CN1049068C - 形成三阱的方法 - Google Patents

形成三阱的方法 Download PDF

Info

Publication number
CN1049068C
CN1049068C CN96110390A CN96110390A CN1049068C CN 1049068 C CN1049068 C CN 1049068C CN 96110390 A CN96110390 A CN 96110390A CN 96110390 A CN96110390 A CN 96110390A CN 1049068 C CN1049068 C CN 1049068C
Authority
CN
China
Prior art keywords
ion
trap
forms
conduction type
conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96110390A
Other languages
English (en)
Other versions
CN1146068A (zh
Inventor
卢光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1146068A publication Critical patent/CN1146068A/zh
Application granted granted Critical
Publication of CN1049068C publication Critical patent/CN1049068C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Abstract

一种在第一导电类型的硅基片中形成三阱的方法,其中控制用于形成三阱的第二导电类型的阱的离子注入能量和用于形成第一导电类型的阱的离子注入能量,以便使随形成第二导电类型的阱的离子注入而产生的空位和随形成第一导电类型的阱的离子注入而产生的填隙杂质离子能彼此向对方迁移。由此使在硅晶格中的填隙杂质离子和空位相互抵消。从而减小阱结区的漏电流量。

Description

形成三阱的方法
本发明涉及一种形成半导体器件三阱的方法,特别涉及一种形成三阱的方法,在将杂质离子注入硅基片来形成三阱时,它能抵消分布在硅基片的硅晶格中的填隙杂质离子和空位。
CMOS晶体管一般用于DRAM的外围电路,这种CMOS晶体管形成在设有三阱的硅基片上。在这种情况下,例如P型基片,其三阱由有已知结构的双阱和限定在双阱中的N阱区内的P阱构成。当然,在N型基片情况下,其三阱具有与P型基片相反的结构。
图1是用来释解在半导体器件中形成三阱的剖面图。首先在P型硅基片4的预定区域中形成N阱2,从而形成图1所示的三阱。以5×1013的注入剂量,用2MeV的注入能量注入磷离子形成N阱2。此后,以5×1013的注入剂量,用700KeV的注入能量在N阱2的预定区域内注入硼离子,从而和第二P阱1同时形成第一P阱3。
图2是表示在沿图1中的I-I线的剖面上的注入硅基片中的杂质离子的分布及填隙杂质离子和空位的分布的曲线。用随硅基片的深度而变化的注入杂质离子浓度来表示杂质离子的分布。在曲线中,由标号“11”表示的峰对应于第二P阱区1,由标号“12”表示的峰对应于N阱区2,而由标号“13”表示的峰对应于P型基片区4。标号“17”表示随形成第二P阱1的离子注入而产生的空位,而标号“14”表示随形成N阱2的离子注入而产生的空位。标号“15”表示随形成第二P阱1的离子注入而产生的分布在硅晶格中的填隙杂质离子,而标号“16”表示随形成N阱2的离子注入而产生的分布在硅晶格中的填隙杂质离子。
图3是表示硅基片中的净或有效缺陷沿图1中的I-I线的剖面上的分布曲线图。标号“21”表示随形成第二P阱1的离子注入而产生的空位,而标号“22”表示随形成N阱2的离子注入而产生的空位。标号“23”表示随形成第二P阱2的离子注入而分布在硅晶格中的填隙杂质离子,而标号“24”表示随形成N阱1的离子注入而分布在硅晶格中的填隙杂质离子。
按上述离子注入方法,随形成N型阱的离子注入而产生的空位和随形成第二P阱的离子注入而产生的填隙杂质离子在同一硅晶格中相互隔开分布。这意味着在阱的结区形成耗尽层,这种耗尽层增加了阱的漏电流量。
因此,本发明的目的是解决上述问题,并提供一种形成三阱的方法,该方法能通过使填隙杂质离子和空位相互向对方迁移来抵消分布在硅基片的硅晶格中的填隙杂质离子和空位,从而减少在阱的结区的漏电流量。
根据本发明的一个方案,一种在第一导电类型的硅基片中形成三阱的方法包括以下步骤:将第二导电类型的杂质离子注入第一导电类型的硅基片的预定区域,形成第二导电类型的阱;将第一导电类型的杂质离子注入第一导电类型的硅基片的另一预定区域及第二导电类型的阱的预定区域,形成第一和第二第一导电导电类型的阱:其中用于形成第二第一导电类型的阱的离子注入能量比用于形成第二导电类型的阱的离子注入能量低,以便使随形成第二导电类型的阱的离子注入而产生的空位和随形成第二第一导电类型的阱的离子注入而产生的填隙杂质离子能相互接近。
根据本发明的另一个方案,一种在第一导电类型的硅基片中形成三阱的方法包括以下步骤:将第二导电类型的杂质离子注入第一导电类型的硅基片的预定区域,形成第二导电类型的阱;将第一导电类型的杂质离子注入第一导电类型的硅基片的另一预定区域及第二导电类型的阱的预定区域,形成第一和第二第一导电导电类型的阱:其中,控制用于形成第二第一导电类型的阱的第一导电类型杂质离子的注入剂量和用于形成第二导电类型的阱的第二导电类型离子的注入剂量,以使随形成第二导电类型的阱的离子注入而产生的空位和随形成第二第一导电类型的阱的离子注入而产生的填隙杂质离子能相互接近。
从下参照附图对实施例的描述可明显看出本发明的其它目的和方案,其中:
图1是用来释解形成半导体器件的三阱的剖面图;
图2是表示按常规方法形成的三阱的掺杂分布的曲线图;
图3是表示按常规方法形成的三阱的净缺陷分布的曲线图;
图4是表示按本发明的方法形成的三阱的掺杂分布的曲线图;以及
图5是表示按本发明的方法形成的三阱的净缺陷分布的曲线图。
图4和5表示本发明的形成三阱的方法,其中控制用于形成三阱的第二P阱的离子注入能量和用于形成三阱的N阱的离子注入能量以使空位和填隙杂质离子相互向对方迁移。
图4是表示硅基片中的杂质离子在沿图1中的I-I线的剖面上的分布及填隙杂质离子和空位的分布的曲线。用随硅基片的深度而变化的注入杂质离子浓度来表示杂质离子的分布。在曲线中,由标号“11”表示的峰对应于第二P阱区,由标号“12”表示的峰对应于N阱区,而由标号“13”表示的峰对应于P型基片区。标号“17”表示随形成第二P阱的离子注入而产生的空位,而标号“14”表示随形成N阱的离子注入而产生的空位。标号“15”表示随形成第二P阱的离子注入而分布在硅晶格中的填隙杂质离子,而标号“16”表示随形成N阱的离子注入而分布在硅晶格中的填隙杂质离子。
根据本发明,用来形成三阱的第二P阱的离子注入能量比用来形成三阱的N阱的离子注入能量低。空位区14’是随形成N阱的离子注入形成的,而填隙杂质离子区15’是随形成第二P阱的离子注入形成的。形成空位区14’的离子注入能量最好在1.6MeV-2.2MeV范围内,而形成填隙杂质离子区15’的离子注入能量最好在500KeV-800KeV范围内。按控制了离子注入能量的离子注入,填隙杂质向空位区迁移。当在N型基片中形成三阱时,其结构与P基片的结构相反。
图5是表示硅基片中净缺陷或有效缺陷在沿图1中的I-I线的剖面上分布的曲线。标号“21”表示随形成第二P阱的离子注入在硅基晶格中形成的空位,而标号“32”表示随形成N阱的离子注入在硅基晶格中形成的空位。标号“33”表示随形成第二P阱的离子注入而分布在硅晶格中的填隙杂质离子,而标号“24”表示随形成N阱的离子注入而分布在硅晶格中的填隙杂质离子。参照图5,已发现当形成空位32的离子注入能量比形成填隙杂质离子33的离子注入能量低时,空位32和填隙杂质离子33彼此向对方迁移,由此极大地减少阱结区附近的净缺陷浓度。因此能减小阱区的漏电流量。
另外,可以用高于用于常规方法的能量来进行形成N阱的离子注入,而可以与用于常规方法的相同的能量来进行形成第二P阱的离子注入,。在这种情况下,随形成N阱的离子注入而产生的空位区14’和随形成第二P阱的离子注入而产生的填隙杂质区15‘互相靠近。
根据本发明的另一实施例,控制离子注入的剂量,同时使形成N阱的离子注入能量和形成第二P阱的离子注入的能量与图1情况相同。随形成图2所示的阱所注入的控制杂质离子剂量最好在3×1013cm-2至5×1013cm-2范围内。
由上描述可明显看出,本发明提供一种在第一导电类型的硅基片中形成三阱的方法,其中控制形成三阱的第二导电类型阱的离子注入能量和形成三阱的第一导电类型阱的离子注入能量,以使随形成第二导电类型的阱的离子注入而产生的空位和随形成三阱的第一导电类型阱的离子注入而产生的填隙杂质离子相互向对方迁移。由此,使在硅晶格中的填隙杂质离子和空位相互抵消。从而减小阱结区的漏电流量。
尽管为描述本发明目的公开了本发明的优选实施例,但本领域的技术人员应理解到,在不脱离所附权利要求书所公开的范围和精神情况下可以作各种改型、附加和替换。

Claims (6)

1.一种在第一导电类型的硅基片中形成三阱的方法,其特征在于包括以下步骤:将第二导电类型的杂质离子注入第一导电类型的硅基片的预定区域,以形成第二导电类型的阱;将第一导电类型的杂质离子注入第一导电类型的硅基片的另一预定区域及第二导电类型的预定区域,以形成第一和第二第一导电类型的阱;其特征在于:用于形成第二第一类型的阱的离子注入能量比用于形成第二导电类型的阱的离子注入能量低,以便使随形成第二导电类型的阱的离子注入而产生的空位和随形成第二第一导电类型的阱的离子注入而产生的填隙杂质离子能互相接近。
2.根据权利要求1的方法,其特征在于:第一导电类型为P型,而第二导电类型为N型。
3.根据权利要求1的方法,其特征在于:导致形成空位的离子注入能量在1.6MeV到2.2MeV范围内。
4.根据权利要求1的方法,其特征在于:导致形成填隙杂质离子的离子注入能量在500KeV到800KeV范围内。
5.根据权利要求1的方法,其特征在于:控制用于形成第二第一导电类型的阱的第一导电类型杂质离子的剂量和用于形成第二导电类型的阱的第二导电类型杂质离子的剂量,以使随形成第二导电类型的阱的离子注入而产生的空位和随形成第二第一导电类型的阱的离子注入而产生的填隙杂质离子能相互靠近。
6.根据权利要求5的方法,其特征在于:第二导电类型杂质离子的剂量在3×1013cm-2至5×1013cm-2范围内。
CN96110390A 1995-06-30 1996-06-28 形成三阱的方法 Expired - Fee Related CN1049068C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR18871/95 1995-06-30
KR1019950018871A KR0143252B1 (ko) 1995-06-30 1995-06-30 3중웰 형성방법

Publications (2)

Publication Number Publication Date
CN1146068A CN1146068A (zh) 1997-03-26
CN1049068C true CN1049068C (zh) 2000-02-02

Family

ID=19419297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96110390A Expired - Fee Related CN1049068C (zh) 1995-06-30 1996-06-28 形成三阱的方法

Country Status (2)

Country Link
KR (1) KR0143252B1 (zh)
CN (1) CN1049068C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923527B2 (en) * 2016-05-06 2018-03-20 Globalfoundries Inc. Method, apparatus and system for back gate biasing for FD-SOI devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276673A (ja) * 1990-03-26 1991-12-06 Matsushita Electric Ind Co Ltd 半導体記憶装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276673A (ja) * 1990-03-26 1991-12-06 Matsushita Electric Ind Co Ltd 半導体記憶装置

Also Published As

Publication number Publication date
KR0143252B1 (ko) 1998-07-01
KR970003942A (ko) 1997-01-29
CN1146068A (zh) 1997-03-26

Similar Documents

Publication Publication Date Title
CN1163973C (zh) 沟槽式双扩散金属氧化物半导体器件及其制造方法
CN1186811C (zh) 补偿型金属氧化物半导体器件结构及其制造方法
CN102005377B (zh) 具有厚底部屏蔽氧化物的沟槽双扩散金属氧化物半导体器件的制备
US6228719B1 (en) MOS technology power device with low output resistance and low capacitance, and related manufacturing process
CN100342544C (zh) 含有掺杂柱的高压功率mosfet
CN1152419C (zh) 功率半导体器件及其制造方法
CN1610964A (zh) 用于制造具有包括用快速扩散形成的掺杂柱体的电压维持区的高压功率mosfet的方法
CN1141509A (zh) 阈值电压稳定的场效应晶体管及其制造方法
CN1037923C (zh) 半导体器件及其制造方法
CN1565051A (zh) 具有带易于浮岛形成的台阶式沟槽的电压维持层的功率半导体器件的制造方法
CN1586010A (zh) 沟槽-栅半导体器件及其制造方法
CN107093632A (zh) 半导体器件和用于形成半导体器件的方法
CN102738001B (zh) 具有超级介面的功率晶体管的制作方法
CN1049068C (zh) 形成三阱的方法
CN107819031A (zh) 晶体管及其形成方法、半导体器件
CN1104740C (zh) 制造互补mos半导体器件的方法
CN1307725C (zh) 场效应晶体管
CN1319880A (zh) 反向短沟道效应的减少
CN1085894C (zh) 半导体元件及其制造方法
CN1136613C (zh) 半导体装置及其制造方法
CN1103494C (zh) 半导体器件的制造方法
CN1883042A (zh) 具有硅化源/漏的半导体器件
CN1057867C (zh) 注入磷形成补偿的器件沟道区的半导体器件的制造方法
CN1050691C (zh) 制造半导体器件的晶体管的方法
CN1391267A (zh) 快闪存储器单元的制造工序

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20000202

Termination date: 20100628