JP2013195097A - 半導体圧力センサ及びその製造方法、並びに圧力検出装置 - Google Patents

半導体圧力センサ及びその製造方法、並びに圧力検出装置 Download PDF

Info

Publication number
JP2013195097A
JP2013195097A JP2012059616A JP2012059616A JP2013195097A JP 2013195097 A JP2013195097 A JP 2013195097A JP 2012059616 A JP2012059616 A JP 2012059616A JP 2012059616 A JP2012059616 A JP 2012059616A JP 2013195097 A JP2013195097 A JP 2013195097A
Authority
JP
Japan
Prior art keywords
semiconductor
pressure sensor
diaphragm
support substrate
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012059616A
Other languages
English (en)
Other versions
JP5890712B2 (ja
Inventor
Hiroya Mori
浩也 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2012059616A priority Critical patent/JP5890712B2/ja
Publication of JP2013195097A publication Critical patent/JP2013195097A/ja
Application granted granted Critical
Publication of JP5890712B2 publication Critical patent/JP5890712B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】ダイヤフラムの機械的強度を犠牲にせずに検出感度の向上を実現できる半導体圧力センサを提供する。
【解決手段】半導体圧力センサ10は、ダイヤフラムを支持し中空部31を有する支持基板21Pと、ダイヤフラムの受圧面に形成された複数の半導体ピエゾ抵抗素子P1〜P4とを備える。中空部31のダイヤフラム側一端は封止されている。ダイヤフラムは、外周部22pと、中空部31内に突出する錘部32を持つ厚肉部と、この厚肉部を外周部22pに連結する薄肉部22bとを有する。この薄肉部22bの外周端には半導体ピエゾ抵抗素子P1,P4が形成され、薄肉部22bの内周端には半導体ピエゾ抵抗素子P2,P3が形成される。
【選択図】図1

Description

本発明は、圧力や加速度などの外的作用を検出する技術に関し、特に、ピエゾ抵抗効果を用いて外的作用を検出する技術に関する。
単結晶シリコンなどの半導体材料を用いて作製される半導体センサは、ピエゾ抵抗効果、圧電効果並びに静電容量変化などの検出原理に基づいて圧力や加速度などの外的作用(外力)を高感度で検出するセンサとして広く採用されている。半導体センサは、MEMS(Micro Electro Mechanical Systems)技術やMST(Micro System Technology)技術を用いて作製できるため、機械式センサや光学式センサと比べると低コスト化と小型化が容易という利点がある。このような半導体センサは、たとえば、感震器などの計測機器、歩数計並びに携帯端末に組み込まれている。
ピエゾ抵抗効果は、外的作用により発生した機械的応力に応じて物質の電気抵抗が変化する現象をいう。一般に、ピエゾ抵抗効果を利用するピエゾ抵抗型の半導体圧力センサは、ダイヤフラムと呼ばれる薄肉部を有しており、このダイヤフラムの表面にピエゾ抵抗素子が形成される。ダイヤフラムが外的作用を受けて変形すると、その変形(歪み)に応じて機械的応力(以下、単に「応力」とも呼ぶ。)が発生し、この応力に応じてピエゾ抵抗素子の電気抵抗が変化する。その電気抵抗の変化は電気信号に変換されて取り出される。このようなピエゾ抵抗型の半導体圧力センサは、たとえば、特開2006−30159号公報(特許文献1)に開示されている。
従来のピエゾ抵抗型の半導体圧力センサでは、検出感度向上のために、ダイヤフラムの形成領域の面積を大きくしたり、ダイヤフラムの厚さを薄くしたりする方法が採用されていた。しかしながら、ダイヤフラムの形成領域の面積が大きいと、半導体圧力センサのチップサイズの小型化が難しくなる。また、ダイヤフラムの厚さを薄くすれば、ダイヤフラムの機械的強度が低下する。そこで、特許文献1に開示されている半導体圧力センサ(ピエゾ抵抗型圧力センサ)では、ピエゾ抵抗素子からなる応力検出部の周辺部においてダイヤフラムの一部に溝が形成される。ダイヤフラムが圧力を受けて歪んだとき、この歪みに応じて発生した応力を当該溝が応力検出部に集中させるので、ダイヤフラムの形成領域の面積を増加させることなく検出感度の向上を実現することができる。
特開2006−30159号公報(段落0012〜0017、段落0024〜0026及び図1など)
しかしながら、特許文献1の半導体圧力センサでは、外部から圧力を受ける度に、ダイヤフラムに形成された溝に応力集中が発生するので、繰り返し応力に対するダイヤフラムの機械的強度(疲労強度)が低いという問題がある。このため、長期使用によりダイヤフラムの溝の部分に破損や亀裂が発生したり、半導体圧力センサの最大許容圧力が低い値となるという懸念がある。このような問題を回避するにはダイヤフラムを全体的に厚くすればよいが、ダイヤフラムを全体的に厚くすれば、検出感度の向上を実現することができない。
上記に鑑みて本発明の目的は、ダイヤフラムの機械的強度を犠牲にせずに検出感度の向上を実現することができる半導体圧力センサ及びその製造方法、並びに圧力検出装置を提供することである。
本発明の第1の態様による半導体圧力センサは、受圧面と該受圧面に対向する裏面とを有するダイヤフラムと、前記ダイヤフラムの当該裏面を支持する支持面と中空部とを有する支持基板と、前記受圧面に形成され、前記受圧面の歪みに応じた可変の電気抵抗を有する複数の半導体ピエゾ抵抗素子とを備え、前記中空部の前記ダイヤフラム側一端は、前記ダイヤフラムの当該裏面によって封止されており、前記ダイヤフラムは、前記支持面により支持されている外周部と、前記中空部内に突出する錘部を持つ厚肉部と、前記厚肉部を前記外周部に連結し前記厚肉部よりも薄い薄肉部とを有し、前記複数の半導体ピエゾ抵抗素子は、前記薄肉部の前記外周部側の外周端に形成された第1の半導体ピエゾ抵抗素子と、前記薄肉部の前記厚肉部側の内周端に形成された第2の半導体ピエゾ抵抗素子とを含むことを特徴とする。
本発明の第2の態様による圧力検出装置は、前記第1の態様による半導体圧力センサと、前記半導体圧力センサに含まれる当該複数の半導体ピエゾ抵抗素子の電気抵抗の変化を示す電圧信号に基づいて、前記半導体圧力センサに印加された圧力の値を算出する演算部とを備えることを特徴とする。
本発明の第3の態様による半導体圧力センサの製造方法は、支持基板と該支持基板上に形成された半導体結晶層とを含む基板を用意する工程と、前記半導体結晶層の表層部に不純物を選択的に導入して複数の半導体ピエゾ抵抗素子を形成する工程と、前記支持基板の裏面を選択的にエッチングして所定の深さを有する環状凹部を形成する工程と、前記支持基板の裏面のうち前記環状凹部の領域と該環状凹部で囲まれる凸状領域との双方に対して選択的に異方性エッチングを実行することにより、前記支持基板内に中空部と該中空部内に配置される錘部とを形成すると同時に前記半導体結晶層を含むダイヤフラムを形成する工程とを備え、前記ダイヤフラムは、前記支持基板により支持されている外周部と、前記中空部内に突出する錘部を持つ厚肉部と、前記厚肉部を前記外周部に連結し前記厚肉部よりも薄い薄肉部とを有し、前記複数の半導体ピエゾ抵抗素子は、前記薄肉部の前記外周部側の外周端に形成された第1の半導体ピエゾ抵抗素子と、前記薄肉部の前記厚肉部側の内周端に形成された第2の半導体ピエゾ抵抗素子とを含むことを特徴とする。
本発明の第4の態様による半導体圧力センサの製造方法は、支持基板と該支持基板上に形成された半導体結晶層とを含む基板を用意する工程と、前記半導体結晶層の表層部に不純物を選択的に導入して複数の半導体ピエゾ抵抗素子を形成する工程と、前記支持基板の裏面を選択的にエッチングして所定の深さを有する凹部を形成する工程と、前記凹部の形成後、前記支持基板の当該凹部内の所定の環状領域を露出させるエッチングマスク形成する工程と、前記支持基板の裏面に対して前記エッチングマスクを使用した異方性エッチングを実行することにより、前記支持基板内に中空部と該中空部内に配置される錘部とを形成すると同時に前記半導体結晶層を含むダイヤフラムを形成する工程とを備え、前記ダイヤフラムは、前記支持基板により支持されている外周部と、前記中空部内に突出する錘部を持つ厚肉部と、前記厚肉部を前記外周部に連結し前記厚肉部よりも薄い薄肉部とを有し、前記複数の半導体ピエゾ抵抗素子は、前記薄肉部の前記外周部側の外周端に形成された第1の半導体ピエゾ抵抗素子と、前記薄肉部の前記厚肉部側の内周端に形成された第2の半導体ピエゾ抵抗素子とを含むことを特徴とする。
本発明によれば、ダイヤフラムの受圧面に作用する圧力に応じて、錘部で区画されたビーム部の外周端と内周端とに互いに逆方向の応力集中(引張応力及び圧縮応力)が発生し、それら逆方向の応力集中を第1及び第2の半導体ピエゾ抵抗素子で検出することができるため、検出感度の向上を実現することができる。また、ダイヤフラムの応力集中箇所には溝を形成する必要がない。したがって、ダイヤフラムの機械的強度を犠牲にせずに検出感度の向上を実現することができる。
(A)は、本発明に係る実施の形態1のピエゾ抵抗型の半導体圧力センサの断面構造を概略的に示す図であり、図1(B)は、この半導体圧力センサの上面図である。 (A),(B)は、実施の形態1のピエゾ抵抗素子の構成例を示す上面図である。 (A),(B)は、外部圧力に応じてダイヤフラムが歪んだ状態を示すピエゾ抵抗素子の断面図である。 実施の形態1のピエゾ抵抗素子を含むブリッジ回路の等価回路図である。 実施の形態1の圧力検出装置の構成例を概略的に示す機能ブロック図である。 実施の形態1の半導体圧力センサの第1の製造工程を説明するための半導体構造の概略断面図である。 実施の形態1の半導体圧力センサの第2の製造工程を説明するための半導体構造の概略断面図である。 実施の形態1の半導体圧力センサの第3の製造工程を説明するための半導体構造の概略断面図である。 実施の形態1の半導体圧力センサの第4の製造工程を説明するための半導体構造の概略断面図である。 実施の形態1の半導体圧力センサの第5の製造工程を説明するための半導体構造の概略断面図である。 実施の形態1の半導体圧力センサの第6の製造工程を説明するための半導体構造の概略断面図である。 実施の形態1の変形例であるピエゾ抵抗型の半導体圧力センサの断面構造を概略的に示す図である。 本発明に係る実施の形態2のピエゾ抵抗型の半導体圧力センサの断面構造を概略的に示す図である。 実施の形態2の半導体圧力センサの第1の製造工程を説明するための半導体構造の概略断面図である。 実施の形態2の半導体圧力センサの第2の製造工程を説明するための半導体構造の概略断面図である。 実施の形態2の半導体圧力センサの第3の製造工程を説明するための半導体構造の概略断面図である。 実施の形態2の半導体圧力センサの第4の製造工程を説明するための半導体構造の概略断面図である。 実施の形態2の半導体圧力センサの第5の製造工程を説明するための半導体構造の概略断面図である。 (A)は、本発明に係る実施の形態3のピエゾ抵抗型の半導体圧力センサの断面構造を概略的に示す図であり、(B)は、この半導体圧力センサの上面図である。 実施の形態3のピエゾ抵抗素子の電気抵抗の変化を検出するブリッジ回路の等価回路図である。 実施の形態3の圧力検出装置の構成例を概略的に示す機能ブロック図である。 加速度に応じてダイヤフラムが歪んだ状態を示すピエゾ抵抗素子の断面図である。
以下、本発明に係る種々の実施の形態について図面を参照しつつ説明する。なお、図面において、同一符号を付された構成要素は、同一構造及び同一機能を有するものとしてその詳細な説明の重複記載を省略する。
実施の形態1.
図1(A)は、本発明に係る実施の形態1の圧力検出装置におけるピエゾ抵抗型の半導体圧力センサ10の断面構造を概略的に示す図であり、図1(B)は、この半導体圧力センサ10の上面図である。図1(A)は、図1(B)の半導体圧力センサ10のIa−Ia線における概略断面を示している。半導体圧力センサ10は、中空部31を有する支持基板21Pを用いて構成されている。図1(A),(B)において、Z軸方向は、この支持基板21Pの厚み方向と一致し、X軸方向、Y軸方向及びZ軸方向は互いに直交する。
半導体圧力センサ10は、支持基板21P上に絶縁膜23Pを介して配置された薄膜22と、この薄膜22の受圧面に形成された半導体ピエゾ抵抗素子(以下、単に「ピエゾ抵抗素子」と呼ぶ。)P1,P2,P3,P4と、これらピエゾ抵抗素子P1〜P4を被覆する窒化膜などの保護膜24とを備える。なお、説明の便宜上、図1(B)には図1(A)の保護膜24は示されていない。
薄膜22は、半導体圧力センサ10のダイヤフラムを構成し、単結晶シリコンなどの半導体結晶材料からなる。図1(A),(B)に示されるように、この薄膜22は、中央部22mと、支持基板21Pにより支持される矩形環状の周辺部22pと、中央部22mを周辺部22pに連結する矩形環状のビーム部(薄肉部)22bとを有する。薄膜22の中央部22mは、絶縁膜23M及び半導体層21Mの積層体からなる錘部32の上方一端に結合し、薄膜22のうち錘部32に結合する部分が中央部22mを構成している。錘部32は、図1(A)に示されるように支持基板21Pの中空部31内に突出するように配置される。
支持基板21Pの中空部31の受圧面側の一端は、薄膜22によって封止されており、中空部31の受圧面とは反対側の他端は、ガラス板などの封止部材25によって封止されているので、中空部31は、密閉された気密室を構成している。
半導体圧力センサ10のダイヤフラムは、薄膜22と錘部32とで構成される。薄膜22の周辺部22pはダイヤフラムの外周部を構成し、薄膜22の中央部22mと錘部32とはダイヤフラムの厚肉部を構成し、薄膜22のビーム部22bはダイヤフラムの薄肉部を構成する。ピエゾ抵抗素子P1,P4は、ダイヤフラムの薄肉部22bの外周端に形成されており、他のピエゾ抵抗素子P2,P3は、薄肉部22bの内周端に形成されている。これらピエゾ抵抗素子P1,P2,P3,P4は、図1(B)に示されるようにほぼX軸方向に沿って一直線状に配列されている。
ピエゾ抵抗素子P1〜P4の電気抵抗は、ピエゾ抵抗効果により薄膜22の受圧面の歪みに応じて変化する。図2(A),(B)は、ピエゾ抵抗素子P1,P2の構成例を示す上面図である。ピエゾ抵抗素子P1は、図2(A)に示されるように、半導体結晶層に導入されたP型不純物拡散領域からなるピエゾ抵抗拡散領域41と、このピエゾ抵抗拡散領域41の延在方向両端と接合する高濃度のP型不純物拡散領域であるコンタクト領域42A,42Bとで構成されている。コンタクト領域42A,42B上には、当該コンタクト領域42A,42Bとそれぞれオーミック接触するアルミニウムなどの金属配線43A,43Bが形成されている。他のピエゾ抵抗素子P3は、ピエゾ抵抗素子P1とほぼ同じ構造を有する。一方、図2(B)に示されるように、ピエゾ抵抗素子P2は、半導体結晶層に導入されたP型不純物拡散領域からなるピエゾ抵抗拡散領域44と、このピエゾ抵抗拡散領域44の延在方向両端と接合する高濃度のP型不純物拡散領域であるコンタクト領域45A,45Bとで構成されている。コンタクト領域45A,45B上には、当該コンタクト領域45A,45Bとそれぞれオーミック接触するアルミニウムなどの金属配線46A,46Bが形成されている。他のピエゾ抵抗素子P4は、ピエゾ抵抗素子P2とほぼ同じ構造を有する。
ダイヤフラムの可動部は、中央部22m及び錘部32からなる厚肉部とビーム部(薄肉部)22bとで構成される。ダイヤフラムに対する外部圧力と中空部31内の内部圧力との間に差が生ずると、この圧力差に応じてダイヤフラムがZ軸方向の正方向または負方向に変形する。図3(A)は、外部圧力が内部圧力よりも低い場合のダイヤフラムの変形状態を示す図であり、図3(B)は、外部圧力が内部圧力よりも高い場合のダイヤフラムの変形状態を示す図である。
外部圧力が内部圧力よりも低い場合は、図3(A)に示されるようにダイヤフラムの可動部が支持基板21Pに対してZ軸正方向に変形して凸形状となる。このとき、外周端のピエゾ抵抗素子P1,P4には圧縮応力が作用し、内周端のピエゾ抵抗素子P2,P3には引張応力が作用する。一方、外部圧力が内部圧力よりも高い場合は、図3(B)に示されるようにダイヤフラムの可動部が支持基板21Pに対してZ軸負方向に変形して凹形状となる。このとき、外周端のピエゾ抵抗素子P1,P4には引張応力が作用し、内周端のピエゾ抵抗素子P2,P3には圧縮応力が作用する。たとえば、引張応力の作用を受けると原子間距離が増して電気抵抗値が高くなり、圧縮応力の作用を受けると原子間距離が短くなって電気抵抗値が低減するピエゾ抵抗素子を使用することができる。
ピエゾ抵抗素子P1〜P4の電気抵抗の変化を検出する電気回路としては、ブリッジ回路を使用すればよい。図4は、本実施の形態のブリッジ回路の一例であるホイートストンブリッジ回路の等価回路図である。図4に示されるように、ピエゾ抵抗素子P1,P2,P3,P4は環状に直列接続されている。ピエゾ抵抗素子P1,P4間の接続点(ノード)には、GND電圧が印加(すなわち接地)され、ピエゾ抵抗素子P2,P3間の接続点(ノード)には、電源電圧(参照電圧)VDDが印加されている。また、ピエゾ抵抗素子P1,P2間の接続点(ノード)は、信号電圧Vを外部に出力し、ピエゾ抵抗素子P3,P4間の接続点(ノード)は、信号電圧Vを外部に出力する。これらピエゾ抵抗素子P1,P2,P3,P4の電気抵抗(ゲージ抵抗)をそれぞれR1,R2,R3,R4で表すとき、差動信号電圧Vo(=V−V)を次式で表現することができる。
Vo=[R1/(R1+R2)−R4/(R3+R4)]×VDD
図5は、実施の形態1の圧力検出装置1の構成例を概略的に示す機能ブロック図である。この圧力検出装置1は、半導体圧力センサ10から出力された差動信号電圧Voを圧力値Pvに換算する。図5に示されるように、圧力検出装置1は、半導体圧力センサ10に駆動電圧を供給する駆動回路14と、差動出力電圧Voを増幅する差動増幅器11と、差動増幅器11の出力に対してゲイン調整を行うゲイン調整器12と、ゲイン調整器12の出力をデジタル信号に変換するA/D変換器(ADC)13と、A/D変換器13の出力から所望の周波数成分を抽出するフィルタ部16と、フィルタ部16の出力に基づいて圧力値Pvを算出する圧力演算部17とを有している。
次に、図6〜図11を参照しつつ、上記半導体圧力センサ10の製造方法について説明する。図6〜図11は、半導体圧力センサ10の製造工程を説明するための半導体構造の概略断面図である。
まず、図6に示されるようなSOI(Semiconductor−On−Insulator)基板20を用意する。このSOI基板20は、シリコン材料からなる支持基板21と、この支持基板21上に形成された半導体結晶層22と、半導体結晶層22と支持基板21との間に介在して半導体結晶層22を支持基板21から電気的に分離する埋め込み絶縁膜23とを有するものである。SOI基板20の最表層をなす半導体結晶層22は、たとえば、厚みが数μm〜十数μm程度の単結晶シリコン層とすればよく、また、埋め込み絶縁膜23は、たとえば、厚みが数μm程度のシリコン酸化膜とすればよい。
次に、図7に示されるように半導体結晶層22の表面にピエゾ抵抗素子P1,P2,P3,P4を形成する。具体的には、フォトリソグラフィ技術を用いて、半導体結晶層22の表層部に選択的にボロンなどのP型不純物を導入してピエゾ抵抗拡散領域を形成し、次いで、フォトリソグラフィ技術を用いて、半導体結晶層22の表層部にボロンなどのP型不純物を選択的に導入して高濃度のコンタクト領域を形成する。そして、たとえばスパッタリング法を用いて、これらコンタクト領域上にアルミニウムなどの金属配線を形成することで、ピエゾ抵抗素子P1〜P4を作製することができる。次に、これらピエゾ抵抗素子P1,P2,P3,P4は、ブリッジ回路を構成するように結線される。その後、ピエゾ抵抗素子P1,P2,P3,P4上に窒化膜などの保護膜24を形成する。
次に、図7のウエハの裏面に研削及び研磨を施した後に、図8に示すようにこの裏面上に開口部28hを有するマスク層28を形成する。具体的には、たとえば、CVD(Chemical Vapor Deposition)法あるいは熱酸化法を用いて当該裏面上に酸化膜(SiO)やシリコン窒化膜(Si)を成膜し、この酸化膜やシリコン窒化膜をパターニングすることでマスク層28を形成することができる。
次に、図9に示されるように、図8の開口部28h内にレジストパターン27を形成し、このレジストパターン27及びマスク層28をマスクとしたエッチングを実行することで上面視で矩形環状を有する凹部21cを形成する。このとき、凹部21cの段差を調整することで図1の錘部32の厚さを制御することができる。その後、レジストパターン27は除去される。
レジストパターン27の除去後、図10に示すように、マスク層28をエッチングマスクとして埋め込み絶縁膜23が露出するまで支持基板21を垂直方向に異方性エッチングする。このとき、埋め込み絶縁膜23は、異方性エッチングに対するストッパ膜として機能する。異方性エッチングとしては、たとえば、反応性イオンエッチング(RIE:Reactive Ion Etching)、あるいは、TMAH(水酸化テトラメチルアンモニウム)水溶液やKOH(水酸化カリウム)水溶液を用いた異方性エッチングを使用することができる。
次に、図11に示すように、中空部31内の埋め込み絶縁膜23の露出部分をエッチングで除去する。このとき、埋め込み絶縁膜23がシリコン酸化膜からなる場合には、たとえば、フッ化水素などを用いたエッチングで埋め込み絶縁膜23の露出部分を除去することができる。
次に、たとえば陽極接合法により、支持基板21Pの裏面にガラス材料からなる封止部材25を貼り合わせて中空部31の開放端を封止する。この結果、図1(A)に示したように中空部31を気密室とする半導体圧力センサ10が作製される。なお、後工程のパッケージ工程で中空部31に気密室を形成する場合には、支持基板21Pの裏面に封止部材25を貼り合わせる工程は不要である。
ところで、錘部32に対する加速度の影響を低減させるために、錘部32にリング形状をなす空洞部を形成して錘部32の重量を減らすことが望ましい。図12は、半導体圧力センサ10の変形例である半導体圧力センサ10Aの断面構造を概略的に示す図である。図12に示されるように、この半導体圧力センサ10Aは、中心部に空洞部21vを持つ半導体層21Maと絶縁膜23Mとからなる錘部32Aを有する。半導体圧力センサ10Aの構成は、この錘部32Aを除いて、図1(A),(B)に示した半導体圧力センサ10の構成と同じである。図12の空洞部21vは、上記図6〜図11で示した製造工程に、レジストパターンをマスクとして使用するエッチング工程を追加することで形成することができる。
以上に説明したように実施の形態1の半導体圧力センサ10は、圧力差によりダイヤフラムの可動部に歪みが発生したとき、錘部32で区画されたビーム部(薄肉部)22bの外周端と内周端とにそれぞれ応力集中を発生させ、それら応力集中をピエゾ抵抗素子P1,P2,P3,P4で検出することができる。ダイヤフラムの厚肉部を構成する錘部32は、ダイヤフラムの薄肉部22bよりも外的作用に対して変形しにくい。このため、特にビーム部22bの内周端に形成されたピエゾ抵抗素子P2,P3に作用する応力は、錘部32の両端部を支点とする薄肉部22bの歪みにより生ずるため、錘部32を形成しない場合と比べると大きな応力となる。よって、錘部32を形成しない場合よりも、検出感度を向上させることができる。
また、ダイヤフラムの応力集中箇所には溝を形成する必要がない。このため、特許文献1の構造と比べると、繰り返し応力に対するダイヤフラムの機械的強度(疲労強度)が高く、定格圧力(連続的に所望の性能を維持することができる最大の圧力)を高めることが可能である。
したがって、実施の形態1の半導体圧力センサ10は、ダイヤフラムの機械的強度を犠牲にせずに検出感度の向上を実現することができる。
さらに、図12に示したように錘部32Aに空洞部21vが形成される場合には、加速度の影響を低減させることができる。このため、加速度が発生し得る使用状況でも、ダイヤフラムの機械的強度を犠牲にせずに検出感度の向上を実現し得る半導体圧力センサ10Aを提供することができる。
実施の形態2.
次に、本発明に係る実施の形態2について説明する。図13は、実施の形態2のピエゾ抵抗型の半導体圧力センサ10Bの断面構造を概略的に示す図である。本実施の形態の半導体圧力センサ10Bの基本構造は、製造方法の一部が異なる点を除いて、実施の形態1の半導体圧力センサ10の基本構造とほぼ同じである。
図13に示されるように、半導体圧力センサ10Bは、中空部31と、この中空部31内に配置された錘部32Bとを有し、錘部32Bは、実施の形態1の半導体圧力センサ10と同様に中空部31内に配置されている。
以下、実施の形態2の半導体圧力センサ10Bの製造方法について説明する。図14〜図18は、この半導体圧力センサ10Bの製造工程を説明するための半導体構造の概略断面図である。
まず、実施の形態1の場合と同様に、図6のSOI基板20を用意し、図7に示したようにこのSOI基板20の半導体結晶層22の上面にピエゾ抵抗素子P1〜P4を形成し、さらに保護膜24を形成する。
次に、図7のウエハの裏面に研削及び研磨を施した後に、図14に示すようにこの裏面上に開口部28Bhを有するマスク層28Bを形成する。具体的には、たとえば、CVD法あるいは熱酸化法を用いて当該裏面上に酸化膜(SiO)やシリコン窒化膜(Si)を成膜し、この酸化膜やシリコン窒化膜をパターニングすることでマスク層28Bを形成することができる。
次に、図15に示されるように、マスク層28Bをエッチングマスクとしたエッチングを実行することで所定の深さを有する凹部21dを形成する。続けて、図16に示すように、図15の凹部21d内にレジストパターン29を形成する。
次に、図17に示すように、レジストパターン29及びマスク層28Bをエッチングマスクとして、埋め込み絶縁膜23が露出するまで支持基板21を垂直方向に異方性エッチングする。このとき、埋め込み絶縁膜23は、異方性エッチングに対するストッパ膜として機能する。このときの異方性エッチングとしては、高アスペクト比を実現する反応性イオンエッチング(RIE)を使用すればよい。その後、レジストパターン29は除去される。
次に、図18に示すように、中空部31内の埋め込み絶縁膜23の露出部分をエッチングで除去する。このとき、埋め込み絶縁膜23がシリコン酸化膜からなる場合には、たとえば、フッ化水素を用いたエッチングで埋め込み絶縁膜23の露出部分を除去することができる。この結果、中空部31を形作る内周端面21wを有する支持基板21Pと錘部32Bとが形成される。
次に、たとえば陽極接合法により、支持基板21Pの裏面にガラス材料からなる封止部材25を貼り合わせて中空部31の開放端を封止する。この結果、図13に示した中空部31を気密室とする半導体圧力センサ10Bが作製される。なお、後工程のパッケージ工程で中空部31に気密室を形成する場合には、支持基板21Pの裏面に封止部材25を貼り合わせる工程は不要である。
以上に説明した製造方法により実施の形態1の半導体圧力センサ10と同様の基本構造を有する半導体圧力センサ10Bを作製することができる。
本実施の形態の半導体圧力センサ10Bでは、実施の形態1の半導体圧力センサ10の錘部32と比べて錘部32Bの厚みが大きいため、錘部32Bの下方一端と封止部材25との間のギャップ幅が小さい。これにより、非常に大きな外部圧力が作用した場合に錘部32Bがストッパとして機能するので、ダイヤフラムの破壊を防止することができる。大きな外部圧力に対して錘部32Bの下方一端が封止部材25と当接して、ダイヤフラムの可動部の移動量が制限されるので、ダイヤフラムが破損するまで変形することが防止される。これにより、絶対最大定格圧(この値を超えると半導体圧力センサ10Bに損傷が生じる可能性のある値)の大幅な向上を実現することができる。錘部32Bの下方一端と封止部材25との間のギャップ幅は、エッチング工程(図15)のプロセス条件を制御することで、たとえば20μm以下の幅に調整することが可能である。
なお、実施の形態1に係る製造方法を用いた場合にも、錘部32の厚みを増して錘部32をストッパとして機能させることができる。具体的には、図9の構造形成のためのエッチング工程で環状凹部21cのアスペクト比を高めることにより錘部32の厚みを増すことができる。
実施の形態3.
次に、本発明に係る実施の形態3について説明する。図19(A)は、本発明に係る実施の形態3の圧力検出装置におけるピエゾ抵抗型の半導体圧力センサ10Cの断面構造を概略的に示す図であり、図19(B)は、この半導体圧力センサ10Cの上面図である。図19(A)は、図19(B)の半導体圧力センサ10CのXIXa−XIXa線における概略断面を示している。説明の便宜上、図19(B)には保護膜24は示されていない。
本実施の形態の半導体圧力センサ10Cは、圧力検出とともに加速度を検出し得る構成を有することを特徴とする。この半導体圧力センサ10Cは、上記実施の形態1の半導体圧力センサ10の製造方法あるいは上記実施の形態2の半導体圧力センサ10Bの製造方法を用いて作製され得る。
図19(A)に示されるように、半導体圧力センサ10Cは、中空部31と、この中空部31内に配置された錘部32Cとを有し、錘部32Cは、実施の形態1,2の半導体圧力センサ10,10Bと同様に中空部31内に配置されている。錘部32Cは、加速度検出用の重量を確保するために厚みの大きな半導体層21Mcを有する。
また、図19(B)に示されるように、半導体結晶層22の上面(受圧面)には、X軸方向に沿って直線状に配列されたピエゾ抵抗素子Px1,Px2,Px3,Px4と、Y軸方向に沿って直線状に配列されたピエゾ抵抗素子Py1,Py2,Py3,Py4と、Y軸方向に沿って直線状に配列されたピエゾ抵抗素子Pz1,Pz2,Pz3,Pz4とが形成されている。ピエゾ抵抗素子Px1,Px4,Py1,Py4,Pz1,Pz4は、ダイヤフラムの薄肉部22bの外周端に形成され、ピエゾ抵抗素子Px2,Px3,Py2,Py3,Pz2,Pz3は、ダイヤフラムの薄肉部22bの内周端に形成されている。
図20は、ピエゾ抵抗素子Px1〜Px4,Py1〜Py4,Pz1〜Pz4の電気抵抗の変化を検出するブリッジ回路の等価回路図である。ピエゾ抵抗素子Px1〜Px4は、正の電源電圧VDDxとGND電圧とを利用して差動信号電圧Vxo(=Vx−Vx)を出力するブリッジ回路50Xを構成している。また、ピエゾ抵抗素子Py1〜Py4は、正の電源電圧VDDyとGND電圧とを利用して差動信号電圧Vyo(=Vy−Vy)を出力するブリッジ回路50Yを構成し、そして、ピエゾ抵抗素子Pz1〜Pz4は、正の電源電圧VDDzとGND電圧とを利用して差動信号電圧Vzo(=Vz−Vz)を出力するブリッジ回路50Zを構成している。
ピエゾ抵抗素子Px1,Px2,Px3,Px4の電気抵抗をRx,Rx,Rx,Rxと表し、ピエゾ抵抗素子Py1,Py2,Py3,Py4の電気抵抗をRy,Ry,Ry,Ry4と表し、ピエゾ抵抗素子Py1,Py2,Py3,Py4の電気抵抗をRy,Ry,Ry,Ryと表すとき、差動信号電圧Vxo,Vyo,Vzoは、次式で表現することができる。
Vxo=[Rx/(Rx+Rx)−Rx/(Rx+Rx)]×VDDx、
Vyo=[Ry/(Ry+Ry)−Ry/(Ry+Ry)]×VDDy、
Vzo=[Rz/(Rz+Rz)−Rz/(Rz+Rz)]×VDDz
図21は、実施の形態3の圧力検出装置1Cの構成例を概略的に示す機能ブロック図である。この圧力検出装置1Cは、半導体圧力センサ10Cから出力された差動信号電圧Vzoから圧力値PvとZ軸方向の加速度Azとを検出し、半導体圧力センサ10Cから出力された差動信号電圧Vxo,VyoからX軸方向及びY軸方向の加速度Ax,Ayを検出することができる。
図21に示されるように、この圧力検出装置1Cは、半導体圧力センサ10Cに駆動電圧を供給する駆動回路14Cと、差動信号電圧Vxo,Vyo,Yzoをそれぞれ入力とする差動増幅器11X,11Y,11Zと、差動増幅器11X,11Y,11Zの出力を入力とするゲイン調整器12X,12Y,12Zと、ゲイン調整器12X,12Y,12Zの出力をデジタル信号に変換するA/D変換器(ADC)13X,13Y,13Zと、フィルタ部16X,16Y及びフィルタバンク16Zとを有する。
加速度演算部17X,17Yは、フィルタ部16X,16Yの出力に基づいてX軸方向加速度Ax及びY軸方向加速度Ayをそれぞれ検出する。たとえば、図22に示されるように、X軸正方向(右方)の加速が生じたとき、支持基板21Pは、錘部32Cに対してX軸正方向に移動する。これにより、ピエゾ抵抗素子Px1,Px3には圧縮応力が作用し、ピエゾ抵抗素子Px2,Px4には引張応力が作用するので、ピエゾ抵抗素子Px1,Px3の電気抵抗Rx,Rxは低減し、ピエゾ抵抗素子Px2,Px4の電気抵抗は増大することとなる。このような電気抵抗の変化を加速度演算部17Xは加速度Axに変換することができる。
フィルタバンク16Zは、A/D変換器13Zの出力から高周波数成分と低周波数成分とを抽出し、高周波数成分を加速度演算部17Zに与え、低周波数成分を圧力演算部17に与える。加速度演算部17Zは、高周波数成分からZ軸方向加速度Azを算出し、圧力演算部17は、高周波数成分からZ軸方向の圧力値Pvを算出することができる。圧力の時間変化は、加速度の時間変化よりも緩やかである場合が多いため、フィルタバンク16Zを用いた周波数解析により一つの差動信号電圧Vzoから加速度Azと圧力Pvとを検出することができる。
したがって、実施の形態3の半導体圧力センサ10Cは、一つのチップで加速度Ax,Ay,Azと圧力Pvの検出を実現することができる。
実施の形態1〜3の変形例.
以上、図面を参照して本発明に係る種々の実施の形態について述べたが、これらは本発明の例示であり、上記以外の様々な形態を採用することもできる。たとえば、支持基板21Pの中空部31の上面視形状や錘部32,32B,32Cの上面視形状は、図1(B)及び図19(B)に示したように矩形状であるが、これに限定されるものではない。たとえば、これらの形状が円形状あるいは楕円形状であってもよい。
また、上記実施の形態1〜3の半導体圧力センサ10,10A,10B,10Cは、気密室の圧力を基準圧力とし、外部圧力とこの基準圧力との間の絶対圧を検出する絶対圧センサとして構成されているが、これに限定されるものではない。封止部材25に代えて中空部31の他端を開放端とする部材を使用すれば、差圧センサを構成することができる。
P1〜P4,Px1〜Px4,Py1〜Py4,Pz1〜Pz4 ピエゾ抵抗素子、 1,1C 圧力検出装置、 10,10B,10C 半導体圧力センサ、 11,11X,11Y,11Z 差動増幅器、 12X,12Y,12Z ゲイン調整器、 13,13X,13Y,13Z A/D変換器(ADC)、 14,14C 駆動回路、 16,16X,16Y フィルタ部、 16Z フィルタバンク、 17 圧力演算部、 17X,17Y,17Z 加速度演算部、 20 SOI基板、 21 支持基板、 21M 半導体層、 21v 空洞部、 22 薄膜(半導体結晶層)、 22m 中央部、 22b ビーム部(薄肉部)、 22p 周辺部、 23 埋め込み絶縁膜、 24 保護膜、 25 封止部材、 31 中空部、 32,32B,32C 錘部、 41,44 ピエゾ抵抗拡散領域、 42A,42B,45A,45B コンタクト領域。

Claims (12)

  1. 受圧面と該受圧面に対向する裏面とを有するダイヤフラムと、
    前記ダイヤフラムの当該裏面を支持する支持面と中空部とを有する支持基板と、
    前記受圧面に形成され、前記受圧面の歪みに応じた可変の電気抵抗を有する複数の半導体ピエゾ抵抗素子と
    を備え、
    前記中空部の前記ダイヤフラム側一端は、前記ダイヤフラムの当該裏面によって封止されており、
    前記ダイヤフラムは、
    前記支持面により支持されている外周部と、
    前記中空部内に突出する錘部を持つ厚肉部と、
    前記厚肉部を前記外周部に連結し前記厚肉部よりも薄い薄肉部とを有し、
    前記複数の半導体ピエゾ抵抗素子は、
    前記薄肉部の前記外周部側の外周端に形成された第1の半導体ピエゾ抵抗素子と、
    前記薄肉部の前記厚肉部側の内周端に形成された第2の半導体ピエゾ抵抗素子とを含む
    ことを特徴とする半導体圧力センサ。
  2. 請求項1に記載の半導体圧力センサであって、
    前記薄肉部は、前記厚肉部を取り囲むように環状に形成されており、
    前記外周部は、前記薄肉部を取り囲むように環状に形成されている
    ことを特徴とする半導体圧力センサ。
  3. 請求項2に記載の半導体圧力センサであって、
    前記複数の半導体ピエゾ抵抗素子は、
    前記薄肉部の当該外周端に形成された第3の半導体ピエゾ抵抗素子と、
    前記薄肉部の当該内周端に形成された第4の半導体ピエゾ抵抗素子とをさらに含み、
    前記第1及び第2の半導体ピエゾ抵抗素子は、前記受圧面に並行な第1の方向に沿って配列されており、
    前記第3及び第4の半導体ピエゾ抵抗素子は、前記受圧面に並行で且つ前記第1の方向とは異なる第2の方向に沿って配列されている
    ことを特徴とする半導体圧力センサ。
  4. 請求項1から3のうちのいずれか1項に記載の半導体圧力センサであって、前記錘部は、空洞部を有することを特徴とする半導体圧力センサ。
  5. 請求項1から4のうちのいずれか1項に記載の半導体圧力センサであって、前記中空部は、前記ダイヤフラムとは反対側で封止された他端を有し、気密室を構成していることを特徴とする半導体圧力センサ。
  6. 請求項1から5のうちのいずれか1項に記載の半導体圧力センサであって、前記半導体ピエゾ抵抗素子は、半導体結晶層に導入された不純物拡散領域を含むことを特徴とする半導体圧力センサ。
  7. 請求項6に記載の半導体圧力センサであって、前記半導体結晶層は、単結晶シリコン層であることを特徴とする半導体圧力センサ。
  8. 請求項1から7のうちのいずれか1項に記載の半導体圧力センサと、
    前記半導体圧力センサに含まれる当該複数の半導体ピエゾ抵抗素子の電気抵抗の変化を示す電圧信号に基づいて、前記半導体圧力センサに印加された圧力の値を算出する演算部と
    を備えることを特徴とする圧力検出装置。
  9. 請求項3に記載の半導体圧力センサと、
    前記半導体圧力センサに含まれる当該複数の半導体ピエゾ抵抗素子の電気抵抗の変化を示す電圧信号に基づいて、前記半導体圧力センサに印加された圧力の値を算出する演算部とを備え、
    前記演算部は、前記電圧信号の周波数解析により前記半導体圧力センサに作用した加速度の値を前記圧力の値とともに算出する
    ことを特徴とする圧力検出装置。
  10. 支持基板と該支持基板上に形成された半導体結晶層とを含む基板を用意する工程と、
    前記半導体結晶層の表層部に不純物を選択的に導入して複数の半導体ピエゾ抵抗素子を形成する工程と、
    前記支持基板の裏面を選択的にエッチングして所定の深さを有する環状凹部を形成する工程と、
    前記支持基板の裏面のうち前記環状凹部の領域と該環状凹部で囲まれる凸状領域との双方に対して選択的に異方性エッチングを実行することにより、前記支持基板内に中空部と該中空部内に配置される錘部とを形成すると同時に前記半導体結晶層を含むダイヤフラムを形成する工程と
    を備え、
    前記ダイヤフラムは、
    前記支持基板により支持されている外周部と、
    前記中空部内に突出する錘部を持つ厚肉部と、
    前記厚肉部を前記外周部に連結し前記厚肉部よりも薄い薄肉部とを有し、
    前記複数の半導体ピエゾ抵抗素子は、
    前記薄肉部の前記外周部側の外周端に形成された第1の半導体ピエゾ抵抗素子と、
    前記薄肉部の前記厚肉部側の内周端に形成された第2の半導体ピエゾ抵抗素子とを含む
    ことを特徴とする半導体圧力センサの製造方法。
  11. 支持基板と該支持基板上に形成された半導体結晶層とを含む基板を用意する工程と、
    前記半導体結晶層の表層部に不純物を選択的に導入して複数の半導体ピエゾ抵抗素子を形成する工程と、
    前記支持基板の裏面を選択的にエッチングして所定の深さを有する凹部を形成する工程と、
    前記凹部の形成後、前記支持基板の当該凹部内の所定の環状領域を露出させるエッチングマスク形成する工程と、
    前記支持基板の裏面に対して前記エッチングマスクを使用した異方性エッチングを実行することにより、前記支持基板内に中空部と該中空部内に配置される錘部とを形成すると同時に前記半導体結晶層を含むダイヤフラムを形成する工程と
    を備え、
    前記ダイヤフラムは、
    前記支持基板により支持されている外周部と、
    前記中空部内に突出する錘部を持つ厚肉部と、
    前記厚肉部を前記外周部に連結し前記厚肉部よりも薄い薄肉部とを有し、
    前記複数の半導体ピエゾ抵抗素子は、
    前記薄肉部の前記外周部側の外周端に形成された第1の半導体ピエゾ抵抗素子と、
    前記薄肉部の前記厚肉部側の内周端に形成された第2の半導体ピエゾ抵抗素子とを含む
    ことを特徴とする半導体圧力センサの製造方法。
  12. 請求項10または11に記載の半導体圧力センサの製造方法であって、
    前記異方性エッチングの実行後、前記支持基板と前記半導体結晶層との間に介在する埋め込み絶縁膜の露出部分をエッチングで除去するステップをさらに備え、
    前記基板は、SOI基板である
    ことを特徴とする半導体圧力センサの製造方法。
JP2012059616A 2012-03-16 2012-03-16 半導体圧力センサ及びその製造方法、並びに圧力検出装置 Active JP5890712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012059616A JP5890712B2 (ja) 2012-03-16 2012-03-16 半導体圧力センサ及びその製造方法、並びに圧力検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012059616A JP5890712B2 (ja) 2012-03-16 2012-03-16 半導体圧力センサ及びその製造方法、並びに圧力検出装置

Publications (2)

Publication Number Publication Date
JP2013195097A true JP2013195097A (ja) 2013-09-30
JP5890712B2 JP5890712B2 (ja) 2016-03-22

Family

ID=49394249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012059616A Active JP5890712B2 (ja) 2012-03-16 2012-03-16 半導体圧力センサ及びその製造方法、並びに圧力検出装置

Country Status (1)

Country Link
JP (1) JP5890712B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115365A1 (ja) * 2014-01-28 2015-08-06 京セラ株式会社 センサおよびその製造方法
US20170199096A1 (en) * 2014-06-09 2017-07-13 Hitachi Automotive Systems, Ltd. Dynamic Quantity Measuring Device and Pressure Sensor Using Same
US10156489B2 (en) * 2016-02-02 2018-12-18 Asia Pacific Microsystems, Inc. Piezoresistive pressure sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876617B2 (ja) * 1988-06-08 1999-03-31 株式会社デンソー 半導体圧力センサ及びその製造方法
JP2000147000A (ja) * 1998-11-06 2000-05-26 Nikon Corp ピエゾ抵抗体を用いたセンサ及び加速度センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876617B2 (ja) * 1988-06-08 1999-03-31 株式会社デンソー 半導体圧力センサ及びその製造方法
JP2000147000A (ja) * 1998-11-06 2000-05-26 Nikon Corp ピエゾ抵抗体を用いたセンサ及び加速度センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115365A1 (ja) * 2014-01-28 2015-08-06 京セラ株式会社 センサおよびその製造方法
JPWO2015115365A1 (ja) * 2014-01-28 2017-03-23 京セラ株式会社 センサおよびその製造方法
US20170199096A1 (en) * 2014-06-09 2017-07-13 Hitachi Automotive Systems, Ltd. Dynamic Quantity Measuring Device and Pressure Sensor Using Same
US10197463B2 (en) * 2014-06-09 2019-02-05 Hitachi Automotive Systems, Ltd. Dynamic quantity measuring device and pressure sensor using same
US10156489B2 (en) * 2016-02-02 2018-12-18 Asia Pacific Microsystems, Inc. Piezoresistive pressure sensor

Also Published As

Publication number Publication date
JP5890712B2 (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
CN108507709B (zh) 一种谐振式压力传感器的制备方法
US9528895B2 (en) Microelectromechanical and/or nanoelectromechanical differential pressure measurement sensor
JP5227729B2 (ja) 圧力センサ
Hao et al. Application of silicon on nothing structure for developing a novel capacitive absolute pressure sensor
Diem et al. SOI'SIMOX'; from bulk to surface micromachining, a new age for silicon sensors and actuators
WO2017215254A1 (zh) 一种双空腔压力计芯片及其制造工艺
Wei et al. TPMS (tire-pressure monitoring system) sensors: Monolithic integration of surface-micromachined piezoresistive pressure sensor and self-testable accelerometer
Wang et al. Monolithic integration of pressure plus acceleration composite TPMS sensors with a single-sided micromachining technology
US8671765B2 (en) Pressure sensor having a diaphragm
JP5206726B2 (ja) 力学量検出装置およびその製造方法
JP4335545B2 (ja) 圧力と加速度との双方を検出するセンサおよびその製造方法
US20100314701A1 (en) Pressure sensor and manufacturing method thereof
CN113702665B (zh) 一种mems加速度计及其形成方法
Zou et al. High-performance low-range differential pressure sensors formed with a thin-film under bulk micromachining technology
JP5890712B2 (ja) 半導体圧力センサ及びその製造方法、並びに圧力検出装置
JP2021025966A (ja) Memsセンサ
CN102980695B (zh) 一种基于soi硅片的mems压阻式绝对压力传感器
CN102602879A (zh) 谐振式加速度计谐振梁和支撑梁的二步腐蚀制造方法
CN110531114B (zh) 一种纯轴向变形的mems三轴压阻式加速度计芯片及其制备方法
JP6305647B2 (ja) 電気機械デバイスを製造するための方法及び対応するデバイス
Li et al. Ultra-small high‐temperature pressure sensor chips fabricated in single‐layer (111) SOI wafers
CN110526200B (zh) 一种具有纯轴向变形敏感梁的面外压阻式加速度计芯片及其制备方法
Zhang et al. A monolithic integration multifunctional MEMS sensor based on cavity SOI wafer
JP2006214963A (ja) 加速度センサ及び電子機器並びに加速度センサの製造方法
JP2015194443A (ja) 差圧検出素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150