0.5μm要深、比位移部12的厚度尺寸的1/2的深度要浅的位置。
图10(A)、图10(B)、图10(C)是表示图9所示的加速度传感器的制造过程的剖视图。首先,如图10(A)所示,准备由Si基板10a、SiO2层10b、表面Si膜10c所构成的SOI基板10。接着,如图10(B)所示,从表面Si膜10c注入离子,从而形成压阻元件11。之后,如图10(C)所示,通过蚀刻在Si基板10a上形成开口部13。由此形成梁结构的位移部12。
标号说明
10  SOI基板
10a Si基板
10b SiO2
10c Si膜
11  压阻元件
12  位移部
13  开口部
14  保护膜

Claims (3)

1.一种压阻式MEMS传感器,该压阻式MEMS传感器包括位移部,该位移部由厚度为1μm以上的Si构成,并根据检测量而发生位移,所述位移部的内部形成有由杂质扩散而形成的压阻元件,所述压阻式MEMS传感器的特征在于,
所述压阻元件在与所述位移部的表面的距离比0.5μm要深、且比所述位移部的厚度尺寸的1/2的深度要浅的位置上具有杂质浓度的峰值。
2.如权利要求1所述的压阻式MEMS传感器,其特征在于,
所述位移部的厚度为1μm以上10μm以下。
3.如权利要求1或2所述的压阻式MEMS传感器,其特征在于,
所述位移部的表面形成有Si氧化膜或Si氮化膜。
CN201380063807.3A 2012-12-06 2013-12-04 压阻式mems传感器 Pending CN104919293A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-267348 2012-12-06
JP2012267348 2012-12-06
PCT/JP2013/082545 WO2014088020A1 (ja) 2012-12-06 2013-12-04 ピエゾ抵抗型memsセンサ

Publications (1)

Publication Number Publication Date
CN104919293A true CN104919293A (zh) 2015-09-16

Family

ID=50883438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380063807.3A Pending CN104919293A (zh) 2012-12-06 2013-12-04 压阻式mems传感器

Country Status (5)

Country Link
US (1) US20150241465A1 (zh)
JP (1) JPWO2014088020A1 (zh)
CN (1) CN104919293A (zh)
TW (1) TWI506278B (zh)
WO (1) WO2014088020A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109297620A (zh) * 2018-09-25 2019-02-01 中国电子科技集团公司第十三研究所 SOI基GaN压力传感器及其制备方法
CN110274712A (zh) * 2018-03-13 2019-09-24 阿自倍尓株式会社 压阻式传感器
CN111448446A (zh) * 2017-07-19 2020-07-24 触控解决方案股份有限公司 在mems力传感器中的应变传递堆叠
US11243126B2 (en) 2017-07-27 2022-02-08 Nextinput, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US11243125B2 (en) 2017-02-09 2022-02-08 Nextinput, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
US11255737B2 (en) 2017-02-09 2022-02-22 Nextinput, Inc. Integrated digital force sensors and related methods of manufacture
US11423686B2 (en) 2017-07-25 2022-08-23 Qorvo Us, Inc. Integrated fingerprint and force sensor
US11579028B2 (en) 2017-10-17 2023-02-14 Nextinput, Inc. Temperature coefficient of offset compensation for force sensor and strain gauge
US11874185B2 (en) 2017-11-16 2024-01-16 Nextinput, Inc. Force attenuator for force sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880499B2 (ja) 2013-08-19 2016-03-09 横河電機株式会社 振動式圧力センサ及びその製造方法
US10032936B2 (en) * 2015-05-29 2018-07-24 Seiko Epson Corporation Method for manufacturing resistive element, method for manufacturing pressure sensor element, pressure sensor element, pressure sensor, altimeter, electronic apparatus, and moving object
JP2016224045A (ja) * 2015-05-29 2016-12-28 セイコーエプソン株式会社 抵抗素子の製造方法、圧力センサー素子の製造方法、圧力センサー素子、圧力センサー、高度計、電子機器および移動体
CN109231157B (zh) * 2018-11-07 2024-04-09 西安交通大学 四梁圆膜与同轴圆柱结合的压力和位移集成式mems传感器
FR3110284B1 (fr) * 2020-05-14 2023-01-13 Commissariat Energie Atomique Dispositif de détection utilisant une transduction piézorésistive
CN113092885B (zh) * 2021-04-09 2023-11-24 中国科学院空天信息创新研究院 压阻式微型电场传感器及其制备方法、电场传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286166A (ja) * 1991-03-14 1992-10-12 Nissan Motor Co Ltd 半導体加速度センサ
JPH07131035A (ja) * 1993-11-01 1995-05-19 Masaki Esashi ピエゾ抵抗素子の製造方法
CN1409118A (zh) * 2001-09-26 2003-04-09 日立金属株式会社 加速度传感器
US20080163695A1 (en) * 2004-06-15 2008-07-10 Canon Kabushiki Kaisha Semiconductor Device
US20080202248A1 (en) * 2007-02-28 2008-08-28 Yamatake Corporation Pressure sensor
CN201508260U (zh) * 2009-03-24 2010-06-16 无锡市纳微电子有限公司 一种高灵敏度微压力传感器芯片
CN101988859A (zh) * 2009-07-31 2011-03-23 大陆汽车系统公司 具有高精确度和高灵敏度的低压传感器装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056244U (ja) * 1983-09-26 1985-04-19 住友電気工業株式会社 半導体圧力センサ
JPS63170973A (ja) * 1987-01-09 1988-07-14 Yokogawa Electric Corp 半導体圧力センサ
DE4206174C2 (de) * 1992-02-28 1995-06-22 Bosch Gmbh Robert Integrierter Sensor aus Silizium
JP2006030158A (ja) * 2004-06-15 2006-02-02 Canon Inc 半導体装置およびその製造方法
DE102006024842A1 (de) * 2006-05-24 2007-11-29 Monti-Werkzeuge Gmbh Rotationswerkzeug zur Oberflächenbearbeitung
JP2010071850A (ja) * 2008-09-19 2010-04-02 Kyocera Corp 加速度センサ素子、加速度センサ装置及び加速度センサ素子の製造方法
WO2013020275A1 (zh) * 2011-08-09 2013-02-14 浙江双友物流器械股份有限公司 一种mems压阻式拉压力芯片及传感器的制作方法
US8558330B2 (en) * 2011-10-31 2013-10-15 Taiwan Semiconductor Manufacturing Co., Ltd. Deep well process for MEMS pressure sensor
TWI444605B (zh) * 2011-12-12 2014-07-11 Metrodyne Microsystem Corp 微機電系統壓力感測元件及其製作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286166A (ja) * 1991-03-14 1992-10-12 Nissan Motor Co Ltd 半導体加速度センサ
JPH07131035A (ja) * 1993-11-01 1995-05-19 Masaki Esashi ピエゾ抵抗素子の製造方法
CN1409118A (zh) * 2001-09-26 2003-04-09 日立金属株式会社 加速度传感器
US20080163695A1 (en) * 2004-06-15 2008-07-10 Canon Kabushiki Kaisha Semiconductor Device
US20080202248A1 (en) * 2007-02-28 2008-08-28 Yamatake Corporation Pressure sensor
CN201508260U (zh) * 2009-03-24 2010-06-16 无锡市纳微电子有限公司 一种高灵敏度微压力传感器芯片
CN101988859A (zh) * 2009-07-31 2011-03-23 大陆汽车系统公司 具有高精确度和高灵敏度的低压传感器装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11243125B2 (en) 2017-02-09 2022-02-08 Nextinput, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
US11946817B2 (en) 2017-02-09 2024-04-02 DecaWave, Ltd. Integrated digital force sensors and related methods of manufacture
US11808644B2 (en) 2017-02-09 2023-11-07 Qorvo Us, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
US11604104B2 (en) 2017-02-09 2023-03-14 Qorvo Us, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
US11255737B2 (en) 2017-02-09 2022-02-22 Nextinput, Inc. Integrated digital force sensors and related methods of manufacture
US11221263B2 (en) 2017-07-19 2022-01-11 Nextinput, Inc. Microelectromechanical force sensor having a strain transfer layer arranged on the sensor die
CN111448446A (zh) * 2017-07-19 2020-07-24 触控解决方案股份有限公司 在mems力传感器中的应变传递堆叠
US11423686B2 (en) 2017-07-25 2022-08-23 Qorvo Us, Inc. Integrated fingerprint and force sensor
US11243126B2 (en) 2017-07-27 2022-02-08 Nextinput, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US11609131B2 (en) 2017-07-27 2023-03-21 Qorvo Us, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US11946816B2 (en) 2017-07-27 2024-04-02 Nextinput, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
US11579028B2 (en) 2017-10-17 2023-02-14 Nextinput, Inc. Temperature coefficient of offset compensation for force sensor and strain gauge
US11898918B2 (en) 2017-10-17 2024-02-13 Nextinput, Inc. Temperature coefficient of offset compensation for force sensor and strain gauge
US11874185B2 (en) 2017-11-16 2024-01-16 Nextinput, Inc. Force attenuator for force sensor
CN110274712B (zh) * 2018-03-13 2021-06-29 阿自倍尓株式会社 压阻式传感器
CN110274712A (zh) * 2018-03-13 2019-09-24 阿自倍尓株式会社 压阻式传感器
CN109297620A (zh) * 2018-09-25 2019-02-01 中国电子科技集团公司第十三研究所 SOI基GaN压力传感器及其制备方法

Also Published As

Publication number Publication date
US20150241465A1 (en) 2015-08-27
JPWO2014088020A1 (ja) 2017-01-05
TW201423106A (zh) 2014-06-16
TWI506278B (zh) 2015-11-01
WO2014088020A1 (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
CN104919293A (zh) 压阻式mems传感器
US9139427B2 (en) Methods for producing a cavity within a semiconductor substrate
CN105934661B (zh) 微型强化圆片级mems力传感器
EP2226620B1 (en) Semiconductor sensor and method of manufacturing the same
US8857264B2 (en) Catheter die
WO2009006515A3 (en) Small gauge pressure sensor using wafer bonding and electrochemical etch stopping
CN102261979B (zh) 用于真空测量的低量程压阻式压力传感器的制造方法
EP2820389A1 (en) Catheter die and method of fabricating the same
CN107894294B (zh) 带有扩展浅多边形腔的带腔绝缘体上硅mems压力传感装置
US8878316B2 (en) Cap side bonding structure for backside absolute pressure sensors
EP2881721A2 (en) Silicon on nothing pressure sensor
CN201935780U (zh) 用于真空测量的低量程压阻式压力传感器
DE102011006332A1 (de) Verfahren zum Erzeugen von monokristallinen Piezowiderständen
JP2008224254A (ja) センサ装置、センサ装置の製造方法
US20170328797A1 (en) Pressure sensor device with anchors for die shrinkage and high sensitivity
EP1717196A1 (en) Technique for manufacturing silicon structures
JP2013195097A (ja) 半導体圧力センサ及びその製造方法、並びに圧力検出装置
JP2015194443A (ja) 差圧検出素子の製造方法
KR102041719B1 (ko) 메조포러스 구조를 갖는 스트레인 게이지 및 이를 포함하는 스트레인 센서, 그리고 그 제조 방법.
JP5472020B2 (ja) 圧力センサおよびその製造方法
JP2011094967A (ja) 半導体圧力センサの製造方法
CN118776716A (zh) 小型化mems压力传感器及其制备方法
JP2008045911A (ja) 圧力センサ
Luo et al. Determination of compressive residual stress in a doubly clamped microbeam according to its buckled shape
CN117433670A (zh) 一种mems压力传感器及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150916