CN104919094B - 用于光伏器件或类似等的多晶硅厚膜及制备其的方法 - Google Patents

用于光伏器件或类似等的多晶硅厚膜及制备其的方法 Download PDF

Info

Publication number
CN104919094B
CN104919094B CN201380070983.XA CN201380070983A CN104919094B CN 104919094 B CN104919094 B CN 104919094B CN 201380070983 A CN201380070983 A CN 201380070983A CN 104919094 B CN104919094 B CN 104919094B
Authority
CN
China
Prior art keywords
substrate
nanoparticle
catalyst
nickel
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380070983.XA
Other languages
English (en)
Other versions
CN104919094A (zh
Inventor
维贾伊·S·维拉萨米
马丁·D·布拉卡蒙特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guardian Glass LLC
Original Assignee
Guardian Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guardian Industries Corp filed Critical Guardian Industries Corp
Publication of CN104919094A publication Critical patent/CN104919094A/zh
Application granted granted Critical
Publication of CN104919094B publication Critical patent/CN104919094B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

一种制备多晶硅膜的方法,包括:在基片上沉积含有镍的催化剂层,并沉积镍纳米粒;将所述催化剂层和所述纳米粒暴露至硅烷气;以及在所述暴露至硅烷气的至少一部分时间期间将涂有所述催化剂层和所述纳米粒的所述基片热处理,在所述基片上生长含有硅的膜。

Description

用于光伏器件或类似等的多晶硅厚膜及制备其的方法
本申请涉及一种多晶硅膜,例如具有大于或等于1μm的颗粒尺寸,用于光伏器件(例如太阳能电池)和类似等,以及制备该多晶硅膜的方法。
发明背景及内容
用于低成本光伏模块的技术涉及在基片上生长薄膜的多晶硅而不是硅片。虽然薄膜的多晶太阳能电池的效率低于晶体硅太阳电池,但生产成本也明显较低,且其可被伸缩用于大面积沉积。由于多晶膜中的少数载体扩散长度仅需要大于其厚度,因此薄膜的多晶电池还可消除可能需要昂贵工序的单晶材料上的一些质量约束。
与通过高吞吐量过程的单晶硅相比,大颗粒的多晶硅材料可更廉价地被制造,例如铸造或定向凝固来产生多晶硅块。虽然大颗粒的多晶硅的多数和少数载体属性接近于那些单晶硅,但示出晶界的存在会减少使用该技术所制造的太阳能电池的效率(可能由于较大的复合率)。
由于多晶电池的开路电压随超过1μm的多晶硅颗粒尺寸而增加,因此需要多晶硅厚膜具有大于或等于1μm的颗粒尺寸。此外,工程特别需要在类似玻璃的低成本基片上进行沉积。但是,当使用玻璃基片时,在硅成长期间经常需要将电池和/或基片的温度保持在低于或等于玻璃的转变温度下。
在本发明的示例性实施例中,提供含有吸收膜(由一个或多个层构成)的光伏器件(例如太阳能电池),其包括多晶硅,具有大于或等于1μm平均粒度。
根据示例性实施例的一个方面,提供基片(例如玻璃或云母基片),包括位于基片上的含有镍的纳米粒,以及涂在基片上的含有镍的催化剂薄膜,可在催化剂薄膜之前和/或之后被沉积。其中,含有镍的催化剂膜可包括:选择性地掺杂有磷等的镍。热处理和暴露于硅烷气可用来形成含有多晶硅的膜。
在本发明的示例性实施例中,提供一种在基片上制备含有硅的多晶膜的方法,所述方法包括:在所述基片上沉积含有镍的催化剂层,并沉积纳米粒;将所述催化剂层和所述纳米粒暴露至硅烷气;以及在所述暴露至硅烷气的至少一部分时间期间将涂有所述催化剂层和所述纳米粒的所述基片热处理,在所述基片上生长含有硅的膜。
附图简要说明
图1是示出在制备过程期间,硅(Si)膜在基片(例如玻璃或云母基片)上生长的横截面图。
图2是示出根据示例性实施例,制备颗粒尺寸大于或等于1μm(如图1所示)的多晶硅厚膜的方法的流程图。
图3是示出云母基片上的硅(Si)的横截面图。
图4是示出另一个玻璃基片上的导电层的横截面图,根据图1-3中的任何一个所制备的多晶硅膜被转移至其上。
示例性实施例的具体说明
以下参照附图对示例性实施例进行详细说明。整个附图中相同的参照符号表示相同的部分。
图1示出基片11(例如玻璃或云母基片)上含有硅的膜15。在此使用的"在…上"包括直接和间接位于其上的两者。因此,在此所使用的"在…上"不要求直接接触(例如,即使其之间具有其他层,层或膜也表示在基片"上")。
参照图1,提供基片11、缓冲层12、催化剂13、镍纳米粒14,和硅15。硅膜15在基片11上被生长之后,催化剂层13可以或也可以不存在于产品中。
缓冲层12可以是,例如透明介质层(例如,包括氧化锌等),在玻璃基片11上被形成,用来在制备基于硅的膜15过程中减少镍扩散至玻璃基片11中。例如,缓冲层12可由含有氧化锌的介电或导电层组成。可选择地,缓冲层12可具有双层设计并由(i)形成在基片11上的氧化锌层组成,和(ii)形成在氧化锌层之上的ITO层组成。可选择地,在示例性实施例中,缓冲层12可由例如ZnO/ITO/Ag的三层组成。
在玻璃基片11上形成缓冲层12之后,催化剂13被分散到玻璃基片11上。催化剂13可以是或包括镍(例如,无电极的镍,类似含有无电极沉积的镍的导电层)。镍催化剂层(连续的或不连续的)13可掺杂有硼,来生成p型硅膜15,或可掺杂有氩或磷(例如,6-10%的磷原子),来生成N型硅膜15。含有镍的纳米粒14被沉积在基片11上,在催化剂13被沉积在基片11上之前和/或之后。在优选的实施例中,催化剂13被沉积在基片11上之后,纳米粒14通过任何合适的方法被沉积在基片11上。然后基片11被加热和/或使用至少约580摄氏度的高温,更优选是至少约620摄氏度(例如,至约690摄氏度)。在加热期间和/或之后,硅烷气被引入至反应室,并在热金属化的玻璃基片11上流过,且基片11快速地被热循环。可引入气体(例如,硅烷和/或硅烷和氢的混合物),且暴露的涂层基片的热循环被执行,从而在基片上生长硅膜15。
图2是示出根据示例性实施例,通过催化的化学气相沉积CVD过程,制备颗粒尺寸大于或等于1μm的多晶硅厚膜的方法的流程图。如图1-2所示,基片11可首先被清洁。在S11步骤中,缓冲层12被沉积在玻璃基片11上。在步骤S12中,含有Ni的催化剂薄膜13被沉积在玻璃基片11上,位于缓冲层12之上。Ni和/或Ag催化剂13可没有被掺杂来形成固有类型的硅膜15,或者被掺杂来形成N型或p型的硅膜15。例如,镍/银催化剂13可掺杂有磷,砷,或锑,来提供N型的硅膜15,或是镍/银催化剂可掺杂有硼来制备p型的硅膜。在示例性实施例中,任何上述元素(P、Ar、锑,和/或B)的掺杂量可约为0.5-12%,更优选是约0.5-7%。在示例性实施例中,催化剂可掺杂有约6-10%的磷原子,来生成N型的硅膜(在此,%数量为原子%)。在沉积时催化剂13可以是无定形的(例如,无定形的Ni)或是基本无定形的,且在不同的示例性实施例中可通过磁控溅射真空沉积(MSVD)、无电极沉积、电弧蒸镀法、电子束蒸镀法,或阴极电弧被沉积。在示例性实施例中,催化剂13的厚度可约为0.01-2μm,更优选是厚度约为0.1-1μm。
在步骤S13中,镍纳米粒14(例如,类似水或其他溶液的介质中的纳米粒)的浆体通过胶体的水性混合物被分散(例如,通过喷涂)到基片11上,优选是在催化剂13被沉积或至少部分地沉积之后。在硅15的形成之前和/或期间,浆体中的水或其他溶液(参照图1中催化剂13和硅15之间的层)可以或也可以不允许或引起蒸发。选择性地,步骤S12和S13可被转换,从而在催化剂膜13被沉积之前,纳米粒14被沉积在基片上。选择性地,催化剂膜13被形成之前和之后,纳米粒14都可被沉积在基片上。纳米粒14被沉积之后,在步骤S14中,基片11被加热和/或烘干,可导致与纳米粒14一起沉积的水或其他溶液被部分地或完全地蒸发,纳米粒14残留在基片上。例如,涂层的基片可被加热至和/或使用至少约580摄氏度的高温,更优选是至少约620摄氏度(例如,约690摄氏度)。当涂层的基片被加热,例如,与催化剂13中包含的镍相比,催化剂13中包含的磷或其他掺杂物能够以更高比率扩散至基片11中。扩散至玻璃基片中的磷或其他掺杂物与镍的相对比取决于玻璃的加热和冷却速度。当涂层的基片快速地被加热(例如,通过玻璃的快速热退火)时,比率较高,且镍没有显著地扩散至玻璃中。缓冲层12防止或减少Ni(从催化剂和/或纳米粒)扩散至基片11中。当磷或其他掺杂物扩散至玻璃或云母基片11中时,镍催化剂13通过至少一个数量级结晶并变粗糙。
在步骤S15中,气体(例如含有硅烷气,没有明显数量的碳)被引入至反应室并流过涂有缓冲层12和纳米粒14的热基片11,含有无定形和/或纳米晶硅的种子层15被形成在催化剂13和纳米粒14上,且硅在种子层上继续生长形成含有多晶硅的膜15。气体可以是硅烷气或者是硅烷和氢气的混合物(例如,纯硅烷(SiH4)气体,或是类似混合物比例约1:1至1:10的SiH4:H2气体的硅烷和氢气的混合物)。无定形和/或多晶硅种子层15与催化剂膜13和纳米粒共形或基本共形(例如,参照图1),但是结晶的镍粒子14周围的硅通常晶体含量更非富,并在纳米粒14周围生长。在步骤S16中,当气体(例如,如上所述的硅烷气或硅烷和氢的混合物)流过在催化剂和纳米粒时,涂层的基片被快速地热循环,形成种子膜15(参照图1的向下箭头)。进一步,随着涂层的基片被快速热循环以及催化剂和纳米粒上的硅烷气的流动,发生硅膜15生长。快速热循环可包括,例如,将温度提高至约580-800摄氏度(更优选是约600-700摄氏度),然后回落至室温,然后重新回升至约580-800摄氏度(更优选是约600-700摄氏度),然后回落至室温,并如此重复,来管理膜15中的应力,从而其不会明显地断裂,由此促进硅膜15的进一步生长。图1示出硅膜15,此时为整个膜15生长之前并可能是其被完全晶化之前。也可使用激光来处理硅,随着生长使硅结晶并促进高质量的晶体生长(例如,其可以是附加的,或是用来代替快速的热循环)。含有镍的催化剂层13两侧以及纳米粒14周围的硅的双面生长,可最终使催化剂层13从基片11的表面剥离,但是与基片11表面接触的硅膜15可能仍被保持固定在基片11中。
如上所述的快速热循环可被继续来生长硅膜15。可选择地,在步骤S16中,至少一些快速热循环之后,可使用更温和的温度与硅烷/氢气一起用来进一步生长硅膜15。例如,在步骤S16之后,以较低的温度进一步热处理原始的硅种子层15(例如,使用约400-560摄氏度,更优选是约440-520摄氏度,最优选是约485摄氏度),同时将种子层和镍暴露至硅烷和氢的气体混合物(例如约1:20至1:40比率,最优选是1:30比率的SiH4:H2),可被执行用来促进无定形和/或结晶的硅膜15的进一步生长。该硅膜15优选是无定形和晶体硅的混合物。
此后,在步骤S17的真空退火过程期间,硅膜15总体上开始结晶,其中纳米粒14(例如,Ni纳米粒)作为异相成核位点用于颗粒生长。掺杂P被发现可增加结晶速度。真空退火可在约400-600摄氏度下被执行,更优选是约450-550摄氏度,最优选是约500摄氏度,从而生成的多晶膜(从图1示出的膜15中生长但更厚)最终覆盖并比纳米粒14厚,具有相当于约1-25μm的平均粒度,更优选是约5-15μm(例如,约10μm),与小角晶界一起。在步骤S18中,选择性地,可执行进一步的退,例如在约500-700摄氏度(例如,约600摄氏度)的温度下,来进一步完全地使多晶膜中的Si颗粒结晶。从上面观察时,结晶的区域从纳米粒14向外基本放射状地延伸。例如,从上面观察时,结晶的区域从纳米粒14向外延伸至由非晶硅组成的区域中,且延伸的结晶最终生成多晶硅膜。种子颗粒彼此冲击,形成由此生成的结晶膜。在示例性实施例中,多晶硅膜中的较大颗粒可约为20-25μm。如上所述,多晶硅膜可被电掺杂(例如,与B、Ar、P等一起),从而生成基于掺杂物的P型或N型膜。
如上所述,高度纹理的多晶硅膜,其通过异质外延生长而生长,且图1-2中用于支撑其的玻璃或云母基片11(并可以是金属或基本金属层13),可在类似太阳能电池的光伏器件中被使用。例如,多晶硅膜可以是光伏器件中的半导体吸收层的一部分或是整个。可选择地,在本发明的其他示例性实施例中,图1-2中基片11(例如,玻璃或云母基片)上形成的多晶硅膜可从基片11转移到另一基片上,例如图4所示的另一基片,来用于光伏器件等中。例如,另一基片(例如,参照图4)可能涂有Mo、ITO等(例如电极)的导电层22。基片11以及其上的多晶硅层可被粘合(例如离子粘合)至被涂层的另一基片,且基片11(并可以是催化剂层13如果残留的话)被去除(例如,通过蚀刻或剥去),从而在另一基片(例如,玻璃基片)上留下多晶硅膜,位于Mo、ITO等的导电层之上。
图3示出根据本发明的另一实施例,用于在云母基片21上生长多晶硅膜的技术。缓冲层12、纳米粒14、和硅膜15可以与参照图1-2所述的一样。催化剂膜23(如上所述可能被掺杂)主要或完全由Ni组成,与参照图1-2所述的膜13一样,或者可以完全或主要由Ag和Ni的混合物组成。云母基片21可以是,例如包括三个单原子的子层的白云母:夹在二氧化硅的两个子层之间的氧化铝。例如,云母基片21被分开。云母基片21可被重复地加热至超过300摄氏度的温度,且压力减少到接近真空的状态(例如,约1x10-6Torr)。然后可在云母基片21涂上镍/银催化剂薄膜23并在分开侧的对面涂上镍纳米粒14。镍/银催化剂23可外延生长,例如通过电子束物理气相沉积。通过固相或气相催化剂可将掺杂物(例如磷等)包含在内,用于生成N型或P型的多晶硅膜。在示例性实施例中,相关掺杂物(例如在气相中)的生长的连续引入可通过生成带有中间层的PIN层被实现,成为最厚的。至少硅烷气被引入反应室并流过热金属化的云母基片21。无定形和纳米晶硅的层被形成在催化剂23上。云母基片21在高温(例如1100摄氏度)下被退火。如上参照图1-2所述的,多晶硅膜在云母基片21上被生长,然后可被转移到图4的另一涂层玻璃基片上。
在本发明的示例性实施例中,提供一种在基片上制备含有硅的多晶膜的方法,所述方法包括:在所述基片上沉积含有镍的催化剂层,并沉积纳米粒;将所述催化剂层和所述纳米粒暴露至硅烷气;以及在所述暴露至硅烷气的至少一部分时间期间将涂有所述催化剂层和所述纳米粒的所述基片热处理,在所述基片上生长含有硅的膜。
如前段落中的方法,可进一步包括:将涂有所述催化剂层和所述纳米粒的所述基片退火,来使所述含有硅的膜结晶,并形成含有多晶硅的膜。
如前两个段落中任何一个的方法,所述含有多晶硅的膜可掺杂有磷、砷、硼和/或类似等。
如前三个段落中任何一个的方法,可进一步包括:将所述含有多晶硅的膜从所述基片转移至涂有至少一个导电层的另一个基片上。
如前四个段落中任何一个的方法,所述热处理包括将涂有所述催化剂层和所述纳米粒的所述基片热循环。所述热循环包括:重复将温度提升至580-800摄氏度然后下降至明显较低的温度(例如室温或是40-250摄氏度的温度)。
如前五个段落中任何一个的方法,所述纳米粒可包含镍或实质上由镍组成。
如前六个段落中任何一个的方法,所述催化剂膜可含有镍和银。
如前七个段落中任何一个的方法,所述催化剂膜可掺杂有磷。
如前八个段落中任何一个的方法,所述基片可以是玻璃基片或云母基片。
如前九个段落中任何一个的方法,可进一步包括:将含有金属氧化物的介质层沉积在所述基片上,所述含有金属氧化物的介质层位于所述基片和所述纳米粒之间。
如前十个段落中任何一个的方法,所述催化剂层可通过无电极电镀被沉积。
如上所述,对示例性实施例进行了说明使本领域的普通技术人员更容易理解,但是上述说明并不限制本申请的发明思想,范围由后附的权利要求定义。

Claims (21)

1.一种涂层制品,包括:
镍纳米粒,被分散在基片上,位于含有镍的催化剂膜之上;和
硅膜,被形成在所述基片上,位于所述镍纳米粒之上并位于所述催化剂膜之上。
2.如权利要求1所述的涂层制品,其中,所述催化剂膜掺杂有磷。
3.如上述权利要求中任何一项所述的涂层制品,其中,所述基片为玻璃基片。
4.如权利要求1-2中任何一项所述的涂层制品,其中,所述基片含有云母。
5.如权利要求1所述的涂层制品,进一步包括:位于所述基片上的含有金属氧化物的介质层,所述含有金属氧化物的介质层位于所述基片和所述纳米粒之间。
6.一种在基片上制备含有硅的多晶膜的方法,所述方法包括:
在所述基片上沉积含有镍的催化剂层,并沉积纳米粒;
将所述催化剂层和所述纳米粒暴露至硅烷气;以及
在所述暴露至硅烷气的至少一部分时间期间将涂有所述催化剂层和所述纳米粒的所述基片热处理,在所述基片上生长含有硅的膜。
7.如权利要求6所述的方法,进一步包括:将涂有所述催化剂层和所述纳米粒的所述基片退火,来使所述含有硅的膜结晶,并形成含有多晶硅的膜。
8.如权利要求7所述的方法,其中,所述含有多晶硅的膜掺杂有磷。
9.如权利要求7-8中任何一项所述的方法,进一步包括:将所述含有多晶硅的膜从所述基片转移至涂有至少一个导电层的另一个基片上。
10.如权利要求7所述的方法,其中,所述含有多晶硅的膜掺杂有磷、砷、硼中的一个或多个。
11.如权利要求6所述的方法,其中,所述热处理包括将涂有所述催化剂层和所述纳米粒的所述基片热循环。
12.如权利要求11所述的方法,其中,所述热循环包括:重复将温度提升至580-800摄氏度然后下降至室温。
13.如权利要求6所述的方法,其中,所述纳米粒包含镍。
14.如权利要求6所述的方法,其中,所述催化剂层含有镍和银。
15.如权利要求6所述的方法,其中,所述催化剂层掺杂有磷。
16.如权利要求6所述的方法,其中,所述基片为玻璃基片。
17.如权利要求6所述的方法,其中,所述基片含有云母。
18.如权利要求6所述的方法,进一步包括:将含有金属氧化物的介质层沉积在所述基片上,所述含有金属氧化物的介质层位于所述基片和所述纳米粒之间。
19.如权利要求18所述的方法,其中,所述金属氧化物包括氧化锌。
20.如权利要求6所述的方法,其中,所述含有镍的催化剂层通过无电极电镀被沉积。
21.一种在基片上制备含有硅的多晶膜的方法,所述方法包括:
在所述基片上沉积催化剂层,并沉积含有镍的纳米粒;
将所述催化剂层和所述纳米粒暴露至硅烷气;以及
在所述暴露至硅烷气的至少一部分时间期间将涂有所述催化剂层和所述纳米粒的所述基片热处理,在所述基片上生长含有硅的膜。
CN201380070983.XA 2012-11-21 2013-11-14 用于光伏器件或类似等的多晶硅厚膜及制备其的方法 Expired - Fee Related CN104919094B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/682,786 2012-11-21
US13/682,786 US8946062B2 (en) 2012-11-21 2012-11-21 Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same
PCT/US2013/069980 WO2014081604A1 (en) 2012-11-21 2013-11-14 Polycrystalline silicon thick films for photovoltaic devices or the like, and methods of making same

Publications (2)

Publication Number Publication Date
CN104919094A CN104919094A (zh) 2015-09-16
CN104919094B true CN104919094B (zh) 2018-04-24

Family

ID=49713459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380070983.XA Expired - Fee Related CN104919094B (zh) 2012-11-21 2013-11-14 用于光伏器件或类似等的多晶硅厚膜及制备其的方法

Country Status (4)

Country Link
US (1) US8946062B2 (zh)
EP (1) EP2922988A1 (zh)
CN (1) CN104919094B (zh)
WO (1) WO2014081604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493094B (zh) * 2018-01-19 2021-06-15 昆山国显光电有限公司 多晶硅薄膜的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098554A (zh) * 1993-02-15 1995-02-08 株式会社半导体能源研究所 半导体、半导体器件及其制造方法
US6241817B1 (en) * 1997-05-24 2001-06-05 Jin Jang Method for crystallizing amorphous layer
CN1311524A (zh) * 2000-02-09 2001-09-05 日立电线株式会社 结晶硅半导体器件及其制造方法
JP2007165524A (ja) * 2005-12-13 2007-06-28 Seiko Epson Corp 半導体装置の製造方法、電子機器の製造方法、半導体装置および電子機器
CN102082077A (zh) * 2009-11-20 2011-06-01 三星移动显示器株式会社 制造多晶硅层的方法、薄膜晶体管、显示装置及制造方法
CN102254797A (zh) * 2010-05-18 2011-11-23 京东方科技集团股份有限公司 低温多晶硅薄膜及其制造方法、晶体管和显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651385A (en) 1968-09-18 1972-03-21 Sony Corp Semiconductor device including a polycrystalline diode
US20090075083A1 (en) 1997-07-21 2009-03-19 Nanogram Corporation Nanoparticle production and corresponding structures
US7282738B2 (en) 2003-07-18 2007-10-16 Corning Incorporated Fabrication of crystalline materials over substrates
JP5710879B2 (ja) 2007-01-03 2015-04-30 ナノグラム・コーポレイションNanoGram Corporation シリコン/ゲルマニウムによるナノ粒子インク、ドーピングされた粒子、印刷法、及び半導体用途のためのプロセス
FR2916660B1 (fr) 2007-05-28 2010-10-15 Commissariat Energie Atomique Couches minces de polymeres conjugues contenant des nanoparticules inorganiques et leur procede de fabrication
JP5248995B2 (ja) * 2007-11-30 2013-07-31 株式会社半導体エネルギー研究所 光電変換装置の製造方法
US8435627B2 (en) 2008-02-05 2013-05-07 University Of Cincinnati Multifunctional nanocoatings with mixed nanoparticles and process for fabricating same
US20090297774A1 (en) 2008-05-28 2009-12-03 Praveen Chaudhari Methods of growing heterepitaxial single crystal or large grained semiconductor films and devices thereon
US7749917B1 (en) * 2008-12-31 2010-07-06 Applied Materials, Inc. Dry cleaning of silicon surface for solar cell applications
US8367769B2 (en) 2009-02-17 2013-02-05 Nanosi Advanced Technologies, Inc. Silicon-based nanosilicon composites and fabrication methods
DE102011008263A1 (de) 2011-01-11 2012-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Siliziumschicht

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098554A (zh) * 1993-02-15 1995-02-08 株式会社半导体能源研究所 半导体、半导体器件及其制造方法
US6241817B1 (en) * 1997-05-24 2001-06-05 Jin Jang Method for crystallizing amorphous layer
CN1311524A (zh) * 2000-02-09 2001-09-05 日立电线株式会社 结晶硅半导体器件及其制造方法
JP2007165524A (ja) * 2005-12-13 2007-06-28 Seiko Epson Corp 半導体装置の製造方法、電子機器の製造方法、半導体装置および電子機器
CN102082077A (zh) * 2009-11-20 2011-06-01 三星移动显示器株式会社 制造多晶硅层的方法、薄膜晶体管、显示装置及制造方法
CN102254797A (zh) * 2010-05-18 2011-11-23 京东方科技集团股份有限公司 低温多晶硅薄膜及其制造方法、晶体管和显示装置

Also Published As

Publication number Publication date
CN104919094A (zh) 2015-09-16
US20140138696A1 (en) 2014-05-22
EP2922988A1 (en) 2015-09-30
WO2014081604A1 (en) 2014-05-30
US8946062B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
TWI751115B (zh) 形成矽鍺錫膜的方法
TWI594451B (zh) 形成太陽能電池元件的方法以及在基板上形成適用於薄膜電晶體之結構的方法
US8735290B2 (en) Amorphous group III-V semiconductor material and preparation thereof
TW200810138A (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US20130153033A1 (en) Ink for producing compound semiconductor thin film, compound semiconductor thin film produced using the ink, solar cell having compound semiconductor the thin film, and process for producing solar cell
CN102804392A (zh) 半导体光学检测器结构
TW200947729A (en) Semiconductor structure combination for thin-film solar cell and manufacture thereof
Li et al. Hydrogenated nanocrystalline silicon thin film prepared by RF-PECVD at high pressure
US8207013B2 (en) Method of fabricating silicon nanowire solar cell device having upgraded metallurgical grade silicon substrate
WO2012119084A1 (en) Top down aluminum induced crystallization for high efficiency photovoltaics
Huang et al. Plasma-produced ZnO nanorod arrays as an antireflective layer in c-Si solar cells
Hainey et al. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications
JP4899118B2 (ja) 非単結晶半導体材料の製造方法
JP2005159312A (ja) 太陽電池用多結晶シリコン基板の母材および太陽電池用多結晶シリコン基板
Consonni et al. Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl 2 heat treatment for solar cells
CN108231545B (zh) 生长在铜箔衬底上的InN纳米柱外延片及其制备方法
CN101894871B (zh) 高转化率硅晶及薄膜复合型单结pin太阳能电池及其制造方法
CN104919094B (zh) 用于光伏器件或类似等的多晶硅厚膜及制备其的方法
JP2004265889A (ja) 光電変換素子、光電変換装置、及び鉄シリサイド膜
JP5764016B2 (ja) Cigs膜の製法およびそれを用いるcigs太陽電池の製法
Lu et al. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications
JP2004363580A (ja) 光電変換装置および光発電装置
Das et al. Development of highly conducting p-type μc-Si: H films from minor diborane doping in highly hydrogenated SiH4 plasma
CN207834252U (zh) 生长在铜箔衬底上的InN纳米柱外延片
CN114335244B (zh) 热载流子双向分离型类p-i-n型二维异质结及制备方法、器件

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200519

Address after: michigan

Patentee after: GUARDIAN GLASS, LLC

Address before: michigan

Patentee before: GUARDIAN INDUSTRIES Corp.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180424

Termination date: 20201114

CF01 Termination of patent right due to non-payment of annual fee