CN104902806B - 神经病理的评估系统及方法 - Google Patents

神经病理的评估系统及方法 Download PDF

Info

Publication number
CN104902806B
CN104902806B CN201380058415.8A CN201380058415A CN104902806B CN 104902806 B CN104902806 B CN 104902806B CN 201380058415 A CN201380058415 A CN 201380058415A CN 104902806 B CN104902806 B CN 104902806B
Authority
CN
China
Prior art keywords
data
stimulation
illustrative
electrode
disorders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380058415.8A
Other languages
English (en)
Other versions
CN104902806A (zh
Inventor
T·P·科勒曼
M·曼多扎
J·坦蒂昂罗克
R·吉尔达科斯塔
T·D·阿尔布莱特
G·斯通纳
R·方格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN104902806A publication Critical patent/CN104902806A/zh
Application granted granted Critical
Publication of CN104902806B publication Critical patent/CN104902806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/38Acoustic or auditory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/381Olfactory or gustatory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4082Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/378Visual stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • A61B5/4011Evaluating olfaction, i.e. sense of smell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • A61B5/4017Evaluating sense of taste
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Neurosurgery (AREA)
  • Developmental Disabilities (AREA)
  • Psychology (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Hospice & Palliative Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Social Psychology (AREA)
  • Educational Technology (AREA)
  • Acoustics & Sound (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Cardiology (AREA)

Abstract

公开了用于评估神经病理学方面的易患病性、病情进展和治疗的方法、系统和设备。在一个方面中,用于提供与神经系统障碍或神经精神障碍相关的评估的方法包括:选择指示与神经系统障碍或神经精神障碍关联的认知或感觉功能的一个或多个方面的剖析类别,给对象呈送刺激序列,其中该刺激序列基于选定的剖析类别,在呈送该刺激序列之前、期间及之后采集对象的生理信号以产生生理数据,并且处理生理数据以生成包含与选定的剖析类别关联的一个或多个定量值的信息集。

Description

神经病理的评估系统及方法
相关申请的交叉引用
本专利文献要求2012年11月10日提交的、题目为“METHOD AND APPARATUS FOREVALUATION OF VULNERABILITY AND/OR PROGRESSIVEPATHOLOGY OF NEUROPSYCHIATRICDISORDERS IN HUMANS AND FOR ASSESSMENTOF POTENTIAL THERAPEUTICPHARMACOLOGICAL AGENTS FOR NEUROPSYCHIATRICDISORDERS IN NON-HUMAN PRIMATEBIOLOGICAL MODELS”的美国临时专利申请No.61/724,969的优先权。上述专利申请的全文通过引用的方式并入本文,作为本专利文献的公开内容的一部分。
技术领域
本专利文献涉及用于分析脑功能的系统、设备和过程。
背景技术
脑电图(EEG)是使用定位于对象的头皮上的电极获得的由大脑展示出的电活动的记录,形成了包含EEG数据集的神经信号振荡的频谱内容。例如,由EEG技术检测到的大脑的电活动能够包括由例如在大脑的神经元内的离子电流引起的电压波动。在某些背景下,EEG指的是大脑在一小段时间(例如,小于1小时)内的自发性电活动的记录。EEG能够用于临床诊断应用,包括癫痫、昏迷、脑病、脑死亡,以及其他疾病和缺陷,甚至用于睡眠及睡眠障碍的研究。在某些情形中,EEG已经被用于的诊断肿瘤、脑卒中以及其他局灶性脑功能障碍。
EEG技术的一个实例包括事件相关电位(ERP)的记录,该记录指的是EEG记录的与给定事件相关的脑反应(例如,简单的刺激和复杂的过程)。例如,ERP包括与感觉、运动和/或认知处理相关的脑电反应——脑电波。ERP与感知(例如,视觉、听觉等)和认知(例如,注意、语言、决策等)的大脑度量关联。例如,ERP同样能够在神经系统或神经精神障碍的评估和监测中用作客观度量。典型的ERP波形包括正和负电压偏差(称为分量)的时间演变。例如,典型的分量使用该分量因其出现的字母(N/P:正/负)和数字(指示自刺激事件起的延迟,单位为毫秒)来分类。
发明内容
本发明公开了用于采集并使用生理信息(例如,脑信号)以表征对象的神经系统或神经精神障碍的病理和/或易患病性和/或评估此类疾病的治疗的系统、设备和方法。
在一个方面中,用于提供与神经系统或神经精神障碍相关的评估的方法包括:选择指示与神经系统或神经精神障碍关联的认知或感觉功能的一个或多个方面的剖析(profile)类别;给对象呈送(present)刺激序列,其中该刺激序列基于选定的剖析类别;在呈送该刺激序列之前、期间及之后采集对象的生理信号以产生生理数据;并且处理生理数据以生成包含与选定的剖析类别关联的一个或多个定量值的信息集。
在另一个方面中,用于评估对神经系统或神经精神障碍的治疗的疗效的方法包括:选择指示与神经系统或神经精神障碍关联的认知或感觉功能的一个或多个方面的剖析类别;给正经历针对神经系统或神经精神障碍的治疗的对象呈送刺激序列,其中该刺激序列基于选定的剖析类别;在呈送该刺激序列之前、期间及之后采集对象的生理信号以产生生理数据,并且处理生理数据以生成包含与选定的剖析类别关联的一个或多个定量值的信息集指示对对象的治疗的疗效。
在另一个方面中,用于评估神经系统或神经精神障碍的系统包含:用于产生给对象呈送的刺激序列的刺激发送设备,其中该刺激包括视觉、听觉、嗅觉、触觉或味觉刺激媒介中的至少一种;与对象界面连接以在呈送该刺激序列之前、期间和之后检测由对象展示出的生理信号的传感器设备,其中该刺激序列基于指示与神经系统或神经精神障碍关联的认知或感觉功能的一个或多个方面的认知-感觉剖析类别;以及数据处理系统,该数据处理系统与传感器设备通信,并且被构造为包含一个或多个存储单元以及配置用于处理作为生理数据的生理信号以生成包含与选定的剖析类别关联的一个或多个定量值的信息集的一个或多个处理器,其中该一个或多个定量值包括用于描绘神经系统或神经精神障碍的病理的级别的定量得分。
在某些实现方式中,本文公开的技术包括使用用于采集能够与大脑活动关联的电生理读数的专门的生理信号(例如,脑电图和/或肌电图)采集技术以及具有专门的刺激呈送结构(例如,视觉、听觉、体觉、触觉、味觉等刺激的)的设备,并且包括使用专门的分析技术(例如,包括信号处理、基础的和高层次的数据统计,以及分类算法)来提供对个体和/或群体在他们的与所感兴趣的神经系统或神经精神障碍关联的易患病性和/或进行性病理方面的评估,并且在某些实现方式中,使用动物模型来提供对神经系统或神经精神障碍的治疗(例如,治疗药物)的疗效的评估。
本专利文献所描述的主题能够以可提供下列特征中的一个或多个特征的具体方式来实现。例如,本文公开的方法、系统和设备提供允许对人类的更精确的、更客观的且更快速的附加的诊断及病理评估的,并且允许增强对作为神经系统或神经精神障碍的基础的神经机制的药理研究(例如,开放先进的药物研究的有效途径)的工具。例如,本文公开的技术允许用户引出、测量及分析与所感兴趣的神经系统或神经精神障碍(例如,精神分裂症、阿尔茨海默病等)关联的具体大脑标志(marker),并因此提供有关进行性病理、易患病性以及潜在的治疗药物的疗效和效率的有目的的信息。而且,例如,本文公开的技术的实现方式不需要高级的专门知识来操作,并且正因如此,可由广泛的潜在用户访问,例如,给专家和初级用户两者有效地提供可靠的、精确的且信息化的结果。
附图说明
图1A示出了用于生理信号的采集、分析及评估以产生对对象的个体或群体认知和/或感觉评估(例如,指示包括具体的药源性大脑影响在内的神经病理的进展或易患病性)的本文公开的技术的一个示例性系统的示意图。
图1B-1D示出了用于生成示例性认知和/或感觉剖析的定量信息集的示例性方法的过程图。
图1E和1F示出了本文公开的技术的示例性额部电极生理传感器设备的框图。
图1G示出了用于表征对象的神经系统或神经精神障碍的病理和/或易患病性和/或评估此类疾病的治疗的本文公开的技术的另一个示例性系统的示意图。
图2示出了示出作为精神分裂症的进行性病理的标志的失配性负波ERP的数据曲线图。
图3示出了示出作为精神分裂症的易患病性的标志的P300ERP的数据曲线图。
图4示出了示出听觉刺激呈送的示例性强度(分贝水平)oddball模式的示意图。
图5示出了示例性的定制设计的计算机实现的方法的示例性预处理和分析过程的流程图。
图6示出了本文公开的技术的示例性编程分析过程的伪代码的一个实例。
图7示出了本文公开的技术的示例性编程分析过程的图形用户界面(GUI)的一个实例。
图8A和8B示出了使用人类对象的失配性负波ERP的示例性数据集来进行的示例性ERP处理和分析的结果的数据曲线图。
图9A和9B示出了使用人类对象的P300ERP的示例性数据集来进行的示例性ERP处理和分析的结果的数据曲线图。
图10示出了用于监测神经精神和/或神经系统障碍的易患性或进行性病理的示例性用户过程的过程图。
图11示出了本文公开的技术的示例性的22通道的非人灵长类动物EEG帽。
图12A和12B示出了使用在没有生理治疗的情况下的非人灵长类动物对象的失配性负波ERP的示例性数据集来进行的示例性ERP处理和分析的结果的数据曲线图。
图13A和13B示出了使用在没有生理治疗的情况下的非人灵长类动物对象的P300ERP的示例性数据集来进行的示例性ERP处理和分析的结果的数据曲线图。
图14A和14B示出了使用在不同的生理治疗下的非人灵长类动物对象的失配性负波ERP的示例性数据集来进行的示例性ERP处理和分析的结果的数据曲线图。
图15A和15B示出了使用在不同的生理治疗下的非人灵长类动物对象的P300ERP的示例性数据集来进行的示例性ERP处理和分析的结果的数据曲线图。
图16示出了用于评估对于神经系统或神经精神障碍的治疗药理学药剂的疗效的示例性用户过程的过程图。
图17示出了示出用于集成不同种类、子类和功能的模块使它们联合起来工作以创建用于刺激呈送、数据采集和信号处理的用户友好的自动化系统的示例性“全包式”应用系统的一般体系结构的示意图。
具体实施方式
根据美国国家心理卫生研究院,神经精神障碍将继续影响美国成年人口的大约46.4%,这些案例中的大约22.3%被列为严重。这些神经精神障碍包括注意缺陷多动障碍(ADHD)、阿尔茨海默病、精神分裂症、抑郁症、痴呆和双相情感障碍等。虽然已经在数以千计的研究中对这些障碍当中的许多障碍的特征进行描述,但是对于其病因的神经基础及相关的社会传播仍缺少共识和理解。而且,尽管已经在易患病性评估、诊断以及某些神经精神障碍的治疗中引入了某些临床方法,但是仍然需要开发出诊断、评估和治疗技术,从而提供使用的准确性、简易性,以及为用户(例如,内科医生/临床医生、研究人员及普通大众)指导正确的行动方案的能力。
例如,在ADHD中,使用属于下列类别中的一个或多个类别的行为评估对许多个体进行筛选,例如,注意力不集中、多动和易冲动。正因如此,符合这些标准的大量儿童和成人通常会开始药物治疗和行为治疗,这可能会导致数年的昂贵治疗。例如,这些药物当中有许多是精神兴奋剂,这些精神兴奋剂由于仍待论证的不明原因能够减轻ADHD症状的行为,尽管它们能够在正常健康的个体内导致过度活跃的/受到刺激的行为。但是,这些药物的使用可能无法治愈这种障碍,还可能带来不良的心理副作用。例如,ADHD患病率的增大(例如,美国9.5%的儿童)已经被归因于更好的诊断技术,以及高误诊率,例如,高误诊率可能是由于行为评估的主观性。无论哪种情况,单单是通常为主观性的行为评估不足以作为用于ADHD诊断和ADHD药物治疗的单独测量工具。
作为单独行为测量的替代,附加的综合测量,例如,生理测量,能够用于神经精神障碍的易患性评估、诊断及治疗过程。例如,通过这样做,研究界和医学界能够更好地理解神经精神障碍的原因和机制,例如,包括ADHD,并因此加强他们开发更有效率的研究、监测及所应用的治疗的线路的能力。本文公开的技术能够提供用于使用客观度量来评估对象的神经精神的易患病性和病理并创建用于药理研究和开发的新的分析方法以介导(mediate)和/或治愈这些障碍的技术。
本文所公开的是用于采集并使用生理信息(例如,脑信号)以表征对象的神经系统或神经精神障碍的病理和/或易患病性和/或评估此类疾病的治疗的系统、设备和方法。
在某些实现方式中,本文公开的技术包括使用用于采集能够与大脑活动关联的电生理读数的专门的生理信号(例如,脑电图和/或肌电图)采集技术以及具有专门的刺激呈送结构(例如,视觉、听觉、嗅觉、体觉、触觉、味觉等刺激的)的设备,并且包括使用专门的分析技术(例如,包括信号处理、基础的和高层次的数据统计,以及分类算法)来提供对个体和/或群体在他们的与所感兴趣的神经精神障碍关联的易患病性和/或进行性病理方面的评估,并且在某些实现方式中,使用非人灵长类动物模型来提供对神经精神障碍的潜在治疗药物的疗效的评估。
例如,在某些实现方式中,本文公开的技术能够提供用于刺激呈送、数据采集、本地和/或远程的数据处理与分析以及用户结果输出的自动化的全包式(all-inclusive)系统。这样的系统能够用来减少或消除与电生理记录和分析技术关联的并发症(complications),由此为用户(例如,包括(但不限于)临床医生、药物研究人员和一般消费者)提供用于评估人(或其他动物)的神经系统或神经精神障碍的病理和/或易患病性以及此类疾病的治疗(例如,包括潜在的治疗药物)的疗效的无创性快速诊断检验工具。
在一个方面中,本文公开的技术包括用于提供与神经系统或神经精神障碍相关的评估的方法。该方法包括选择指示与神经系统或神经精神障碍关联的认知或感觉功能的一个或多个方面的剖析类别。该方法包括给对象呈送刺激序列,其中该刺激序列基于选定的剖析类别。该方法包括在呈送该刺激序列之前、期间及之后采集对象的生理信号以产生生理数据。该方法包括处理生理数据以生成包含与选定的剖析类别关联的一个或多个定量值的信息集。例如,所生成的信息集的定量值包括用于描绘神经系统或神经精神障碍的易患性或进行性病理的级别的定量得分。例如,选定的剖析类别能够指示影响认知或感觉功能的一个或多个方面的各种神经系统或神经精神障碍中的一种或多种,例如,包括(但不限于)注意力、记忆力、学习能力、虚构特性、图形整合能力、语义整合能力、目标探测能力、情绪价、偏好或意识状态。神经精神障碍和神经系统障碍和/或神经退行性疾病能够使用本文公开的技术来评估和表征。这样的神经精神障碍和神经系统障碍和/或神经退行性疾病的实例包括(但不限于)例如注意缺陷多动障碍(ADHD)、自闭症谱系障碍(ASD)、阿尔茨海默病、痴呆、抑郁症、双相情感障碍、精神分裂症、癫痫、多发性硬化症(MS)、帕金森病和亨廷顿病。另外,例如,该方法能够被实现用于提供指示与神经系统障碍和机能障碍关联的认知或感觉功能的一个或多个方面的定量评估,所述障碍包括(但不限于)卒中、失语症,唐氏综合症、腭心面(迪乔治(DiGeorge))综合症,昏迷、长期或急性用药或饮酒,以及展示出脑信号标志(例如,ERP)的变化的其他神经系统障碍和机能障碍。
在用于提供与神经系统或神经精神障碍相关的评估的方法的某些实现方式中,例如,为生成信息集而进行的生理数据处理能够包括:基于所呈送的刺激和选定的剖析类别来识别与生理信号关联的时间间隔,将与时间间隔对应的生理数据分组成一个或多个分组数据集,并且提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值。在某些实例中,分组能够基于个体刺激的预指定类别或连续刺激的关联关系中的至少一项来确定。在用于提供与神经系统或神经精神障碍相关的评估的方法的其他实现方式中,例如,为生成信息集而进行的生理数据处理能够包括:基于所呈送的刺激和选定的剖析类别来识别与生理信号关联的时间间隔,将与时间间隔对应的生理数据分组成一个或多个分组数据集,并且使用从该对象或其他对象上采集到的之前的生理数据来提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值。并且在用于提供与神经系统或神经精神障碍相关的评估的方法的其他实现方式中,例如,为生成信息集而进行的生理数据处理能够包括:基于所呈送的刺激和选定的剖析类别来识别与生理信号关联的时间间隔,将与时间间隔对应的生理数据分组成一个或多个初始分组数据集,使用涉及初始分组数据集的统计量检验对给对象呈送的刺激序列中的每个刺激进行分类,基于所分类的刺激将与时间间隔对应的生理数据重新分组成一个或多个分组数据集,并且提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值。
在用于提供与神经系统或神经精神障碍相关的评估的方法的某些实现方式中,例如,该方法还能够包括:使用所生成的信息集为对象形成改进的刺激序列,并且将该改进的刺激序列呈送给对象。另外,例如,该方法还能够包括:在改进的刺激序列的呈送之前、期间和之后采集对象的生理信号以产生新的生理数据,并且处理新的生理数据以生成包含与选定的剖析类别关联的一个或多个增广的定量值的增广信息集。在该方法的某些实现方式中,采集并不涉及对象的行为反应,并且处理不包括处理行为数据以生成信息集。然而在其他实现方式中,例如,该方法还能够包括:在刺激序列的呈送之前、期间和之后采集对象的行为信号以产生行为数据,并且将行为数据与生理数据一起进行处理以生成包含与选定的剖析类别关联的一个或多个定量值的信息集。
在另一个方面中,本文公开的技术包括用于评估对神经系统或神经精神障碍的治疗的疗效的方法。该方法包括选择指示与神经系统或神经精神障碍关联的认知或感觉功能的一个或多个方面的剖析类别。该方法包括给正经历针对神经系统或神经精神障碍的治疗的对象呈送刺激序列,其中该刺激序列基于选定的剖析类别。该方法包括在呈送该刺激序列之前、期间及之后采集对象的生理信号以产生生理数据。该方法包括处理生理数据以生成包含指示对对象的治疗的疗效的与选定的剖析类别关联的一个或多个定量值的信息集。例如,所生成的信息集的定量值包括用于描绘正经历治疗的对象的神经系统或神经精神障碍的病理级别的定量得分。例如,用来治疗对象的疗法(例如,包括在用于评估其疗效的方法的实施之前和期间的治疗)能够包括药理学药剂、电休克治疗、认知康复治疗或手术治疗。
例如,药理学药剂(例如,复合药物或化合物)能够用来在广泛的神经系统或神经精神障碍中治疗,恢复,减轻或改善病理症状。该方法的实现方式能够用于药理研究中,例如,通过评估从对象上采集到的相关生理和/或行为信号的调制来评估症状诱导药物和症状恢复药物两者的效果。例如,电休克治疗(ECT)是介入治疗,该介入治疗包括在正经历ECT治疗的对象中(例如,在神经精神病患者中)施加电流以诱发癫痫,作为提供缓解的方式(例如,在某些情况下于抑郁症和精神分裂症中)。例如,认知康复治疗(CRT)是行为训练协议的使用,作为增进感受和/或认知缺陷的恢复的方法。CRT包括行为刺激,导致已经被表明会增进各种各样的精神障碍(例如,精神分裂症、ADHD、失语症、抑郁症等)的缺陷的恢复的神经训练和启动。CRT治疗的实例能够包括认知矫正治疗或认知增强治疗,其中行为训练能够由计算机(机器系统)指导(和/或评估)。例如,CRT治疗能够通过使CRT协议与对象自己的生理和行为度量关联结合本文公开的技术来实施以使过程和结果自动化和最优化。另外,例如,CRT治疗同样能够与基于药理学药剂的治疗一起实施。例如,手术治疗的疗效使用该方法来评估,例如,在该方法中将会采集脑反应的生理度量(例如,EEG),同时执行外科干预,该外科干预能够被用来提供监测患者的状态并探测具体脑区的刺激及干预作用的反应的方式,作为更好指导手术的方式。
在该方法的实现方式中,例如,对象能够包括人类对象和非人类对象。例如,非人类对象能够包括灵长类动物、猪科对象和鼠科对象等。在某些实现方式中,例如,该方法还能够包括将特定剂量的药理学药剂注射或灌注入对象内。在用于评估神经系统或神经精神障碍的治疗的疗效的方法的某些实现方式中,例如,为生成信息集而进行的生理数据处理能够包括:基于所呈送的刺激和选定的剖析类别来识别与生理信号关联的时间间隔,将与时间间隔对应的生理数据分组成一个或多个分组数据集,并且提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值。在某些实例中,分组能够基于个体刺激的预指定类别或连续刺激的关联关系中的至少一项来确定。在用于评估神经系统或神经精神障碍的治疗的疗效的方法的其他实现方式中,例如,为生成信息集而进行的生理数据处理能够包括:基于所呈送的刺激和选定的剖析类别来识别与生理信号关联的时间间隔,将与时间间隔对应的生理数据分组成一个或多个分组数据集,并且使用从该对象或其他对象上采集到的之前的生理数据来提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值。
在用于评估神经系统或神经精神障碍的治疗的疗效的方法的某些实现方式中,例如,该方法还能够包括:使用所生成的信息集为对象形成改进的刺激序列,并且将该改进的刺激序列呈送给对象。另外,例如,该方法还能够包括:在改进的刺激序列的呈送之前、期间和之后采集对象的生理信号以产生新的生理数据,并且处理新的生理数据以生成包含与选定的剖析类别关联的一个或多个增广的定量值的增广信息集。在该方法的某些实现方式中,采集并不涉及对象的行为反应,并且处理并不包括处理行为数据以生成信息集。然而在其他实现方式中,例如,该方法还能够包括:在刺激序列的呈送之前、期间和之后采集对象的行为信号以产生行为数据,并且将行为数据与生理数据一起进行处理以生成包含与选定的剖析类别关联的一个或多个定量值的信息集。
在另一个方面中,所公开的技术包括用于评估神经系统或神经精神障碍的系统。该系统包含用于产生给对象呈送的刺激序列的刺激发送设备,其中该刺激包括视觉、听觉、嗅觉、触觉或味觉刺激媒介中的至少一种。该系统包含与对象界面连接以在呈送该刺激序列之前、期间和之后检测由对象展示出的生理信号的传感器设备,其中该刺激序列基于指示与神经系统或神经精神障碍关联的认知或感觉功能的一个或多个方面的认知-感觉剖析类别。该系统包含与传感器设备通信的数据处理系统,该数据处理系统被构造为包含一个或多个存储单元以及配置用于处理作为生理数据的生理信号以生成包含与选定的剖析类别关联的一个或多个定量值的信息集的一个或多个处理器,其中该一个或多个定量值包括用于描绘对象的神经系统或神经精神障碍的易患性或进行性病理的级别的定量得分。
在该系统的某些实现方式中,例如,数据处理系统能够包含:位于传感器设备附近并与其通信以接收来自传感器设备的所检测到的生理信号的本地计算机,其中本地计算机被配置用于进行所检测到的生理信号的初步处理以产生初始的生理信号数据;以及远程计算机经由通信网络或链路与本地计算机通信以接收来自本地计算机的初始的生理信号数据并处理初始的生理信号数据以生成包含与认知-感觉剖析类别关联的一个或多个定量值的信息集。例如,本地计算机能够与刺激发送设备通信并被配置用于基于选定的剖析类别来确定待给对象呈送的刺激序列。例如,本地计算机能够被配置用于接收与所生成的信息集关联的或从中得出的数据,并且用于修改给对象的刺激序列以产生针对该对象进行个性化的修改的刺激序列。例如,刺激发送设备能够包括用于生成图像序列的显示屏和/或用于生成声音序列的扬声器。例如,刺激发送设备能够包括用于生成嗅觉、触觉或味觉刺激中的至少一种刺激的刺激序列的激励器。
在该系统的某些实现方式中,例如,对象能够正在经历针对神经系统或神经精神障碍的治疗(例如,药理学药剂治疗、ECT治疗、CRT治疗或手术治疗)在对象的生理信号的检测期间。例如,数据处理系统能够被配置用于处理生理数据以生成包含与选定的剖析类别关联的一个或多个定量值的信息集,用于指示对对象的治疗的疗效。例如,数据处理系统被配置用于基于所生成的信息集来产生机器程序,其中机器程序能够驱动另一个设备或系统以管理从包含于所生成的信息集内的信息中得出的治疗。在某些实例中,机器程序能够用来在评估的实现方式期间实时地注射特定剂量的药理学药剂或ECT电刺激。
本文公开的系统、设备和方法的示例性实施例
图1A示出了用于生理信号的采集、分析及评估以产生用于指示例如包括具体的药源性大脑影响在内的神经病理的进展或易患病性的对象的个体或群体认知和/或感觉评估的本文公开的技术的示例性模块化系统100的示意图。例如,系统100能够被实现用于仅使用从对象上采集到的生理数据(例如,没有来自对象的明显的行为反应)来提供与神经系统或神经精神障碍关联的认知和/或感觉剖析。然而,在其他实现方式中,系统100能够被实现用于使用来自对象的行为数据或者生理和行为数据两者来提供与神经系统或神经精神障碍关联的认知和/或感觉剖析。在某些实现方式中,系统100能够被实现用于使用之前采集到的来自该对象或其他对象(例如,群体数据)的生理和/或行为数据来提供与神经系统或神经精神障碍关联的认知和/或感觉剖析。
如图1A所示,系统100被配置用于包含能够配置于各种不同的实施例中的独立的模块化单元或设备。系统100包含用于配置具体的刺激呈送结构102来实现对对象的刺激或刺激序列的呈送的刺激呈送模块101。在某些实例中,刺激呈送模块101以包括例如处理器和存储单元在内的计算设备来实现。例如,刺激能够包括任何刺激类型,包括视觉、听觉、嗅觉、触觉或味觉刺激媒介。具体的刺激呈送结构102能够被配置为包括(但不限于)一种或多种特定类型的刺激、刺激呈送的持续时间、刺激间的间隔、每个呈送的多次重复(若存在)、与刺激的类型关联的量级和/或频率参数(例如,声音的强度或者光的亮度或对比度等级)、与每种刺激的呈送关联的数字标志,以及刺激的标记或类别(例如,靶向或非靶向)。
系统100能够包含基于例如刺激呈送结构102而与刺激呈送模块101通信以给对象呈送刺激或刺激序列的刺激发生模块103。例如,刺激发生模块103能够包含视觉显示器、听觉扬声器和激励器中的至少一个,用于提供嗅觉、触觉和/或味觉刺激。在某些实现方式中,例如,刺激呈送模块101和刺激发生模块103能够被配置于同一设备内,例如,计算机或者移动通信和/或计算设备。
系统100包含生理和/或行为数据采集模块110,用于在经由刺激发生模块103进行的刺激或刺激序列的呈送之前、期间和/或之后采集对象的生理信号和/或行为信号。例如,生理和/或行为数据采集模块110能够包括(但不限于)脑电图(EEG)系统、心电图(ECG)系统、肌电图(EMG)系统、电化学传感系统和眼球跟踪系统等。在某些实现方式中,例如,生理和/或行为数据采集模块110能够包括与信号采集设备(例如,与存储器耦接的模拟或数字放大器)耦接的生理传感器,例如,EEG、ECG、EMG、电化学或其他类型的传感器设备。例如,生理和/或行为数据采集模块110能够被配置于具有刚性电极的标准的EEG系统或者使用能够佩戴在对象上的柔性电子设备的便携式EEG系统中。例如,生理和/或行为数据采集模块110能够被配置于具有刚性电极的标准的EMG系统或者使用能够佩戴在对象上的能够例如检测与睡意或面部表情关联的运动的柔性电子设备的便携式EMG系统中。
系统100包含用于接收作为数据的所采集的生理信号和/或行为信号的分析预处理模块111,并且在某些实现方式中,该分析预处理模块111对所采集的数据执行预处理分析技术。例如,分析预处理模块111能够被实现用于在生理数据(例如,EEG数据)中识别出示例性的发病标志,对生理数据进行分段,过滤原始信号数据以增加信噪比等。在某些实现方式中,例如,分析预处理111能够实现于与用于实现生理和/或行为数据采集模块110的示例性设备或系统通信的计算机设备中。在某些实现方式中,例如,分析预处理111能够被配置于用于实现生理和/或行为数据采集模块110的同一示例性设备或系统中。
系统100包含用于处理生理和/或行为数据以提供对象或群体(在某些实例中)的认知或感觉评估的剖析生成模块115。例如,剖析生成模块115处理生理和/或行为数据以生成包含与选定的剖析类别关联的一个或多个定量值的信息集117,例如,用于描绘对象的神经系统或神经精神障碍的易患性或进行性病理的级别的或者用于描绘对于障碍的治疗的疗效的得分(例如,该得分能够特定于该对象及其状况)。
图1B示出了用于生成与由例如剖析生成模块115实现的同神经系统或神经精神障碍相关的选定的剖析类别关联的信息集的示例性方法170的过程图。方法170能够包括用于基于所呈送的刺激和选定的剖析类别来识别与生理信号和/或行为信号数据关联的时间间隔的过程171。例如,时间间隔能够包括相连的、间断的、连续的、离散的或单一的时间点。方法170能够包括用于将与时间间隔对应的数据(例如,生理和/或行为)分组成一个或多个分组数据集的过程172。例如,过程172能够包括基于个体刺激的预指定类别和/或连续刺激的关联关系来对生理和/或行为数据进行分组。方法170能够包括用于提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值的过程173。在某些实现方式中,例如,方法170能够包括用于增强分组数据集内生理和/或行为数据的信号的过程。
图1C示出了用于使用之前的个体和/或群体信息来生成与由例如剖析生成模块115实现的同神经系统或神经精神障碍相关的选定的剖析类别关联的信息集的示例性方法180的过程图。方法180能够包括用于基于所呈送的刺激和选定的剖析类别来识别与生理信号和/或行为信号数据关联的时间间隔的过程181。方法180能够包括用于将与时间间隔对应的数据(例如,生理和/或行为)分组成一个或多个分组数据集的过程182。例如,过程182能够包括基于个体刺激的预指定类别和/或连续刺激的关联关系来对生理和/或行为数据进行分组。方法180能够包括用于使用从该对象和/或其他对象(例如,包括一个或多个群体)上采集到的之前的生理数据和/或行为数据来提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值的过程182。
图1D示出了用于使用引导分类技术来生成与由例如剖析生成模块115实现的同神经系统或神经精神障碍相关的选定的剖析类别关联的信息集的示例性方法190的过程图。方法190能够包括用于基于所呈送的刺激和选定的剖析类别来识别与生理信号和/或行为信号数据关联的时间间隔的过程191。方法190能够包括用于将与时间间隔对应的数据(例如,生理和/或行为)分组成一个或多个初始分组数据集的过程192。方法190能够包括用于使用涉及初始分组数据集的统计量检验对给对象呈送的刺激序列中的每个刺激进行分类的过程193。方法190能够包括用于基于所分类的刺激将与时间间隔对应的生理和/或行为数据重新分组成一个或多个分组数据集的过程194。方法190能够包括用于提供在分组数据集之间或之内的关系的统计度量以为选定的剖析类别生成一个或多个定量值的过程195。
在某些实例中,剖析生成模块115能够以上下文特定的参数来实现引导分类算法,用于指导并在各种分类和统计方法中进行选择,例如,包括(但不限于)基于ANOVA的技术116a、基于支持向量机的技术116b以及最小描述长度技术116c等。在某些实现方式中,剖析生成模块115能够实现于计算机系统或者包含一个或多个远程计算处理设备(例如,云端的服务器)的通信网络(称为“云”)上。
系统100包含用于改进与神经系统或神经精神障碍相关的所生成的认知和/或感觉剖析的和/或用于启动用户与机器之间的交互的脑机接口模块120。在一个实例中,脑机接口模块120能够基于(正被检验的个体对象、之前被检验的个体对象或者已经由剖析生成模块115进行评估的对象组的)所生成的剖析117来提供新的刺激或多个刺激到刺激呈送模块101的反馈传送,例如,包括在系统100的正在进行的实施过程中提供。例如,脑机接口模块120能够自适应地改变或设计用于从对象上最优地提取被进行分析处理以使期望的目标最大化的信息的刺激模式。例如,脑机接口模块能够基于所生成的信息集来产生用于能够用来驱动另一个设备或系统(例如,设备或系统)以管理从包含于所生成的信息集内的信息中得出的治疗的机器程序。例如,脑机接口模块120的某些实现方式能够包括(但不限于)辅助学习和目标检测应用。
在系统100的某些实现方式中,剖析生成模块115、刺激呈送模块101、刺激发生模块103和脑机接口模块120(以及在某些情形中,还有数据采集模块110)能够实现于单个计算系统中,例如,台式计算机、膝上型计算机或者包括智能电话或平板电脑在内的移动通信设备。在其他实现方式中,模块115、101、103和120能够被配置于相互通信的且包含模块115、101、103和120的各种组合的两个或更多个计算设备中。
在某些实现方式中,系统100能够被配置为仅包含生理和/或行为数据采集模块110和剖析生成模块115,用于产生指示神经系统或神经精神障碍的进展或易患病性和/或他/她正在经历的针对该障碍的治疗的对象的认知和/或感觉评估。在这样的示例性实现方式中,系统100能够使用环当前在对象的周围可获得的境刺激(例如,光、声音、气味、味道和/或触觉接触)。在这样的实例中,系统100能够被实现于单个计算设备上,例如,在该计算设备中,模块110被配置用于经由设备的输入来接收对象的行为反应和/或记录生理数据。
在2013年9月27日提交的、题目为“SYSTEMS AND METHODS FOR SENSORY ANDCOGNITIVE PROFILING”的PCT专利申请PCT/US13/62491中提供了本文公开的系统和方法的其他实例,该专利申请全文并入本文,作为本专利文献的公开内容的一部分。
在本文公开的技术的某些实现方式中,生理数据采集模块110能够包含便携式传感器设备,该便携式传感器设备包括正面安置于对象的前额上的电生理信号检测电极的最优配置,用于提供例如与对象的神经系统或神经精神障碍的易患性或病理进展或者对该障碍的治疗的疗效相关的认知和/或感觉评估。在2013年10月14日提交的、题目为“CONFIGURATION AND SPATIAL PLACEMENT OF FRONTAL ELECTRODE SENSORS TO DETECTPHYSIOLOGICAL SIGNALS”的PCT专利申请PCT/US13/64892中提供了此类系统的某些实例,该专利申请全文并入本文,作为本专利文献的公开内容的一部分。
在某些实例中,本文公开的技术的示例性的便携式电生理传感器设备能够包括位于对象的前额上的不与头发重叠的额部EEG信号记录电极,用于多用的、快速的且不突兀的生理数据采集(例如,包括脑信号监测)。例如,在某些实现方式中,示例性的生理传感器设备被配置为小尺寸,并且能够以各种不同的材料(例如,这些材料能够针对具体的应用来加工)来形成,使得这些设备可以容易被施加,很少或者甚至没有由用户感觉到,或者被别人看到。例如,此类设备的施加和操作能够由用户例如依照简单的指令来执行,不需要技术专长来施加或操作该设备。这能够显著地缓解现有系统所存在的问题,包括需要技术专长来操作以及传感器设备缺少舒适性和便携性。
图1E示出了能够采集来自对象的头部的额部区的电生理信号的额部电极传感器设备160的示例性实施例的框图。设备160包含电绝缘材料的基板161,该基板161在某些设备实现方式中能够由机械柔性材料制成。在某些实例中,基板161能够包含聚二甲基硅氧烷(PDMS)、具有丙烯酸胶粘剂的薄的聚亚安酯或聚乙烯醇(PVA)等。额部电极传感器设备160包括三电极配置,包含记录电极162、参考电极163,以及在记录电极162与参考电极163之间配置于基板161的基面(例如,设备160的与用户的皮肤接触的检测面)上的接地电极164。设备160的电极沿着矢状方向配置于额部区内,使得记录电极162位于接地电极164的后面,该接地电极164位于参考电极163的后面。接地电极164在基板161上至少部分地位于记录电极162与参考电极163之间。这种在用户的头部的额部区或前额区上的记录-接地-参考电极布局能够使额部电极传感器设备160的电极的总占用面积最小化,对于这样的传感器设备是显著有益的。这种记录-接地-参考电极布局还提供在记录电极与参考电极之间的良好的信号隔离,从而允许更灵敏的且高质量的信号记录操作。电极在矢状方向上而非在与矢状方向垂直的水平方向上的大体对准是这种记录-接地-参考电极布局的显著特征,并且能够在采集具有所期望的精度的各种认知/心理状态信号方面提供有益的传感操作。
在设备160的某些实施例中,例如,记录电极162、接地电极164和参考电极163被线性排布于基板161上。例如,这三个电极的布局能够沿着矢状方向与记录电极对准成基本上直线。在设备160的其他实施例中,例如,这三个电极能够按照非线性的队列来排布,该队列包括位于接地电极164后面的记录电极162,该记录电极162位于参考电极163的后面,接地电极164在基板161上至少部分位于记录电极162与参考电极163之间。
额部电极传感器设备160可操作用于采集与电路电耦接的电生理数据。在图1A所示的示例性实施例中,额部电极传感器设备160包含在基板161上的分别经由个体电互连165a、165b和165c与记录电极162、参考电极163及接地电极164电耦接的电路169。在某些实施例中,例如,电路169能够包括分别经由例如导电导管165a、165b和165c与每个电极162、163和164电通信的发射器单元。在本实施例中,设备160能够记录生理信号并将所记录的生理信号传输到远程的电信号处理单元(例如,放大器)和/或计算机系统。此外,例如,电路169能够包括与发射器单元电耦接的电源模块,用于给发射器单元提供电功率。
在某些实施例中,例如,如图1B所示,额部电极传感器设备160能够包含分别与互连165a、165b和165c耦接的导电界面(接触)垫片166a、166b和166c,用于提供导电表面以使外部电路与设备160的电极162、163和164界面电连接。例如,外部电路能够是电信号处理单元(例如,信号放大器)和/或计算机系统。
例如,所采集的记录、参考和接地信号由信号处理单元接收,该信号处理单元用于在差分放大器中处理所采集的信号以放大记录电压与参考电压的生理信号的差值。由设备160(经由接地电极164)记录的接地信号能够连接至示例性差分放大器的接地通道,例如,用于在设备160与放大器之间同步信号参数。例如,接地电极164能够使可能经由记录系统流过对象的泄漏电流最小化,并从而减少任何伪迹。例如,与电路(例如,外部电路)电耦接的接地电极164不需要连接至电路的地线。接地电极的可替换角色能够包括用作用于主动消除干扰的电极。例如,接地电极能够电连接至“右腿驱动”反馈电路,例如,该反馈电路在用于测量由躯体发出的很小的电信号(例如,EEG、EMG、ECG)的一些生物信号放大系统中使用。例如,额部电极传感器设备160能够采集在额部区的电生理信号的参考读数。参考电极163的位置,以及它相对记录电极162(或者,在某些实现方式中,除了记录电极162外还有其他记录电极)的间距是重要的,因为所感兴趣的读数将通过由记录电极162记录的活动相对于由参考电极163记录的活动的比较来确定。例如,如果这样的信号是相同的,则所检测到的信号读数将为0。从这个角度看,例如,能够将记录电极162定位于将允许对所感兴趣的生理信号进行检测的地点,并且将参考电极163定位于将不采集所感兴趣的生理信号(或者示出了所感兴趣的信号的显著衰减)的地点,在远离记录电极162的相当大的距离处。但是,当使设备160在前额上的占用面积(例如,由整个电极阵列占用的空间区域或“不动产”)最小化变得重要时,这提出了更大的挑战。例如,在图1A和1B所示的实例中,电极162、163和164按照使得所采集的信号显著不同的方式来定位和间隔开,并由此是相关的,以及占用由电极162、163和164占用的最小总面积。在本专利文献中所描述的用于确定位置和间距的最优配置的方法是复杂的,并且能够集成心理学的、神经生理学的和工程的原理。在图1A和1B所示的实例中,参考电极163的位置相对于记录电极162成基本上直线的队列来定位,并且在本实例中,电极162和163两者以及接地电极164同样排布于通过额部区的中央的正中矢状线上。经过信号处理的信号被提供作为生理数据,该生理数据随后能够被处理以提供认知和/或感觉剖析。
在某些实现方式中,设备160能够被配置为能够直接佩戴在皮肤上的表皮电子生理传感器设备或者与额部区接触的可穿戴物品。在某些实现方式中,例如,设备160能够包括例如配置于设备160的顶面(例如,不与用户的皮肤接触的非检测面)上的一个或多个附加的电绝缘层。附加层能够进一步给设备160提供支撑。在某些实例中,附加层能够包括各种艺术设计,使得当由用户直接佩戴在其皮肤上时,设备160同样能够用作(暂时的)纹身。
在本文公开的方法的框架内,能够实现于本文公开的技术的计算机系统上的应用程序能够被配置,使得应用的用户(例如,系统的操作员)将与客户端的应用(例如,刺激呈送与数据采集程序)交互,该客户端应用能够经由图形用户界面(GUI)呈送给用户。在应用的某些实现方式中,程序能够指示用户如何将EEG记录电极安置于对象的头上以简化记录过程,例如,包括用于完整的EEG帽(例如,使用刚性电极)的安置或者基于额部电极的传感器设备(例如,使用柔性电子设备)的安置的指令。例如,在计算机实现的应用与用户之间的这种类型的交互能够加快总体过程,并且防止潜在的问题发生,例如,在多个电极通道之间的“串扰”。
图1G示出了用于表征对象的神经系统或神经精神障碍的病理和/或易患病性和/或评估此类疾病的治疗的系统150的示意图。例如,系统150可操作用于实施示例性的应用程序。系统150包含用于与对象及操作员交互的刺激呈送与数据采集计算机151,并且经由生理信号记录设备155(例如,设备160或者基于刚性电极的记录设备)收集来自对象的生理信号数据。例如,操作员能够提供到刺激呈送与数据采集计算机151内的输入以启动对对象的评估(例如,包括对于神经系统或神经精神障碍的易患病性和/或进行性病理评估或者治疗疗效评估)。系统150包含能够相对于计算机151为本地计算机的数据处理计算机152(并且例如在某些实例中与151是同一计算机),或者计算机152能够是经由例如互联网与例如计算机151通信的远程计算机或者计算机系统网络。例如,数据处理计算机152被配置用于处理所收集的生理数据并生成用于描绘神经系统或神经精神障碍的易患性或进行性病理的级别和/或对于该障碍的治疗的疗效的评估。例如,所生成的评估能够给用户(例如,操作员和/或对象)提供能够用作到由计算机151实现的刺激呈送与数据采集程序的输入的信息集。在某些实现方式中,操作员能够在启动刺激呈送与数据采集过程之前于刺激呈送与数据采集计算机151上选择经由例如GUI呈送给操作员的剖析类别。如图1G所示,刺激呈送模块和数据采集模块能够被配置于计算机151中,以并行地运行并且相互传达信息,例如,协调刺激发生的时序。感觉刺激(例如,听觉和/或视觉等)能够由计算机151给对象呈送,同时生理信号(例如,EEG)被记录。由系统150实施的应用程序能够允许例如用户能够选择刺激呈送模式、数据采集设备和信号处理技术。
用于剖析神经病理和障碍的本文公开的方法和系统的示例性实现方式
在此描述了用于提供指示认知或感觉功能的一个或多个方面的对象(或群体)的认知和/或感觉评估的本文公开的系统和方法的示例性实现方式,例如,这些系统和方法能够用于神经系统或神经精神障碍的易患性和病理进展的诊断或评估或者对该障碍的治疗(例如,药物开发)的疗效的评估。对象包括人类和非人灵长类动物。
在所描述的实例中,具体的刺激集在记录来自对象的EEG信号的同时呈送以得出所感兴趣的事件相关电位,以及相关的神经频率振荡。在示例性的实现方式中使用的示例性ERP包括(但不限于)P300和失配负波。能够被实现用于使用本文公开的技术来提供示例性的认知-感觉剖析的其他示例性ERP包括(但不限于)N400,以及与奖励的感觉/概念的认知处理关联的ERP反应。本文公开的认知和/或感觉剖析生成方法和系统能够用来测量对象的脑标志,并且另外还评估该信息并将其转换成用于表征在神经系统或神经精神障碍中的对象的易患病性或进行性病理的有目的的数据,并由此提供障碍的评估剖析。例如,在与非人灵长类动物模型的使用相关的应用中,示例性的实现方式包括在多个生理治疗/状况下执行的电生理测量,所述电生理测量能够形成用于神经系统和神经精神障碍的功能性的且可用的动物模型的基础,例如,包括精神分裂症和阿尔茨海默病等。
精神分裂症是影响大约1%的人口的神经精神障碍,这1%的人口在美国约为3百万人。精神分裂症能够与诸如幻觉、偏执、思维瓦解、情感贫乏和执行功能差之类的症状关联。常规的诊断和病理评估程序基于所观察到的行为以及所汇报的经验。例如,患者可以报告诸如听觉幻觉、妄想和自杀想法之类的症状。如同在其他神经精神障碍中那样,虽然临床观察和自我报告能够是有益的,但是仍需要用于诊断和病理评估的更客观的方法。例如,精神障碍的具体实例,例如精神分裂症,可能会也可能不会在诊断时展示出它的许多常规症状,但是可能在以后的某个时间呈现出来,这进一步增添了诊断过程的复杂性。
有些人认为障碍可能至少部分由γ-氨基丁酸(GABA)和谷氨酸神经递质系统内的机能障碍引起的。例如,已经发现,急性亚麻醉剂量的N-甲基-D-门冬氨酸(NMDA)受体拮抗剂氯胺酮能够诱发精神分裂症所出现的缺陷中的典型的知觉、认知及神经缺陷。若干种抗精神病药物自20世纪50年代起就已经被制造用于治疗该神经精神障碍,这些药物中的许多都靶向这些具体的神经递质系统。但是,大部分药物并不足以处理障碍本身及其症状,并且能够涉及不利的副作用,例如,认知迟钝、运动障碍(无意识的躯体运动)或粒细胞缺乏症(低白细胞计数)。此外,例如,当前的第二代抗精神病药物已被发现在它们对具有慢性精神分裂症的患者的有效性方面具有巨大的局限性,并且在有效性方面与常规的第一代药物显著不同。
药理研究和病人护理(例如,包括诊断、易患病性评估以及进行性病理的监测)两方面当前均缺少可靠且有效的新方式来将可评估的脑标志(从脑生理学得出的)与所感兴趣的神经精神障碍关联起来,从而建立胜过行为评估的更客观的相关性。例如,在患有阿尔茨海默病的患者以及患有精神分裂症的患者中,失配性负波ERP(与回声记忆和方差检测关联)的振幅会减弱,例如,指示在认知更新方面的缺陷,并从而表明认知衰退、缩短的记忆痕迹持续时间,和/或受到影响的听觉辨别力。此外,例如,受阿尔茨海默病影响的那些对象与健康的对象相比会呈现出P300ERP的减小的振幅以及增大的潜伏期(与注意的调节关联的脑标志)。
失配性负波
失配性负波(MMN)是ERP调制,该ERP调制是在听觉感觉皮层的层面的机能感觉记忆处理的自动的前注意索引。MMN能够由听觉和视觉刺激引出。MMN被认为会反映对偏差刺激的前注意检测,并且能够被计算出,在“oddball”模式中作为在对偏差(例如,很少发生的)刺激的反应与对标准(例如,频繁的)刺激的反应之间的差异波。例如,MMN通常在偏差刺激发生之后的100~250ms出现,最大电压在额部以及中央的EEG头皮位置之上。MMN能够由图形的基本违背(例如,通过呈送更大或更小间距的刺激而违背给定间距/频率的图形)以及更抽象的偏差(例如,通过呈送与前一刺激的间距相等或比其小的间距而违背“阶梯式”频率的图形)两者引出。
MMN能够与广泛的神经系统和神经精神障碍相关。例如,对患有包括例如精神分裂症、阿尔茨海默病和自闭症谱系障碍(ASD)在内的各种精神障碍的患者的科学研究已经系统地报告:这些患者与健康对象相比展示出了下降的检测新刺激的能力。与这种行为缺陷一致,MMN的振幅减小,并从而MMN能够被视为这些障碍的进行性病理或易患病性的标志。
例如,精神分裂症患者通常展现出缺乏MMN生成,表明前注意处理和认知更新方面的障碍。MMN已经被用作精神分裂症的进行性病理的标志。图2示出了具有使用单个电极(Cz)进行的健康人(healthy patient)(对照者(controls))的与精神分裂症患者的MMN的比较研究的示例性结果的数据曲线图,该曲线图表明在精神分裂症患者当中MMN显著减少。例如,MMN的测量值能够给内科医生/临床医生提供精神分裂症的发病后进行性认知衰退的可靠的生物标志,允许他们更精确地诊断患者以及以图表表示该障碍的传播。
P300
P300的特征能够在于具有中央-顶叶极大值的头皮分布的为300~800ms的正向电反应。P300与物品的主观发生概率逆相关。例如,P300已经被应用于视觉目标检测任务中,在该视觉目标检测任务中,目标与其他物品相比引出了更高振幅的P300。
P300是能够由听觉和视觉刺激引出的事件相关电位,通常在oddball模式中。尽管它反映了偏差刺激的索引,像MMN一样,但是P300通过指示注意力转移到偏差刺激来将它自己与MMN区分开。由此,它将刺激重要性编入索引,并且它对于任务相关的和/或注意的刺激是最大的。P300的振幅在内侧的中央及顶叶EEG头皮位置之上通常是最大的,并且在偏差刺激发生之后的大约300ms和1000ms之间发生。例如,P300反应的显著减小已经与包括注意和认知更新缺陷在内的各种神经精神障碍(例如,阿尔茨海默病和精神分裂症等)相关联,与健康对照者的P300振幅相比具有较小的P300振幅。而且,例如,已经表明在P300生成中的缺陷存在于高危者中,这些高危者能够被定义为具有患有该障碍的亲戚的个人。
图3示出了具有使用单个电极(Cz)进行的包括年轻的健康人和年老的健康人(对照者)在内的各种对象群体的P300与具有精神分裂症的高危的、初发病的及慢性的患者的P300的比较研究的示例性结果的数据曲线图,该曲线图表明在精神分裂症患者当中P300显著减小。例如,如图3的数据曲线图所示,具有精神分裂症家族史的但临床上还没受影响的个人(例如,被认为是“高危的”患者)同样展现出减小的P300振幅。而且,数据曲线图揭示P300振幅的不同梯度,与所研究的人群之间的风险或现存病理很相关。本文公开的技术能够用来指出个体(或群体)的神经障碍和/或病理(例如,精神分裂症)的易患性,这可以允许个体获得更早的和/或可能为预防性的治疗/疗法,例如,若存在这样的治疗/疗法并被证明是有效的。
I.在人类对象中用于神经精神障碍的易患性和进行性病理的评估的MMN和P300ERP的示例性实现方式
I.1.示例性刺激呈送结构
5个成年男性对象(例如,年龄为20~36岁)在用于评估神经精神障碍的易患性和/或病理进展的本文公开的技术的示例性实现方式中被评估。
示例性的刺激呈送结构包含被动听觉强度oddball模式,用于给人类对象呈送不同强度的音调,这些人类对象每个在实施过程中都坐在被隔离的光线昏暗的房间。例如,听觉刺激包括100ms(例如,10ms上升/下降)的低强度或高强度的纯正弦音调(例如,1500Hz)。频繁(标准)和很少发生的(偏差)刺激分别呈送80%的和20%的时间,如图4所示。图4示出了示出用于听觉刺激呈送的示例性强度(分贝水平)oddball模式的示意图。刺激间的间隔为700ms。例如,在每个示例性的记录会话中呈送1200个标准刺激和300个偏差刺激。例如,高偏差(例如,低标准)和低偏差(例如,高标准)两种状况被使用,例如,用于允许在不同的背景(例如,标准或偏差)下对相同刺激(例如,低的或高的)的反应的比较。
在本实例中被用来控制刺激的呈送的示例性的刺激呈送模式使用Cogent 2000来编程。例如,能够使用的其他软件包包括(但不限于)Psychtoolbox、E-Prime、Presentation和Qt。音调使用扬声器来呈送给人类对象。示例性的人类对象被要求维持中心固视,例如,以使运动伪迹最小化。例如,固视目标是使用距离对象40cm的21英寸的CRT监视器来呈送的在黑色背景上的红色圆圈(例如,直径为1度)。目标在听觉刺激呈送开始之前出现,并在记录会话的整个期间保持为可见的。例如,两种方法被用来创建示例性的红色中心固视点和蓝色的方形刺激。对于该示例性的固视点,例如,计算机实现的过程(例如,使用MATLAB脚本创建的)被用来创建高度和宽度为350像素的黑色的背景图像(例如,红色枪等于0;绿色枪等于0;蓝色枪等于0)。然后,示例性的脚本使用圆的标准方程来运行嵌套的For循环,以通过将图像的红色枪改变为255,将绿色枪改变为0并且将蓝色枪改变为0来将半径为7像素长度之内的像素改变红色。对于示例性的蓝色方形刺激,成像软件被用来创建尺寸为157×157像素的图像,其红色枪等于0,绿色枪等于0,并且蓝色枪等于255。示例性的红色中心固视点被用来在整个记录会话中帮助对象维持固视。
示例性的计算机实现的过程被用来配置显示器、Cogent 2000日志文件、并行端口和声卡。然后,示例性的计算机实现的过程被用来将听觉刺激(例如,低音和高音)和视觉刺激(例如,固视点和蓝色方形)加载到内存缓冲区内。例如,为了创建较大的偏差感知,该示例性的过程不连续地呈送两个或更多个偏差刺激。例如,这通过创建包含“1的”和“2的”的阵列的呈送顺序来实现。例如,“1的”表示标准刺激,而“2的”表示偏差刺激。在某些实现方式中,例如,前述步骤能够在刺激呈送之前执行,以便降低计算负荷并增加延迟精度。
例如,在所呈送的For循环(示例性的计算机实现的过程的示例性MATLAB脚本的,用于产生固视目标)中,固视点被呈送并在整个块内被保持为对象可见。然后,该循环沿着呈送顺序而重复。当它遇到“1”时,示例性的计算机实现的过程将首先将事件标志/触发器发送给生理数据采集系统(例如,EEG记录计算机),紧随其后的是标准刺激(例如,对于状况1为低音;对于状况2为高音)的呈送。同样地,当它遇到“2”时,示例性的计算机实现的过程将首先将事件标志/触发器发送给示例性的EEG记录计算机,紧随其后的是偏差刺激(例如,对于状况1为高音;对于状况2为低音)的呈送。事件标志/触发器指出哪种刺激(例如,低的或高的)被呈送。例如,紧随每个听觉刺激之后的是为700ms的刺激间的间隔(ISI)。例如,在该示例性的实现方式中,固视目标仅仅是用于帮助使眼运动最小化的辅助,并且正因如此,固视没有被量化。
I.2.示例性的EEG数据收集/记录
在某些实现方式中,例如,具有刚性电极的传统EEG系统被用来采集脑电波。例如,EEG头皮读数以使用BrainAmpMR系统的Vision Recorder软件来采集。64通道的EEG帽BrainCap MR与AgCl电极一起使用,用于人类对象数据的收集(例如,用于具有5k电阻器的BrainCap-MR的PCB带状电缆;BrainCap MR Box 1.2;具有1.5mm防触电安全插座终端和120cm的重型引线的烧结环电极)。
人类对象坐在记录室内的椅子上,并开始脑电图戴帽过程。例如,该过程涉及将EEG帽安置于对象的头上并且以塑料颏带来固定它。在某些实例中,使用了直径为56cm或58cm的帽子,基于对象头部的估计尺寸。然后,Signa的电极凝胶使用在帽子的每个电极下方的成曲线状的塑料注射器来注射,以在电子自身与对象的头皮之间创建导电桥。我们同样使用木制棉签(Q-tips)来按摩(massage)凝胶以便通过降低阻抗来建立较强的电导。此外,例如,木制棉签被用来按摩凝胶以便通过降低阻抗来建立较强的电导。例如,这种技术的使用将包括例如接地电极和参考电极在内的每个电极的阻抗级别降低至<5kΩ。
在使用EEG记录开始示例性的实现方式之前,对象坐在呈送监视器和音频扬声器之前,并且被要求在整个实施期间将视觉固视维持于示例性的红色中心固视点上并尽可能地限制他们的运动动作以在神经生理数据中防止运动伪迹。例如,为了强调这些点,给对象显示他们的原始脑电波的在线记录,这会给他们表明在他们频繁眨眼和/或咬紧自己的下巴时数据会发生什么。最后,在开始实施之前,例如,记录室的灯被完全关闭,窗户被遮得不漏光,并且裂缝被密封以防止外面的光进入。
I.3.示例性的EEG数据分析
示例性的EEG数据使用软件Analyzer 2.0来分析。在该示例性的实现方式中,对来自人类的和来自猴子的数据进行同样的分析。例如,分析程序包括首先使来自原始的记录参考的数据集重新引用相同的后枕部通道,作为不同物种(例如,人:Oz、O1、O2、PO7、PO8、P7、P8;猕猴:Oz、O1、O2、P3、P4)间的新的可比较参考。这随后是带通滤波(例如,低截止频率:0.1Hz,高截止频率:50Hz)并且基于样条插值而将采样率从1000Hz改变为250Hz。例如,为了避免源于样本大小的差异的分析伪迹,示例性的数据集首先相对于偏差标志位置(例如,起始:-1000ms,结束:600ms)来分段,使得它将会包括全部偏差试验(例如,N=300)以及只是直接在偏差之前的标准试验(例如,N=300)。随后,例如,所产生的分析时程(epochs)相对于偏差标志位置或标准标志位置(例如,起始:-200ms,结束:600ms)进行分段,从而识别相关的偏差的和标准的分析时程。对于标准的及偏差的分析时程两者,基线校正(例如,起始:-200ms,结束:0ms)被应用,多特征伪迹排除工具被应用(例如,应用于全部通道;最大允许电压阶跃:50μV/ms;最大允许间隔值差:200μV;最小允许间隔活动:0.5μV)。ERP(均值)然后针对每个通道和状况(例如,高标准、低标准、高偏差和低偏差)进行计算。例如,差异波(例如,偏差减去标准)针对两种状况(例如,低偏差减去低标准以及高偏差减去高标准)进行计算,并且随后低的和高的差异波被求均值以得出MMN分量,并且对于偏差的低反应和高反应被求均值以得出P3分量。
I.4.人类ERP的识别
在该示例性的实现方式中,示例性的MMN分量和P3ERP分量在人类中使用所建立的采用相同的检验模式(例如,oddball模式,在该模式中MMN是偏差刺激减去标准刺激的差异波,而P3在偏差刺激试验中被观察到)的准则来识别,并且为这些ERP分量确定时序、电极位置、电压头皮分布和神经发生源。例如,在识别了MMN之后,在平均ERP波中于峰值振幅附近建立40ms的时窗。这个示例性的时窗被用来从单个试验中提取每个对象的峰值振幅值。例如,这些值然后被用于在两路重复测量ANOVA(例如,因素1:标准对偏差;因素2:高对低)中的统计分析。P3分量在对低偏差和高偏差的平均反应中被研究。同样地,例如,在识别了P3分量之后,在ERP波中于峰值振幅附近建立40毫秒的时窗,并且该时窗被用来从单个试验中提取平均振幅值。例如,P3反应的统计重要性使用t检验来计算。
I.5.使用定制设计的程序的示例性EEG数据分析
除了使用现有的软件包(例如,BrainVision Analyzer 2.0)来计算MMN分量和P300分量之外,示例性的实现方式还包括使用示例性的定制设计的计算机实现的分析过程(例如,以MATLAB脚本编程的)来确定MMN分量和P300分量以处理MMN和P300数据,从而创建ERP波形。示例性的定制设计的计算机实现的程序能够被实现用于自动处理数据(例如,执行信号处理步骤,例如,滤波、通道去除、重新采样等),计算MMN差异波ERP,计算P300ERP,并且对给定数据执行统计分析,所有都仅需几次被引导的鼠标点击。例如,使用现有的技术,典型的ERP预处理与分析所需的时间能够为数小时到数周。示例性的定制设计的程序能够被实现用于在平均大约2-3分钟内处理数据(例如,下面所示出的)。虽然示例性的代码使用MATLAB来开发,但是其具体框架和分析过程能够以其他编程语言来实现,例如,包括(但不限于)C++和Java。而且,其框架并没有依赖于在本文所描述的示例性的实现方式中使用的示例性的脑标志(例如,MMN和P300),而是能够应用于其他脑标志,例如,包括(但不限于)N400,还有与奖励的感觉/概念的认知处理关联的ERP反应,以及附加的脑信号(例如,神经频率振荡)。另外,示例性的定制设计的程序的适应性能够允许它应用于多个平台上。例如,示例性的计算机实现的方法能够在本地运行(例如,在用户的膝上型或台式计算机上)或者远程运行(例如,在可经由包含一个或多个远程的计算处理设备(例如,云端的服务器)的互联网(称为“云”)来访问的计算机系统或通信网络上)。在下面的实例中,计算机实现的方法使用例如MATLAB,因为它的用户友好的编程环境以及用于处理大数据矩阵的内建功能。
图5示出了示例性的定制设计的计算机实现的程序的示例性预处理与分析过程500的流程图。如前面所提及的,例如,该过程,与现有技术不同,是完全自动化的,以便帮助用户引出并测量可靠的脑标志,并且加快该过程,这能够显著地有益于诊断和/或病理评估以及治疗药物开发。而且,这个示例性的自动化过程能够允许只有很少或者没有电生理记录技术方面的专门知识的个人获益于本文公开的技术并将其实施于他们自己的工作中。
预处理与分析过程500包括让操作员选择待用于对象的神经生理评估的数据集(例如,由示例性数据采集模块在示例性的刺激呈送过程中从对象上采集到的生理和/或行为数据)的过程501。预处理与分析过程500包括用于对每个选定的数据集执行包括例如滤波、通道去除、重新采样等在内的信号处理的过程502。预处理与分析过程500包括用于存储来自每个选定的数据集的数据分析时程的过程503。预处理与分析过程500包括用于计算ERP(例如,MMN、P300等)的过程504。预处理与分析过程500包括用于执行本文公开的技术的统计分析和/或分类技术以提供对于神经系统或神经精神障碍的易患病性和/或病理进展的评估的过程505。预处理与分析过程500包括用于报告和/或呈送与神经系统或神经精神障碍评估的选定剖析类别关联的已分析的信息集(例如,包括一个或多个定量值)的过程506。
图6使用伪代码来示出了示例性预处理与分析代码(例如,以MATLAB脚本编程的)的实例。如图6所示,示例性的代码对一个或多个数据集(例如,这些数据集能够包括一个或多个生理治疗状况,例如,克他命(ketamine)和潜在的治疗)进行循环。在本实例中,示例性的预处理与分析代码每次仅在内存内存储一个数据集,例如,以便降低内存和计算负荷。在数据集已经被处理并且它的相关数据已经被提取之后,它被从内存中释放出并由后续的数据集替换。
图7示出了示例性的编程分析过程的示例性图形用户界面(GUI)的计算机屏幕截图。通过使用该示例性界面,用户能够容易地选择他们希望分析哪个或哪些数据集,并且能够具有在多个生理治疗间比较数据集的选项。例如,左侧面板为EEG文件搜索当前路径并列出它们各自的文件名。使用该面板,用户能够使用他们的鼠标来高亮显示他们想要分析哪些数据集并且通过点击“Select:treatment”按钮来选择它们。这将会将选定的文件名“移动”到右侧的面板,指示他们已经选择了哪些文件。用户随后能够按下“Next treatment”按钮以选择另一个生理治疗的数据集。他们同样能够按下“Previous treatment”按钮,如果他们希望返回并编辑之前的选择。在按下“Finish”按钮时,程序将开始自动化分析过程并且将以给用户输出随后能够被保存的结果文件而结束。
为了表明包括定制设计的计算机实现的数据分析程序在内的示例性系统和方法的性能和精确性,示例性的实现方式包括在来自定制设计的分析方法的示例性的结果与使用现有软件包(例如,BrainVision Analyzer 2.0)的结果之间的比较。
I.6.人类的MMN ERP表征
例如,使用人类的MMN分量的时序和头皮形貌的确定表征,示例性的结果揭示持续时间为大约56~190ms的、在104ms处的峰值振幅为-1.83μV(F(1,1259)=97.12;p=0.000)的MMN ERP,以及额-中央的和中央的头皮分布。
图8A和8B示出了使用现有的软件工具(图8A)以及定制设计的程序(例如,使用MATLAB脚本)(图8B)来根据示例性的MMN数据集对人类对象进行的示例性的ERP处理和分析的结果的数据曲线图。数据曲线图示出了来自使用Cz电极通道的人类对象的波形。例如,图8A和8B的数据曲线图示出了健康人对象的MMN的示例性图形。图8A的数据曲线图包含标准的和偏差的波形,并且示出了在标准与偏差之间的有力区分,如同MMN所显示的,该MMN是是偏差波形减去标准波形之差。同样地,在图8B中,使用示例性的定制设计的程序的示例性的ERP处理与数据分析在预期的时间间隔内对于该MMN波形都得出了基本上相同的结果。
I.7.人类的P300ERP表征
P300在对低偏差和高偏差的平均反应中被研究。例如,使用人类的P3分量的时序和皮形貌的确定表征,示例性的结果揭示持续时间为大约208~256ms的、在228ms处的峰值振幅为0.72μV(t=3.54,p=0.000)的P300ERP。
图9A和9B示出了使用现有的软件工具(图9A)以及定制设计的程序(例如,使用MATLAB脚本)(图9B)来根据示例性P300数据集对人类对象进行的示例性的ERP处理和分析的结果的数据曲线图。数据曲线图示出了来自使用Cz电极通道的人类对象的波形。例如,图9A和9B的数据曲线图示出了没有受到生理治疗的健康人对象的P300ERP的图形。例如,P300是反映了对于偏差刺激的反应的正向波形。使用现有的软件工具或示例性的定制设计的脚本计算出的示例性的P300ERP是一致的,例如,表明了示例性的定制设计的程序的可靠性。
如同上文所描述的,用于评估与神经精神或神经系统障碍关联的易患病性和进行性病理的本文公开的方法和系统的示例性实现方式表明了疗效以及检测MMN和P300ERP的其他优势,例如,所述MMN和P300ERP与诸如精神分裂症和阿尔茨海默病之类的障碍关联。本文公开的技术的实现方式能够使用改进的或不同的具体刺激呈送模式和EEG采集系统来“靶向”与所感兴趣的其他神经系统和/或神经精神障碍关联的不同ERP。
图10示出了由用户(例如,医生或患者)来实施的用于监测神经精神和/或神经系统障碍的易患性或进行性病理的示例性程序的过程图。在图10的示意图中,非矩形的文本框反映程序可以询问用户(例如,操作员)的可能查询,以朝着所期望的目标来定制示例性的应用。如图所示,例如,在打开程序之后,操作员能够接收关于如何将电极帽或示例性的额部电极传感器系统安置于对象的头上的指令。随后,例如,能够给操作员呈送用于开始刺激呈送的指令,这些指令同样能够与刺激的呈送同时地或者在其之前开始数据记录。用户将被通知数据采集和刺激呈送何时已经完成。示例性程序的下一部分能够要求用户选择他/她是否希望将当前的数据采集会话与先前记录的数据采集会话和/或与健康对照者组的数据进行比较。例如,通过提供该选项,用户能够监测患者的进行性病理,并且将该数据与正常人的进行比较。
来自示例性应用程序的实现方式的结果能够以各种格式之一来输出。例如,结果能够以“汇总(Summary)”或“详细(Detailed)”的格式来输出,如同图10所示的实例所描述的。在示例性的汇总结果格式中,将会给用户提供分析结果的用户友好型或非专家型布局。在汇总结果格式的某些实例中,应用能够基于在数据分析过程中所产生的已生成的信息集而输出文本描述,例如,“您检测偏差的能力(正常感觉记忆的功能)已下降”、“…已增加”或者“保持不变”。例如,汇总结果格式能够呈送定量结果,例如,用于描绘对象对该障碍的易患病性的或者该障碍的进行性病理的得分,以及统计结果(例如,p值)和它们先前记录的会话的易读图表,所述易读图标能够允许用户对他们的障碍的进展进行可视化监测。在示例性的详细结果格式中,将会给用户提供分析结果的更复杂布局。例如,除了示例性的汇总结果格式之外,详细结果格式同样能够提供ERP图表和地形电压图(例如,在用户佩戴完全的EEG帽的情况下)。
II.在非人灵长类动物对象(生物模型)中用于对神经精神障碍的治疗药理学药剂的评估的具有MMN和P300ERP的示例性实现方式
II.1.示例性的刺激呈送结构
在用于评估对于神经精神障碍的治疗的疗效的示例性的本文公开的技术的实现方式中,使用两个例如年龄为6岁和7岁的成年雄性猕猴(恒河猴)。所有程序和动物护理都经索尔克研究所动物护理和使用委员会核准,并且按照美国国家卫生研究所的实验动物护理和使用指南来执行。
示例性的刺激呈送结构包括用于在实施过程中给坐在被隔离的、光线昏暗的房间内的对象呈送不同强度的音调的被动听觉强度oddball模式。例如,听觉刺激包括低强度的或高强度的100ms(例如,10ms上升/下降)的纯正弦音调(例如,1500Hz)。频繁的(标准)和很少发生的(偏差)刺激分别占80%和20%的时间,如图4所示。刺激间的间隔为700ms。例如,在每个记录会话中呈送1200个标准刺激和300个偏差刺激。例如,使用高偏差(例如,低标准)和低偏差(例如,高标准)两种状况,例如,用于允许在不同的背景(例如,标准或偏差)下对相同刺激(例如,低的或高的)的反应的比较。
在本实例中被用来控制刺激的呈送的示例性的刺激呈送模式使用Cogent 2000来编程。音调使用放大器和扬声器来呈送给示例性的非人灵长类动物(NHP)对象。为了使运动最小化,对NHP进行训练以使其维持中心固视。例如,固视目标是使用距离NHP对象40cm的21英寸的CRT监视器呈送于黑色背景上的红色圆圈(例如,直径为1度)。目标在听觉刺激呈送开始之前出现,并在记录会话的整个期间保持为可见的。例如,两种方法被用来创建示例性的红色中心固视点和蓝色方形刺激。对于示例性的固视点,例如,计算机实现的过程(例如,使用MATLAB脚本创建的)被用来创建高度和宽度为350像素的黑色背景图像(例如,红色枪等于0;绿色枪等于0;蓝色枪等于0)。然后,示例性的脚本使用圆的标准方程来运行嵌套的For循环以通过将图像的红色枪改变为255,将绿色枪改变为0并且将蓝色枪改变为0来将半径为7像素长度之内的像素改变为红色。对于示例性的蓝色方形刺激,成像软件被用来创建尺寸为157×157像素的图像,该图像的红色枪等于0,绿色枪等于0,并且蓝色枪等于255。示例性的红色中心固视点被用来在整个记录会话中帮助NHP对象维持固视。
示例性的计算机实现的过程被用来配置显示器、Cogent 2000的日志文件,并行端口和声卡。另外,示例性的计算机实现的过程被用来将听觉刺激(例如,低音和高音)和视觉刺激(例如,固视点和蓝色方形)加载到内存缓冲区内。此外,在使用NHP对象的示例性的实现方式中,例如,示例性的过程不连续地呈送两个或更多个偏差刺激以便创建较大的偏差感知。例如,这通过创建包含“1的”和“2的”的阵列的呈送顺序来实现。例如,“1的”表示标准刺激,而“2的”表示偏差刺激。在这些实现方式中,例如,前述步骤能够在刺激呈送之前执行,以便降低计算负荷并增加延迟精度。
例如,在所呈送的For循环(示例性的计算机实现的过程的示例性MATLAB脚本的,以产生固视目标)中,固视点被呈送并在整个块内被保持为NHP对象可见。然后,该循环沿着呈送顺序而重复。当它遇到“1”时,示例性的计算机实现的过程将首先将事件标志/触发器发送给生理数据采集系统(例如,EEG记录计算机),紧随其后的是标准刺激的呈送(例如,对于状况1为低音;对于状况2为高音)。同样地,当它遇到“2”时,示例性的计算机实现的过程将首先将事件标志/触发器发送给示例性的EEG记录计算机,紧随其后的是偏差刺激(例如,对于状况1为高音;对于状况2为低音)的呈送。事件标志/触发器指出哪种刺激(例如,低的或高的)被呈送。例如,紧随每个听觉刺激之后的是为700ms的刺激间的间隔(ISI)。
通过使用标准的正向强化来对NHP对象进行训练使其维持中心固视。精确的眼睛位置控制在这些示例性的实现方式中是必要的。例如,固视目标仅仅是用于帮助使眼运动最小化的辅助,并且正因如此,固视没有被量化。
II.2.示例性的EEG数据收集/记录
例如,EEG头皮读数以使用BrainAmpMR系统的Vision Recorder软件来采集。具有AgCl电极的示例性的定制设计的22通道的NHP EEG帽被开发出并被用于非人灵长类动物对象的数据收集(例如,用于BrainCap-MR的具有5k电阻器的PCB带状电缆;BrainCap MR Box1.2;具有1.5mm的防触电安全插座终端和120cm的重型引线的烧结环电极)。
图11示出了示出示例性定制设计的22通道的NHP EEG帽的图像和示意图。在图11中示出了示例性的NHP EEG帽的图像1100,示出了检测帽的EEG电极的示例性布局的额部视图。图11还示出了用于描绘示例性的22个电极在示例性的NHP EEG帽内的位置的顶面(示意图1121)和右侧(示意图1122)示意性视图的三维重建的示意图1120。图11还示出了用于描绘该22个电极在示例性的NHP EEG帽内的位置的二维视图的示意图1110。该示例性的NHPEEG帽包含按照双面板设计来配置的用于允许在猴子的头皮之上的紧密贴合的可伸缩材料。例如,示例性的可伸缩材料能够包括中等重量的弹性针织物材料。NHP EEG帽具有用于提供与人类的64通道的帽子相同的电极密度的22个通道。该示例性的NHP EEG帽被设计用于适合在人类对象中使用的BrainAmpMR系统的同一组AgCl电极。例如,示例性的NHP EEG帽能够被用来使用例如非人灵长类动物来提供用于评估用于神经精神和/或神经系统障碍的潜在的治疗药理学药剂的本文公开的技术的示例性系统的固有分量。该示例性的NHP EEG帽能够提供对于非人灵长类动物对象的“全头皮覆盖”,并且提供包括例如允许广泛数据收集和综合数据收集两者在内的优点,以及与在人类对象中采集到的脑信号的直接比较。该示例性的NHP EEG帽的制作包括切割两个半月形的块件,这两个块件随后被缝合在一起。然后,小的塑料皮带环或者其他固定构件被附接到每个末端以形成颏带。最后,22个电极的固定器被安置于帽子上,位于可伸缩材料上的与图11的示意图1110和1120所示的22个电极对应的特定位置。
用于NHP对象的示例性的EEG数据收集技术包括下列准备步骤。例如,(1)使NHP头部的位置保持稳定,例如,需要刚性的头部固定,所以MR兼容性头柱(head-post)被设计用于手术植入背侧头颅上。例如,(2)NHP EEG帽被安置。在该示例性的实现方式中,图11所示的示例性的定制NHP EEG帽被用于猕猴对象。例如,(3)EEG约束椅子被用于示例性的NHP对象。例如,定做的MR兼容性椅子使用MR兼容性材料来设计。NHP被按照狮身人面像形状的位置约束于椅子内,头突出,被稳定住,并且面朝前。例如,(4)具有电极位置的3D头皮重建被创建。例如,使用示例性的Polhemus Fastrak系统来创建每个动物的头皮的3D重建,每个电极的准确位置都被精确定位。这允许对所采集的EEG数据集的电压分布的地形图的创建。
NHP对象在生理信号记录之前被训练成视觉固定的。例如,示例性的计算机实现的过程被开发出,以在视觉固定方面训练NHP对象(例如,在CORTEX上编程的两个脚本)。第一示例性脚本的实现方式包括显示在黑色背景上的直径按1度视角度量的示例性的红色中心固视点。当NHP对象注视在4°×4°视角的窗口内的固视点达最少1000ms时,对象会接收到小杯果汁的奖励(例如,来自Crist仪器公司的奖励体系),随后是0ms的刺激间的间隔(ISI)。例如,用于监测眼运动的ISCAN眼球跟踪系统(ETL-200)被使用。该示例性程序被用来训练对象的视线移向,并且快速地将固视点与奖励关联起来。第二脚本的实现方式还包括直径按1度视角度量的红色中心固视点。但是,例如,并行地,高对比度的黑白色抽象图像将出现于固视点背后达750ms,随后是750~1000ms的抖动的ISI。例如,脚本控制4到6个抽象图像系列的闪烁,并且要求对象在每个图像呈送期间都固视。如果NHP对象对于每个图像呈送都保持固视于关于固视点居中的4°×4°视角的窗口内,则对象将接收到小杯果汁的奖励,同时同步呈送用于指示奖励以及试验间的暂停的视觉蓝色的方形刺激。每个蓝色的方形刺激被呈送1500ms,并且紧随其后的是下一系列抽象图像。
训练和记录过程包括:首先将NHP对象固定于示例性的定做的MRI兼容的椅子上。这既为动物对象提供了约束也为其提供了舒适性。例如,对于记录过程,椅子被水平放置于记录室内的桌子上。这允许NHP对象在狮身人面像的位置内面向呈送监视器和扬声器。然后,EEG帽被安置于NHP对象的头上,并且将头固定于约束椅子上。然后,Signa的电极凝胶使用在帽子的每个电极下方的成曲线状的塑料注射器来注射,以在电子自身与对象的头皮之间创建导电桥。我们同样使用木制棉签来按摩凝胶,以便通过降低阻抗来建立较强的电导。然后,记录室的门被关上,并且灯完全关闭。在训练与记录两个过程中,NHP对象使用红外相机进行密切监测。
II.3.示例性的EEG数据分析
示例性的EEG数据使用软件Analyzer 2.0来分析。示例性的EEG数据分析程序包括:首先使来自原始的记录参考的数据集重新引用相同的后枕部通道,作为不同物种(例如,人:Oz、O1、O2、PO7、PO8、P7、P8;猕猴:Oz、O1、O2、P3、P4)间的新的可比较参考。这随后是带通滤波(例如,低截止频率:0.1Hz,高截止频率:50Hz),并且基于样条插值而将采样率从1000Hz改变为250Hz。例如,为了避免源于样本大小的差异的分析伪迹,示例性的数据集首先相对于偏差标志位置(例如,起始:-1000ms,结束:600ms)来分段,使得它将会包括全部偏差试验(例如,N=300)以及只是直接在偏差之前的标准试验(例如,N=300)。随后,例如,所产生的分析时程相对于偏差标志位置或标准标志位置(例如,起始:-200ms,结束:600ms)进行分段,从而识别相关的偏差的和标准的分析时程。对于标准的及偏差的分析时程两者,基线校正(例如,起始:-200ms,结束:0ms)被应用,多特征伪迹排除工具被应用(例如,应用于全部通道;最大允许电压阶跃:50μV/ms;最大允许间隔值差:200μV;最小允许间隔活动:0.5μV)。ERP(均值)然后针对每个通道和状况(例如,高标准、低标准、高偏差和低偏差)进行计算。例如,差异波(例如,偏差减去标准)针对两种状况(例如,低偏差减去低标准以及高偏差减去高标准)进行计算,并且随后低的和高的差异波被求均值以得出MMN分量,并且对于偏差的低反应和高反应被求均值以得出P3分量。
II.4.非人灵长类动物ERP的识别
在该示例性的实现方式中,示例性的MMN分量和P3ERP分量首先在人类中进行识别,并且然后在非人灵长类动物内的类似分量被识别。例如,ERP分量使用所建立的采用相同的检验模式(oddball模式,在该模式中MMN是偏差刺激减去标准刺激的差异波而P3在偏差刺激试验中被观察到)的准则来识别,并且为这些示例性的ERP分量确定时序、电极位置、电压头皮分布和神经发生源。例如,在识别了MMN之后,在平均ERP波中于峰值振幅附近建立40ms的时窗。这个示例性的时窗被用来从单个试验中提取每个NHP对象的峰值振幅值。例如,这些值然后被用于在对于每个物种的两路重复测量ANOVA(例如,因素1:标准对偏差;因素2:高对低)中的统计分析。P3分量在对低偏差和高偏差的平均反应中被研究。同样地,例如,在识别人类和猴子的P3分量之后,在ERP波中于峰值振幅附近建立40毫秒的时窗,并且该时窗被用来从单个试验中提取平均振幅值。例如,P3反应的统计重要性在每个物种中使用t检验来计算。
II.5.使用定制设计的程序的示例性EEG数据分析
例如,类似于人类对象的用于评估神经系统或神经精神障碍的易患性或进行性病理的示例性实现方式,MMN分量和P300分量使用现有的软件包(例如,BrainVisionAnalyzer 2.0)以及示例性的定制设计的计算机实现的分析过程(例如,以MATLAB脚本编程的)来计算,以处理来自NHP对象的MMN和P300数据,从而创建ERP波形。示例性的程序被实现用于自动处理数据(例如,执行信号处理步骤,例如,滤波、通道去除、重新采样等),计算MMN差异波ERP,计算P300ERP,并且对给定数据执行统计分析。
II.6.人类的和非人灵长类动物的MMN ERP表征
例如,使用人类的MMN分量的时序和头皮形貌的确定表征,以及所提议的由硬膜外记录引起的NHP MMN定义,MMN ERP见于两种物种中。例如,在猕猴中,MMN的持续时间为大约48~120ms,在88ms处的峰值振幅为-1.62μV(F(1,409)=11.17,p=0.000),以及中央的头皮分布。
图12A和12B示出了使用现有的软件工具(图12A)以及定制设计的程序(例如,使用MATLAB脚本)(图12B)根据示例性的MMN数据集对NHP对象进行的示例性的ERP处理和分析的结果的数据曲线图。数据曲线图示出了来自使用Cz电极通道的非人灵长类动物对象的波形。例如,图12A和12B的数据曲线图示出了没有受到生理治疗的非人灵长类动物对象的MMN的基础图形。类似于在人类对象中的MMN反应,在图12A中的数据曲线图包含标准的和偏差的波形,并且示出了在标准与偏差之间的有力区分,如同MMN所显示的,反映了偏差波形减去标准波形之差。同样地,在图12B中,使用示例性的定制设计的程序的示例性的ERP处理与数据分析在预期的时间间隔内对于该MMN波形都得出了基本上相同的结果。
II.7.人类的和非人灵长类动物的P300ERP表征
如同MMN那样,P300使用所确定的表征来定义,并且在对低偏差和高偏差的平均反应中被研究。如同MMN那样,P3分量示出了物种间的一致性。例如,在猕猴中,持续时间为大约104~248ms,在196ms处的峰值振幅为3.5μV(t=10.36,p=0.000)。两种物种都呈现出了中央-顶叶头皮分布。
图13A和13B示出了使用现有的软件工具(图13A)以及定制设计的程序(例如,使用MATLAB脚本)(图13B)根据示例性的P300数据集对于没有受到生理治疗的NHP对象的示例性的ERP处理和分析的结果的数据曲线图。数据曲线图示出了来自使用Cz电极通道的非人灵长类动物对象的波形。例如,类似于人类对象的P300反应,例如,非人灵长类动物对象的P300是显著的正向电压电位,反映出对偏差刺激的反应。使用现有的软件工具或示例性的定制设计的脚本计算出的示例性的P300ERP在预期的时间间隔内是一致的,例如,示出了示例性的定制设计的程序的可靠性。
前述示例性的实现方式示出了在示例性的猕猴模型(例如,MMN和P300)中的相关ERP的识别,以及它与人类的同一ERP的比较。本文公开的系统和方法的更多实现方式评估对象对于使用“症状诱发剂”或潜在的“恢复诱发剂”(例如,潜在的治疗药物)的生理状况操作的反应,以便产生暂时的缺陷并且使用该示例性NHP动物模型来检验潜在的恢复。
II.8用于以在不同的生理状况下的NHP对象的MMN和P300ERP来检验症状诱发剂(克他命)和生理盐水赋形剂的示例性的实现方式
本文公开的系统和方法的示例性实现方式被执行,用于使用在例如以下三种生理状况下的示例性猕猴模型中的MMN和P300ERP来评估克他命的作用:(i)急性麻醉剂克他命输注(例如,1mg/Kg),(ii)生理盐水(赋形剂)输注,以及(iii)急性麻醉剂克他命输注5小时后。
如图14A-15B所示,与赋形剂“生理盐水”相比,克他命输注导致MMN(克他命对生理盐水(F(1,290)=4.47,p=0.035))以及P300(克他命对生理盐水(F(1,301)=27.73,p=0.000)两者的振幅显著减小。克他命的作用在输注5小时之后不再显著(MMN克他命对5小时后的克他命(F(1,403)=7.97,p=0.005);5小时后的克他命对生理盐水(F(1,290)=0.20,p=0.652);P3克他命对5小时后的克他命(F(1,411)=44.34,p=0.000);5小时后的克他命对生理盐水(F(1,301)=0.06,p=0.803))。没有显著的延迟差被观察到。合起来,这些示例性的结果表明NMDA受体拮抗剂氯胺酮能够在猕猴中显著地降低MMN和P3ERP分量的振幅。
图14A和14B示出了使用现有的软件工具(图14A)以及定制设计的程序(例如,使用MATLAB脚本)(图14B)根据示例性MMN数据集对于不同的生理状况的NHP对象进行的示例性的ERP处理和分析的结果的数据曲线图。数据曲线图示出了来自使用Cz电极通道的非人灵长类动物对象的波形。例如,在图14A和14B中的波形反映了在包括例如克他命、生理盐水/对照以及克他命的5小时后在内的不同的生理治疗下的非人灵长类动物对象的MMN反应。在图14A中的数据曲线图示出了在克他命治疗下的MMN振幅的减小,例如,在与生理盐水/对照注射相比时。该减小反映了对于偏差刺激的反应的衰减。更特别地,例如,MMN的减小有利地表明,该对象现在于检测偏差刺激方面有困难。在功能上,这表明感觉记忆处理的暂时功能障碍,症状常见于具有精神分裂症和其他神经精神障碍的患者中。而且,例如,还显示出,早到至少在注射完5小时后,这些症状已经消失,并且动物模型(例如,非人灵长类动物)展示出了完全恢复。同样地,在图14B中,使用示例性的定制设计的程序的示例性的ERP处理与数据分析,允许快速自动化以及“易于使用”,得出了基本上相同的结果。
图15A和15B示出了使用现有的软件工具(图15A)以及定制设计的程序(例如,使用MATLAB脚本)(图15B)根据示例性的P300数据集对于不同的生理状况的NHP对象进行的示例性的ERP处理和分析的结果的数据曲线图。数据曲线图示出了来自使用Cz电极通道的非人灵长类动物对象的波形。例如,在图15A和15B中的波形反映了在包括例如克他命、生理盐水/对照和克他命的5小时后在内的不同生理治疗下的非人灵长类动物对象的P300反应。如同现有软件以及在图15A和15B中的示例性程序分别示出的,在克他命治疗下(例如,在与生理盐水/对照注射相比时),P300振幅存在减小,这反映了对于偏差刺激的反应的衰减。如同在使用MMN ERP的实例中那样,在功能上,这表明这些对象在将它们的注意力重新引向偏差刺激的能力方面的功能障碍,例如,该功能障碍能够与精神分裂症以及其他神经精神或神经系统障碍关联。如同图15A和15B的数据曲线图的波形所示出的,早到至少在注射完5小时后,这些症状已经消失,并且动物模型(非人灵长类动物)展示出了完全恢复。
如同上文所描述的,用于使用非人灵长类动物生物模型来评估对于神经系统或神经精神障碍的潜在的治疗药理学药剂的本文公开的方法和系统的示例性实现方式,表明了疗效以及用于检测与这样的障碍关联的生理反应(例如,MMN和P300ERP)的并且检验用于在动物模型中诱发“所期望的”生理状况的不同物质以及其关于这些神经标志的调制的其他优点。
图16示出了用于让用户(例如将非人灵长类动物用作动物模型的药理学药物研究人员)来实施的示例性程序的过程图,用于评估潜在的治疗药理学药剂对神经系统或神经精神障碍的疗效。在图16的示意图中,非矩形的文本框反映程序可以询问用户(例如,操作员)的可能查询,以朝着所期望的目标来定制示例性的应用。如图所示,例如,在打开程序之后,操作员能够接收关于如何将帽子安置于对象(例如,非人灵长类动物)的头上的指令。用户将被指示给它们注射所感兴趣的药物,并且制定它是“症状诱发的”还是“恢复诱发的”药剂。症状诱发药物的实例能够包括作为NMDA受体拮抗剂的亚麻醉剂量的克他命。恢复诱发药物能够是例如研究人员正在对减轻或治愈神经精神障碍的检验的任意目标药物。一种可能的情形是症状诱发药物和恢复诱发药物两者的同时使用。例如,研究人员能够导致暂时的感觉和/或认知缺陷(例如,MMN和P300振幅的减少),随后是经由目标药物来诱发恢复。通过这样做,用户将能够检验目标药物针对NMDA受体拮抗剂(例如,克他命)的影响(模拟疾病)的疗效。
在注射后,例如,能够给操作员呈送用于开始刺激呈送的指令(例如,包括选择剖析类别),这些指令还能够在刺激呈送的同时或者在其之前开始数据记录。用户将被通知数据采集和刺激呈送何时已经完成。示例性程序的下一部分能够要求用户指定他/她是否希望将当前的数据采集会话与之前记录的数据采集会话(例如,之前记录的治疗)和/或与健康对照组数据进行比较。
来自示例性应用程序的实现方式的结果能够以各种格式之一来输出。例如,结果能够以“汇总”或“详细”的格式来输出,如同图16所示的实例示出的那样。在示例性的汇总结果格式中,将会给用户提供分析结果的非专家的用户友好型布局。在汇总结果格式的某些实例中,应用能够基于在数据分析过程中所产生的已生成的信息集而输出文本描述,例如,“目标药物已经提升了检测偏差的能力”。例如,汇总结果格式能够呈送定量结果,例如用于描绘神经系统或神经精神障碍的病理的级别的得分。而且,例如,汇总结果格式能够给用户呈送标准与偏差的比较的统计p值。在示例性的详细结果格式中,将会给用户提供分析结果的更复杂布局。例如,除了示例性的汇总结果格式之外,详细结果格式同样能够提供ERP图表和地形电压图。
指导分类技术
在某些方面中,例如,本文公开的技术包括用于数据和信号处理的系统和方法,包括实现分类器、检验统计量以及对所收集的生理数据的分析的机器学习算法。在本质上,例如,EEG数据由于电干扰、肌肉活动、直流(DC)偏移、汗水及其他因素而通常是有噪声的。这种不良的信噪比(SNR)导致需要通常经由大量的试验来收集数据,以便采集允许对所研究的效果进行精确检测的足够大的样本大小。本文公开的技术包括能够应用于EEG或其他生理信号数据分析以便显著地减少试验的必要数量(例如,由此减少检验时间)的分类算法以及定制检验统计量。
本文所描述的示例性分类方法使用可识别的认知和生理参数来使分类方法中的相关特征结构化,以根据神经信号来推断出大脑状态以及相关的潜在病理。这些特征涉及例如所感兴趣的具体电极和具体时窗,例如,其中已知的ERP示出了与受控的刺激相关的且其统计量能够与疾病状态、疾病的易患性和/或药理学药剂的存在一起变化的波动。例如,在提供刺激并收集统计信息之后,能够产生用于提供对于神经系统或神经精神障碍的示例性治疗(例如,药理学药剂)的效果度的值、障碍的严重性或者对象易受障碍影响的程度的剖析。
在分类是否与另一个假设相比的一个假设的背景下,示例性的指导分类技术的实例预处理阶段如下。识别生理数据采集模块的相关电极(例如,EEG头皮电极),涉及刺激的类型或种类。例如,该识别能够包括将在时间仓t内于条件c下的具体试验k中的EEG信号数据表示为y[c,k,t]。例如,条件在特定的神经系统或神经精神障碍(例如,精神分裂症)背景下能够包括生理盐水对克他命,或者健康对象对易患病的对象。将(y[c,k,t]:k=1,…,K)对于k求均值,以创建y[c,t]。一个核心的检验假设是,例如:H0(零假设):y[1,t]的统计量和y[2,t]的统计量是相同的;H1(备择假设):y[1,t]的统计量和y[2,t]的统计量不是相同的。
例如,使用受监督的方法,数据能够首先基于“训练”模式来分成已知的类别,例如,其中药理学药剂已对大脑状态造成影响的程度是清楚的。例如,生理盐水注射是一个极端,然而高剂量的药理学药剂是另一个极端。通过这样,数据集能够被检验以了解药理学药剂的效果,例如,通过使用回归分析来表征药理学药剂正在影响所感兴趣的大脑状态的程度的连续值。例如,事件相关电位的感兴趣的时窗能够基于与所感兴趣的具体脑标志相关的已知的认知神经科学和神经学来预先指定。
例如,在未受监督的设定中,没有使用训练数据。相反,例如,我们将这视为其中存在一系列可能的参数的复合假设检验问题。对于此类模式,例如,自然假设(在正态性检验已经随之发生之后)为y[1,t]-y[2,t]是正态的。因而,在零假设下,该差值具有0均值以及未知的方差。在备择假设下,差值具有非零均值以及未知的方差(不一定是与在H0下的方差相同的方差)。
因为在H0下的方差以及在H1下的均值方差是未知的,所以这是一个复合假设检验问题:在每个假设下都有许多分布。涉及复合假设检验的未受监督的分类器的分组能够被实现,这些分类器在不同的假设下按照不同的方式从理论上看来都是合理的。例如,检验统计量能够被开发出来,该统计量是所观察到的数据的函数。根据该检验统计量,p值能够被计算出或被估计出,该p值与阈值(例如,0.05)进行比较。如果它超过0.05,则接收零假设;否则拒绝零假设。
检验统计量能够包括来自例如归一化最大似然和/或标准统计方法(例如,ANOVA的F得分值)的方法,基于所估计的均值和方差。
在计算了检验统计量之后,观察到至少极为像之前观察到的检验统计量那样的检验统计量的似然在零假设下进行计算。因为零假设具有未知的方差,所以这是一个复合假设检验问题,并且没有一个具体的自然方式来计算p值。例如,多个方式能够被开发出来用于估计p值。一个实例包括:执行参数化过程以使用P0的估计来评估概率表达式,假定具有根据数据估计的方差的正态分布。如果检验统计量的分布g(d)在H0下按照封闭的形式是已知的(例如,For t,Z,F,ANOVA检验),则能够执行直接的计算或者能够使用查找表。
例如,如果使用更复杂的检验统计量(例如,归一化似然比),则能够实现蒙特卡罗(Monte Carlo)方法来估计概率。例如,非参数自举方法能够估计归一化最大似然情形的p值。以上所提及的前述分类器提供统计信息(例如,在未受监督的情况下的p值)。这能够通过采用的函数而直接转化为在该分类中随置信度而单调变化的严重“程度”。例如,自然过程是用于基于概率的负对数来分配置信度的“log loss”。
用于自动刺激呈送、数据采集及数据处理的示例性方法的解决方案
在本文公开的系统和方法的某些实现方式中,例如,计算机网络和分析技术被用来引出,记录及处理/分析MMN和P300ERP分量。要提高该系统的可用性和速度,本文公开的技术的示例性“全包式”应用系统能够被实现用于自动刺激呈送、数据采集和数据处理。通过将这些特征结合到一个相关系统中,有效且精确的数据处理所需的时间、空间和可用性得以最优化。在一个实例中,示例性的“全包式”应用能够被实现于计算机系统上,并且使用Qt、“跨平台应用和UI框架”(Qt开发者网络)来配置,依赖于本文公开的技术的示例性的并行刺激呈送、数据采集及信号处理模型。示例性的“全包式”应用系统同样能够使用其他编程语言(例如,Java)来实现,以便在常规的计算机系统(例如,膝上型计算机和服务器等)上以及在移动设备(例如,智能电话和平板计算机等)上建立该程序。
在Qt的实例中,开发被结构化以成为广泛的基础。特别地,例如,示例性的基于Qt的“全包式”程序能够呈送各种刺激模式(例如,包括视觉和听觉两种),从各种EEG记录硬件上采集数据,并且实现不同的分析技术和步骤。大规模地,例如,系统从打开数据线程以采集来自具体来源的在线EEG数据开始。在该特定的实例中,使用多个应用编程接口(API),例如,从而允许应用从包括例如Brain Products EEG系统、Neurosky Mindset设备、AD8224放大器、TGAM1放大器和表皮电子系统在内的各种设备上采集数据。同时,选定的刺激模式(例如,听觉oddball序列)能够被启动并给对象呈送。刺激呈送与数据采集能够使用在同一机器内的多个计算机处理器来并行地运行。它们同样能够相互传达信息,例如,刺激在什么时间点呈送。通过传达这种类型的信息,后续的信号处理能够具有关于“在何处”以及“在何时”发生相关的及事件相关的数据的具体信息。在Qt内,(s)信号处理模块被配置用于简单地“调用”待应用于数据的一个或多个处理/分析功能。通过这样做,例如,在信号处理技术方面允许广泛的适应性。结果,一个可能的实例能够包括让有经验的用户将他/她自己的信号处理脚本“上传”到所提议的应用上。但是,为了增加可用性,示例性的应用同样能够被配置用于与“内建的”信号处理技术一起供给,例如,前面所描述的示例性的定制设计的数据分析程序(例如,使用MATLAB脚本)以及指导分类器。
基于Qt的“全包式”程序的实例被描述,该程序包含下列项。在示例性的基于Qt的“全包式”程序的背景下,术语“用户”能够指的是应用的操作员;“对象”能够指的是其数据正被采集的个体;“刺激”能够指的是给对象呈送的刺激的任一个实例;“试验”能够指的是在处理数据之前给对象呈送的刺激的整个序列;“多态性”能够指的是同样的编程功能在涉及不同的背景时可能通过例如不同的构造类(build classes)来不同地执行的状况;以及“虚拟函数”能够指的是被不同地实现于超类的不同子类中的函数。
“全包式”应用系统包括含有数据采集、刺激呈送及数据处理模块的客户端-服务器解决方案。例如,客户端和服务器位于能够驻留于相同的或分离的机器(例如,本地和/或远程)内的两个不同的框架上。客户端含有数据采集与刺激呈送模块,而服务器容纳着数据处理模块。通过按照这种方式对客户端-服务器解决方案进行结构化,“全包式”应用系统能够具有用于众多设备上的适应性。例如,典型的移动设备(例如,智能电话或平板电脑)通常不具有用于处理并分析大量数据(例如,EEG数据)的计算能力、速度和电池寿命。在该示例性情形中,“全包式”应用系统能够驻留于两个单独的机器上。例如,刺激呈送与数据采集模块能够驻留于移动设备自身内,而信号处理模块能够驻留于远程服务器上。该远程的信号处理模块能够经由互联网(例如,Wi-Fi和/或蜂窝数据网络)来接收并返回数据。通过分发各种模块,“全包式”应用系统能够按照有效率的且可用的方式用于移动设备上。另一方面,如果个体有权访问常规的计算机(例如,膝上型或台式计算机),则它们将能够在本地使用应用,其中模块(例如,刺激呈送、数据采集和信号处理)能够驻留于同一机器内。这在例如个体不具有可靠的互联网接入连接的情形中能够是最优。
图17示出了示出示例性的“全包式”应用系统的一般体系结构的实例的示意图。在示意图中的示例性大方框(例如,标为“StimulusGrid”、“DataThread”、和“DataAcquisitionModule”)是应用的核心类。在示例性的核心类方框内的较小的绿色框对应于每个类的各种函数。红边标签代表从一个类向另一个类发射的Qt信号(例如,“clicked()”、“beginStimulus()”、“stimulusDone()”、“trialDone()”和“timeout()”)。黑边标签代表可能发生的导致后续函数被调用的各种事件(例如,“Start Timer(启动计时器)”、“reset(复位)”、“Stimulus Condition Reached(刺激条件达到)”、“Stop Timer(停止计时器)”和“Connection Successful(连接成功)”)。“Run Button(运行按钮)”方框代表在示例性的图形用户界面上的实际“Run(运行)”按钮。
在该示例性的框架内,例如,定义了代表客户端操作的两个核心模块的两个类:StimulusGrid和DataThread。一个附加的类,数据采集模块,被实例化于DataThread模块内。这些模块被实例化于用于创建这两个线程间的通信连接并创建图形用户界面的主窗口(MainWindow)线程内。
数据线程类是Qt的QThread类的子类,该子类被设计为与Qt应用的主线程一起同时运行。从而,该类将对DataAcquisitionModule进行实例化,用于与不同的数据采集硬件接口连接。为了该目的,DataAcquisitionModule类能够进行子类细分以促进与不同的硬件设备的通信。现存于DataAcquisitionModule类内的两个虚拟函数(openConnection()和getData())指定应当实现于子类内用于反映与设备间的硬件专用交互的函数。这提供了全部硬件设备接口通过类多态性的使用在执行的主线程上的生成,这允许了应用的依赖于硬件的数据采集能力的简单有效扩展。
StimulusGrid类代表将在主线程上给对象呈送的刺激模式。这个类的实例将与DataAcquisitionModule一起同时运行它们的刺激呈送函数。这个类能够进行子类细分,以通过允许主线程将多态性用于刺激结构的一般化而允许刺激模式(例如,听觉oddball)的快速实现和集成。示例性的架构已经使两个核心类的功能模块化。以上所定义的模块接口经由类间的交互来提供控制,并且在不影响其他类的功能的情况下允许每个个体类函数的实现方式的扩展/修改。这允许StimulusGrid和DataAcquisitionModule的快速且有效的扩展。
示例性代码
类:StimulusGrid
virtual void StimulusGrid::runGrid():执行必须在刺激循环开始之前完成的StimulusGrid的任意初始配置。在该函数中执行的任务可以包括:存储由用户在GUI上指定的配置值,初始化含有给对象呈送的刺激的顺序的或者将刺激循环的初始帧绘制于图形界面的阵列。
virtual void StimulusGrid::startStimulus():开始试验。对于可以每x毫秒就重复的周期性刺激,该函数可以初始化时序机制,例如,Qt的QTimer的实例。该函数给selectStimulus()函数发信号以开始直接调用它或者通过时序机制来调用它。
virtual void StimulusGrid::selectStimulus():选择待给个体呈送的下一个刺激。该函数动态地或者通过重复待呈送的预定刺激序列来选择刺激。理想地,例如,该函数应当仅执行后者,因为在运行时间内动态地指定刺激(例如,为每次迭代调用随机数发生器或者动态地查找图像的目录)会影响时序精度。该函数一般地每次试验都将被调用许多次,因为它负责刺激的呈送。对该函数的每次调用同样将会给DataThread::timeStamp()发信号,以在时间戳QList内的原始数据流中指出当前包编号,并且在标志QList中指出选定刺激的标志。
virtual void StimulusGrid::stopStimulus():该函数将在试验完成时(例如,在已经呈送了预定的最大限制的刺激时,或者在时序机制已经到期时)被调用。它将停止与刺激循环关联的任何已初始化的计时器,并且然后将给DataThread::stopAcquiringData()发信号,以停止数据采集。
类:DataThread
int DataThread::startConnection():该函数试图经由与DataQcquisitionModule::openConnection()的接口与指定的设备硬件建立连接。在成功的连接被建立时,它将返回0,否则返回-1。
void DataThread::run():在QThread中,run()函数被指定为待在QThread对象被衍生出用于并发执行时运行的并发函数。在该应用的背景下,它经由在DataQcquisitionModule::getData()处的接口按照指定的采样率重复采集数据。在初始调用时同样给StimulusGrid::startStimulus()发信号以开始刺激循环。
void DataThread::timeStamp():指出在原始数据流中的当前位置,以便使所采集的数据样本与所呈送的刺激的具体实例相关联。每当新的刺激经由StimulusGrid::selectStimulus()来给对象呈送时,该函数都被调用。
void DataThread::stopAcquiringData():该函数由刺激线程在试验完成时调用。该函数释放任意硬件连接,并重新初始化计数器以为下次试验作准备。它还调用connectServer()函数。
void DataThread::connectServer():该函数经由套接字端口连接至本地或远程的服务器模块。在成功连接之后,含有标志、时间戳和数据的QList对象被解析成个体字节,并被发送给服务器代码。该函数由DataThread::stopAcquiringData调用。
类:DataQcquisitionModule
virtual void DataQcquisitionModule::openConnection():试图打开到指定的采集硬件的连接。该函数将含有特定于硬件的接口代码,用于与给定设备通信。
virtual int DataQcquisitionModule::getData():从指定的数据采集硬件的传入数据流中读取一个数据点。该函数将含有特定于硬件的接口代码,用于与给定设备通信并从其中读取数据。
本专利文献所描述的主题及功能操作的实现方式能够以下列项来实现:各种系统、数字电子电路,或者计算机软件、固件或硬件,包括本说明书所公开的结构以及它们的结构等价物,或者它们当中的一个或多个的组合来实现。本说明书所描述的主题的实现方式能够被实现为一个或多个计算机程序产品,即,被编码于有形的且非暂时的计算机可读介质上的计算机程序指令的一个或多个模块,用于由数据处理装置执行或者用于控制数据处理装置的操作。计算机可读介质能够是机器可读存储设备、机器可读存储载体、记忆设备、实现机器可读的传播信号的物质组成,或者它们当中的一个或多个的组合。术语“数据处理装置”涵盖用于处理数据的所有装置、设备和机器,包括例如可编程处理器、计算机或者多个处理器或计算机。除了硬件之外,这些装置还能够包括用于为讨论中的计算机程序创建执行环境的代码,例如,用于构成处理器固件、协议栈、数据库管理系统、操作系统或者它们当中的一个或多个的组合的代码。
计算机程序(也称为程序、软件、软件应用、脚本或代码)能够以任意形式的编程语言来编写,包括编译语言或解释语言,并且它能够按照任意形式来部署,包括作为独立的程序,或者模块、构件、子程序或者适合于在计算环境中使用的其他单元。计算机程序不一定对应于文件系统中的文件。程序能够存储于用于保存其他程序或数据的文件(例如,存储于标记语言文档内的一个或多个脚本)的一部分内,于专用于讨论中的程序的单个文件内,或者于多个相互协调的文件(例如,用于存储一个或多个模块、子程序或部分代码的文件)内。计算机程序能够被部署为在一台计算机或者位于一个地点或者分布在多个地点并通过通信网络来互连的多台计算机上执行。
本说明书所描述的过程和逻辑流程能够由一个或多个可编程的处理器执行,这些处理器执行一个或多个计算机程序以通过对输入数据进行操作并生产输出来执行功能。这些过程和逻辑流程同样能够由专用逻辑电路(例如,FPGA(现场可编程门阵列)或ASIC(专用集成电路))来执行,并且装置同样能够被实现为专用逻辑电路。
适合于执行计算机程序的处理器包括,例如,通用和专用微处理器,以及任意一类数字计算机的任意一个或多个处理器。一般地,处理器将接收来自只读存储器或随机存取存储器或两者的指令和数据。计算机的基本元件是用于执行指令的处理器以及用于存储指令及数据的一个或多个存储设备。一般地,计算机还将包含一个或多个用于存储数据的大容量存储设备(例如,磁盘、磁光盘或光盘),或者在操作上被耦接用于接收来自这些大容量存储设备的数据或者将数据传输给它们,或者两者。但是,计算机不一定要具有这样的设备。适合于存储计算机程序指令和数据的计算机可读介质包括所有形式的非易失性存储器、介质和存储设备,包括例如半导体存储设备,例如,EPROM,EEPROM和闪存。处理器和存储器能够被辅之以专用逻辑电路,或者被并入专用逻辑电路。
虽然本专利文献含有许多细节,但是这些细节并不应被理解为对本发明的范围或者权利要求范围的限制,而是应作为可以特定于特定方面的特定实施例的特征的描述。在本专利文献中于单独的实施例的背景下描述的某些特征同样能够结合起来实现于单个实施例中。相反地,在单个实施例的背景下描述的各种特征同样能够单独地实现于多个实施例中或者实现于任意合适的子组合中。而且,尽管特征在上文可以被描述为在某些组合中起作用,甚至最初声明的那样,但是来自所声明的组合的一个或多个特征在某些情况下能够被从该组合中删除,并且所声明的组合可以指向子组合或者子组合的变型。
同样地,虽然操作在附图中按照特定的顺序来描述,但是这不应当被理解为要求此类操作必须按照所示出的特定顺序或者按照连续的顺序来执行,或者要求全部所示出的操作都要被执行,以获得所希望的结果。而且,在本专利文献所描述的实施例中的各种系统构件的分离不应被理解为要求在所有实施例中的此类分离。
本文仅描述了少数实现方式和实例,并且能够基于本专利文献所描述和示出的内容来获得其他实现方式、增强和变化。

Claims (14)

1.一种用于评估神经系统障碍或神经精神障碍的便携式系统,包含:
刺激发送设备,用于产生给对象呈送的刺激序列,其中所述刺激包括视觉、听觉或触觉刺激媒介中的至少一种;
传感器设备,与所述对象界面连接以在所述刺激序列的呈送之前、期间和之后检测由所述对象展现出的脑电图EEG信号,所述刺激序列基于指示与神经系统障碍或神经精神障碍关联的认知或感觉功能的一个或多个方面的认知-感觉剖析类别,其中传感器设备包含柔性基板、所述柔性基板上的三个传感器电极以及与所述传感器电极电通信且在所述柔性基板上的发射器单元,其中所述传感器设备被配置为佩戴在所述对象的头皮上的一个或多个可穿戴贴片以记录脑电图EEG信号并传输所记录的EEG信号,其中所述三个传感器电极包括记录电极、参考电极和配置在记录电极和参考电极之间的接地电极,其中所述三个传感器电极在对象的额部区上以矢状方向对准;
数据处理系统,与所述传感器设备通信以接收所传输的EEG信号,其中数据处理系统包含一个或多个存储单元以及被配置为处理作为生理数据的所述脑电图EEG信号以生成包含与所述认知-感觉剖析类别关联的一个或多个定量值的信息集的一个或多个处理器,所述一个或多个定量值包括描绘所述对象的所述神经系统障碍或神经精神障碍的易患性或进行性病理的级别的定量得分;以及
脑机接口模块,与所述数据处理系统和所述刺激发送设备通信以基于与所生成的信息集关联的或从中得出的数据在正在将所述刺激呈送给所述对象期间自适应地修改针对所述对象个体化的视觉、听觉或触觉刺激媒介中的至少一种的刺激序列,
其中刺激发送设备、数据处理系统及脑机接口模块在是智能手机或平板电脑的单个的计算设备中实现。
2.根据权利要求1所述的系统,其中所述脑机接口模块被配置为基于所述认知-感觉剖析类别来确定要呈送给所述对象的所述刺激序列。
3.根据权利要求2所述的系统,其中所述脑机接口模块被配置为接收与所生成的信息集关联的或从中得出的数据,并且被配置为在正在呈送针对所述对象个性化的所述刺激序列期间修改对所述对象的神经系统障碍或神经精神障碍相关的治疗的管理。
4.根据权利要求1所述的系统,其中所述智能手机或平板电脑包括显示屏和扬声器,在显示屏和扬声器上所述刺激发送设备分别生成图像序列及生成声音序列。
5.根据权利要求1所述的系统,其中所述刺激发送设备包括用于生成触觉刺激序列的激励器。
6.根据权利要求1所述的系统,其中所述神经系统障碍或神经精神障碍包括注意缺陷多动障碍(ADHD)、自闭症谱系障碍(ASD)、阿尔茨海默病、痴呆、抑郁症、双相情感障碍、精神分裂症、癫痫、多发性硬化症(MS)、帕金森病、亨廷顿病中的至少一种。
7.根据权利要求1所述的系统,其中所述定量得分描绘在与所述对象的所述EEG信号的采集对应的特定时间上的所述级别。
8.根据权利要求1所述的系统,其中认知或感觉功能的所述一个或多个方面包括注意力、记忆力、学习能力、虚构特性、图形整合能力、语义整合能力、目标探测能力、情绪价、偏好或意识状态中的至少一种。
9.根据权利要求1所述的系统,其中所述对象在所述对象的EEG信号的所述检测期间正在经历对所述神经系统障碍或神经精神障碍的治疗。
10.根据权利要求9所述的系统,其中所述数据处理系统被配置为处理所述生理数据以生成所述信息集,以包含指示对所述对象的所述治疗的疗效的与所述认知-感觉剖析类别关联的一个或多个定量值。
11.根据权利要求10所述的系统,其中所述治疗包括药理学药剂、电休克治疗、认知康复治疗或手术治疗中的至少一种。
12.根据权利要求11所述的系统,其中所述数据处理系统被配置为基于所生成的信息集来产生机器程序,并且其中所述机器程序驱动另一个设备或系统以管理从包含于所生成的信息集内的信息中得出的治疗。
13.根据权利要求1所述的系统,其中所述传感器设备包含用于捕获指示所述对象的运动或移动的所述对象的图像的成像设备。
14.根据权利要求13所述的系统,其中所述成像设备捕获所述对象的眼运动。
CN201380058415.8A 2012-11-10 2013-11-11 神经病理的评估系统及方法 Active CN104902806B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261724969P 2012-11-10 2012-11-10
US61/724,969 2012-11-10
PCT/US2013/069520 WO2014075029A1 (en) 2012-11-10 2013-11-11 Systems and methods for evaluation of neuropathologies

Publications (2)

Publication Number Publication Date
CN104902806A CN104902806A (zh) 2015-09-09
CN104902806B true CN104902806B (zh) 2019-06-04

Family

ID=50685232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380058415.8A Active CN104902806B (zh) 2012-11-10 2013-11-11 神经病理的评估系统及方法

Country Status (8)

Country Link
US (1) US10258291B2 (zh)
EP (1) EP2916721A4 (zh)
JP (1) JP2016501056A (zh)
KR (1) KR102273684B1 (zh)
CN (1) CN104902806B (zh)
BR (1) BR112015010624A2 (zh)
CA (1) CA2888355C (zh)
WO (1) WO2014075029A1 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9886493B2 (en) 2012-09-28 2018-02-06 The Regents Of The University Of California Systems and methods for sensory and cognitive profiling
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
JP2016523125A (ja) 2013-05-30 2016-08-08 グラハム エイチ. クリーシー 局所神経性刺激
ES2528492B1 (es) * 2014-07-11 2015-08-11 Neurobai S.L. Sistema y método para la estimulación cognitiva y sensorial
CN104173047B (zh) * 2014-08-13 2017-02-01 中国科学院昆明动物研究所 网络化多计算机协同行为电生理实验系统
US11017323B2 (en) * 2015-01-24 2021-05-25 Psymark Llc Method and apparatus for improving a profile analysis of an interpretive framework based on digital measurement of the production of and responses to visual stimuli
KR101711093B1 (ko) * 2015-02-11 2017-03-02 울산과학기술원 치매의 자가 조기 진단 및 훈련을 위한 안구 운동 및 지각 기능 기반 가상현실 시스템
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
JP6283840B2 (ja) * 2015-06-18 2018-02-28 大学共同利用機関法人自然科学研究機構 抑制性回路の評価及びその利用
CN104992080B (zh) * 2015-08-07 2018-05-18 北京环度智慧智能技术研究所有限公司 一种潜能值测验的刺激信息编制方法
CN105105772B (zh) * 2015-08-07 2018-01-09 北京环度智慧智能技术研究所有限公司 一种用于认知能力值测试的刺激信息编制方法
CN105631188A (zh) * 2015-12-18 2016-06-01 上海德滨康投资管理有限公司 神经重症康复诊疗系统
US11972336B2 (en) 2015-12-18 2024-04-30 Cognoa, Inc. Machine learning platform and system for data analysis
JP6450032B2 (ja) * 2016-01-27 2019-01-09 日本電信電話株式会社 作成装置、作成方法、および作成プログラム
US11622708B2 (en) * 2016-03-02 2023-04-11 Meta Platforms Technologies, Llc Low-noise multi-channel voltage recording device
WO2017191642A1 (en) * 2016-05-05 2017-11-09 Nurflus Paul Neurofeedback systems and methods
CN105816170B (zh) * 2016-05-10 2019-03-01 广东省医疗器械研究所 基于可穿戴式nirs-eeg的精神分裂症早期检测评估系统
US10799152B2 (en) * 2016-08-11 2020-10-13 Medtronic Xomed, Inc. System and method for motion detection and accounting
US10322295B2 (en) 2016-09-06 2019-06-18 BrainQ Technologies Ltd. System and method for generating electromagnetic treatment protocols for the nervous system
KR102676531B1 (ko) 2016-09-12 2024-06-20 삼성전자주식회사 웨어러블 디바이스 및 그 제어방법
CA3037822A1 (en) * 2016-09-30 2018-04-05 Universidade Do Porto Injectable hydrogel-forming polymer solution for a reliable eeg monitoring and easy scalp cleaning
KR20180045278A (ko) * 2016-10-25 2018-05-04 포항공과대학교 산학협력단 생체신호연동 가상현실 인지재활 시스템
WO2018090009A1 (en) * 2016-11-14 2018-05-17 Cognoa, Inc. Methods and apparatus for evaluating developmental conditions and providing control over coverage and reliability
US11285321B2 (en) 2016-11-15 2022-03-29 The Regents Of The University Of California Methods and apparatuses for improving peripheral nerve function
JP6913932B2 (ja) * 2017-04-17 2021-08-04 国立大学法人 鹿児島大学 自閉症スペクトラム障害診断支援装置、自閉症スペクトラム障害診断支援装置の作動方法及びプログラム
CN115137372A (zh) * 2017-04-28 2022-10-04 麦克赛尔株式会社 脑波数据分析系统、信息处理终端、电子设备以及用于脑波分析检查的信息的呈现装置
CN106937873A (zh) * 2017-04-28 2017-07-11 中国科学院心理研究所 一种基于甲基苯丙胺成瘾者的愤怒攻击性激发与评估方法
JP7075648B2 (ja) * 2017-07-05 2022-05-26 ディメンシア・フロント株式会社 脳機能疾病鑑別方法及び該方法を含むプログラムを実行するコンピュータプログラムプロダクト
US10555670B2 (en) * 2017-07-10 2020-02-11 International Business Machines Corporation Adaptive filtration of sweat artifacts during electronic brain monitoring
JP7336755B2 (ja) * 2017-07-28 2023-09-01 パナソニックIpマネジメント株式会社 データ生成装置、生体データ計測システム、識別器生成装置、データ生成方法、識別器生成方法及びプログラム
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC NEURO-ACTIVATION PROCESS AND APPARATUS
EP3706856A4 (en) 2017-11-07 2021-08-18 Neurostim Oab, Inc. NON-INVASIVE NERVOUS ACTIVATOR WITH ADAPTIVE CIRCUIT
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
CN108133736A (zh) * 2017-12-22 2018-06-08 谢海群 一种自适应性认知功能评估方法及系统
JP7069716B2 (ja) * 2017-12-28 2022-05-18 株式会社リコー 生体機能計測解析システム、生体機能計測解析プログラム及び生体機能計測解析方法
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
CN108175513A (zh) * 2018-01-10 2018-06-19 易有峰 一种神经外科临床检查装置
DE102018103334A1 (de) * 2018-02-14 2019-08-14 Thomas Recording Gmbh Verfahren zur nicht-invasiven videookulographischen Messung von Augenbewegungen als Diagnoseunterstützung für eine (Früh-) Erkennung von neuropsychiatrischen Erkrankungen
US11457855B2 (en) * 2018-03-12 2022-10-04 Persyst Development Corporation Method and system for utilizing empirical null hypothesis for a biological time series
CN113317761B (zh) * 2018-03-16 2024-10-08 北京安和福祉科技有限公司 一种认知功能障碍预防监测装置
CN113990497A (zh) * 2018-03-16 2022-01-28 佛山市丈量科技有限公司 一种记忆力损害预防系统及方法
CN108652589A (zh) * 2018-03-28 2018-10-16 佳木斯大学 一种多功能神经系统检查装置
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
JP2019200618A (ja) * 2018-05-16 2019-11-21 日本電信電話株式会社 作成装置、作成方法、および作成プログラム
CN109009079A (zh) * 2018-08-24 2018-12-18 广州杰赛科技股份有限公司 用户状态检测系统和方法、计算机设备、计算机存储介质
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
AU2019362793A1 (en) * 2018-10-15 2021-04-08 Akili Interactive Labs, Inc. Cognitive platform for deriving effort metric for optimizing cognitive treatment
JP7147864B2 (ja) * 2018-10-24 2022-10-05 日本電気株式会社 支援装置、支援方法、プログラム
EP3659496A1 (en) * 2018-11-29 2020-06-03 Koninklijke Philips N.V. Selection of sensory stimuli for neurofeedback training
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
EP3990100A4 (en) 2019-06-26 2023-07-19 Neurostim Technologies LLC NON-INVASIVE NERVE ACTIVATOR WITH ADAPTIVE CIRCUIT
KR102248732B1 (ko) * 2019-06-27 2021-05-06 (주)해피마인드 종합주의력 검사 데이터에 기초하여 주의력 결핍 및 과잉 행동 장애를 분류 및 치료반응을 예측하는 시스템 및 방법
CN110572444B (zh) * 2019-08-21 2021-11-19 深圳市普威技术有限公司 一种用于传递神经信号的系统及方法
FR3101533B1 (fr) * 2019-10-07 2021-10-29 Elsa Lyon Dispositif de recueil des signaux électrophysiologiques pour la tête d'un animal
CN110840433B (zh) * 2019-12-03 2021-06-29 中国航空综合技术研究所 与作业任务场景弱耦合的工作负荷测评方法
CA3152451A1 (en) 2019-12-16 2021-06-24 Michael Bernard Druke Non-invasive nerve activator with boosted charge delivery
CN110882465A (zh) * 2019-12-25 2020-03-17 厦门大学 基于脑电与运动状态反馈的注意力训练系统及方法
US12011286B2 (en) * 2020-03-16 2024-06-18 Koninklijke Philips N.V. Detecting undiagnosed sleep disordered breathing using daytime sleepiness and nighttime obstructive sleep apnea (OSA) severity
CN111477299B (zh) * 2020-04-08 2023-01-03 广州艾博润医疗科技有限公司 结合脑电检测分析控制的声电刺激神经调控方法及装置
KR20220015601A (ko) * 2020-07-31 2022-02-08 (주)인더텍 블록체인을 적용한 비대면 ai 작업치료 보조 시스템 및 비대면 ai 작업치료 보조 플랫폼 운영방법
KR102448271B1 (ko) * 2020-10-21 2022-09-28 단국대학교 천안캠퍼스 산학협력단 시각유발반응 측정 기반의 객관적 색각이상 검사 시스템
KR102513398B1 (ko) 2021-01-29 2023-03-24 서울대학교병원 뇌파 신호를 정량적으로 분석한 결과를 이용한 뇌파 판독 소견 작성 장치 및 방법
EP4039192A1 (en) * 2021-02-04 2022-08-10 Open Mind Innovation SAS Psychological trait detection method based on virtual reality and neuromarkers and associated system
WO2022165832A1 (zh) * 2021-02-08 2022-08-11 张鸿勋 在大脑中产生反馈的方法、系统及大脑键盘
CN112971787A (zh) * 2021-03-05 2021-06-18 中国人民解放军军事科学院军事医学研究院 适用于电磁环境的猴脑测试用电极帽
KR102287191B1 (ko) * 2021-03-12 2021-08-09 주식회사 아이메디신 뇌파 데이터 분석을 통한 중증인지장애 환자 분류 방법, 서버 및 컴퓨터프로그램
CN113040787B (zh) * 2021-04-25 2024-06-14 上海市精神卫生中心(上海市心理咨询培训中心) 针对评价感觉门控功能的mmn信号特征进行提取处理的方法、装置、处理器及其存储介质
CN114159071A (zh) * 2021-12-22 2022-03-11 南昌大学 一种基于心电图像的帕金森预测智能化方法及系统
CN115188448A (zh) * 2022-07-12 2022-10-14 广州华见智能科技有限公司 一种基于脑电波的中医医生诊疗经验记录方法
CN116019463B (zh) * 2022-11-14 2024-09-13 上海诺诚电气股份有限公司 一种术中连续神经监测系统及方法
WO2024110833A1 (en) * 2022-11-21 2024-05-30 Ospedale San Raffaele S.R.L. Method for analyzing a user's reaction to at least one stimulus
CN116831598B (zh) * 2023-06-14 2024-06-04 中国医学科学院生物医学工程研究所 一种脑肌信号评估方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092981A (en) 1976-07-15 1978-06-06 John Paul Ertl Method and apparatus for brain waveform examination
USRE34015E (en) 1981-05-15 1992-08-04 The Children's Medical Center Corporation Brain electrical activity mapping
US4987903A (en) 1988-11-14 1991-01-29 William Keppel Method and apparatus for identifying and alleviating semantic memory deficiencies
US5406956A (en) 1993-02-11 1995-04-18 Francis Luca Conte Method and apparatus for truth detection
US6463328B1 (en) * 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
USRE39539E1 (en) * 1996-08-19 2007-04-03 Torch William C System and method for monitoring eye movement
US6542081B2 (en) * 1996-08-19 2003-04-01 William C. Torch System and method for monitoring eye movement
AU745602B2 (en) * 1996-10-10 2002-03-21 Gregory Walter Price Interactive electrophysiological measurement of event related neural responses
US6032065A (en) 1997-07-21 2000-02-29 Nellcor Puritan Bennett Sensor mask and method of making same
US6385486B1 (en) * 1997-08-07 2002-05-07 New York University Brain function scan system
US6016449A (en) 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US7277758B2 (en) * 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US6434419B1 (en) 2000-06-26 2002-08-13 Sam Technology, Inc. Neurocognitive ability EEG measurement method and system
CA2456302A1 (en) 2001-08-07 2003-02-20 Lawrence Farwell Method for psychophysiological detection of deception through brain function analysis
US6832110B2 (en) 2001-09-05 2004-12-14 Haim Sohmer Method for analysis of ongoing and evoked neuro-electrical activity
AU785226B2 (en) 2001-09-25 2006-11-16 United States Department Of Veterans Affairs Method and apparatus for diagnosing schizophrenia and schizophrenia subtype
WO2003066157A2 (en) * 2002-02-04 2003-08-14 Great Lakes Biosciences, Llc Treatment of neurological disorders using electrical stimulation
US20100010336A1 (en) 2002-02-07 2010-01-14 Pettegrew Jay W Method and system for diagnosis of neuropsychiatric disorders including attention deficit hyperactivity disorder (adhd), autism, and schizophrenia
US7130673B2 (en) 2003-04-08 2006-10-31 Instrumentarium Corp. Method of positioning electrodes for central nervous system monitoring and sensing pain reactions of a patient
ATE531314T1 (de) 2003-06-19 2011-11-15 Neuronetrix Solutions Llc Vorrichtung und verfahren für ein automatisches eeg-system für auditorisch evozierte antworten
GB2421329B (en) 2003-06-20 2007-10-24 Brain Fingerprinting Lab Inc Apparatus for a classification guilty knowledge test and integrated system for detection of deception and information
US20050131288A1 (en) * 2003-08-15 2005-06-16 Turner Christopher T. Flexible, patient-worn, integrated, self-contained sensor systems for the acquisition and monitoring of physiologic data
US7688816B2 (en) 2004-03-15 2010-03-30 Jinsoo Park Maintaining packet sequence using cell flow control
US20050273017A1 (en) 2004-03-26 2005-12-08 Evian Gordon Collective brain measurement system and method
CN101299964A (zh) * 2004-04-13 2008-11-05 剑桥大学技术服务有限公司 用于评价神经认知障碍的方法
EP1781165B1 (en) * 2004-06-18 2017-11-08 Neuronetrix Solutions, LLC Evoked response testing system for neurological disorders
BRPI0606306A2 (pt) * 2005-01-12 2009-06-16 Aspect Medical Systems Inc sistema e método para previsão de eventos adversos durante o tratamento de desordens psicológicas e neurológicas
EP1845838A4 (en) 2005-01-14 2010-11-03 Nonlinear Medicine Inc KNOWLEDGE DETERMINATION SYSTEM
KR20060085543A (ko) 2005-01-24 2006-07-27 이순혁 휴대 단말기 TTA 규격 24핀 커넥터 부착용 외장형블루투스 모듈을 이용한 무선 뇌파 측정, 훈련,뉴로피드백(Neuro Feedback) 훈련 겸용 시스템.
US20070100214A1 (en) 2005-03-10 2007-05-03 Steinert John W Method and apparatus for stimulating exercise
US7904144B2 (en) 2005-08-02 2011-03-08 Brainscope Company, Inc. Method for assessing brain function and portable automatic brain function assessment apparatus
EP1924940A2 (en) * 2005-09-12 2008-05-28 Emotiv Systems Pty Ltd. System and method for interaction with a subject based on detection of mental states
US7647098B2 (en) 2005-10-31 2010-01-12 New York University System and method for prediction of cognitive decline
US20090220425A1 (en) 2006-01-19 2009-09-03 Drexel University Method to Quantitatively Measure Effect of Psychotropic Drugs on Sensory Discrimination
GB0613551D0 (en) * 2006-07-07 2006-08-16 Diagnostic Potentials Ltd Investigating neurological function
USD597676S1 (en) 2006-10-24 2009-08-04 Zeo, Inc. Headband with physiological sensors
US7844324B2 (en) 2007-02-14 2010-11-30 The General Electric Company Measurement of EEG reactivity
US20080221422A1 (en) 2007-03-08 2008-09-11 General Electric Company Sensor measurement system having a modular electrode array and method therefor
US9402558B2 (en) 2007-04-05 2016-08-02 New York University System and method for pain detection and computation of a pain quantification index
US8386312B2 (en) * 2007-05-01 2013-02-26 The Nielsen Company (Us), Llc Neuro-informatics repository system
JP2011517962A (ja) * 2007-10-04 2011-06-23 ニューロニクス エルティーディー. 中枢神経系に関連する医学的状態の治療のための、および認知機能の向上のためのシステムならびに方法
EP2211712B1 (en) 2007-11-06 2016-05-04 Bio-signal Group Corp. Device and method for performing electroencephalography
JP5386511B2 (ja) 2008-02-13 2014-01-15 ニューロスカイ インコーポレイテッド 生体信号センサを備えたオーディオヘッドセット
US8684926B2 (en) * 2008-02-25 2014-04-01 Ideal Innovations Incorporated System and method for knowledge verification utilizing biopotentials and physiologic metrics
CN101296554B (zh) 2008-06-19 2011-01-26 友达光电股份有限公司 等离子体处理装置及其上电极板
US8473024B2 (en) 2008-08-12 2013-06-25 Brainscope Company, Inc. Flexible headset for sensing brain electrical activity
US20100099954A1 (en) 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
US20120094315A1 (en) 2008-12-09 2012-04-19 Stephanie Fryar-Williams Biomarkers for the diagnosis and/or prediction of susceptibility to mental and neurodegenerative disorders
EP2682053A1 (en) 2009-06-15 2014-01-08 Brain Computer Interface LLC A brain-computer interface test battery for the physiological assessment of nervous system health
US20120221075A1 (en) 2009-11-02 2012-08-30 Y.K.L. Brain Tech Ltd. Computerized system or device and method for diagnosis and treatment of human, physical and planetary conditions
US20110109879A1 (en) 2009-11-09 2011-05-12 Daphna Palti-Wasserman Multivariate dynamic profiling system and methods
US8838226B2 (en) * 2009-12-01 2014-09-16 Neuro Wave Systems Inc Multi-channel brain or cortical activity monitoring and method
US8958882B1 (en) * 2010-01-06 2015-02-17 Evoke Neuroscience, Inc. Transcranial stimulation device and method based on electrophysiological testing
US8938301B2 (en) * 2010-01-06 2015-01-20 Evoke Neuroscience, Inc. Headgear with displaceable sensors for electrophysiology measurement and training
EP2542147A4 (en) * 2010-03-04 2014-01-22 Neumitra LLC DEVICES AND METHOD FOR TREATING PSYCHICAL INTERFERENCE
JP5467267B2 (ja) * 2010-03-05 2014-04-09 国立大学法人大阪大学 機器制御装置、機器システム、機器制御方法、機器制御プログラム、および記録媒体
CN102711601B (zh) 2010-06-14 2015-01-14 松下电器产业株式会社 脑电波测量系统、脑电波测量方法
WO2011160222A1 (en) * 2010-06-22 2011-12-29 National Research Council Of Canada Cognitive function assessment in a patient
US8392250B2 (en) * 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Neuro-response evaluated stimulus in virtual reality environments
AU2011299041B2 (en) * 2010-09-10 2015-01-22 Neuronetrix Solutions, Llc Electrode system with in-band impedance detection
US8577440B2 (en) 2011-03-29 2013-11-05 Covidien Lp Method and system for positioning a sensor
KR101218203B1 (ko) 2011-03-31 2013-01-03 (주)락싸 인체 장착형 센서셋 및 그 동작 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system

Also Published As

Publication number Publication date
US20150305686A1 (en) 2015-10-29
JP2016501056A (ja) 2016-01-18
EP2916721A1 (en) 2015-09-16
US10258291B2 (en) 2019-04-16
BR112015010624A2 (pt) 2017-07-11
CA2888355C (en) 2022-07-19
EP2916721A4 (en) 2016-10-26
CN104902806A (zh) 2015-09-09
CA2888355A1 (en) 2014-05-15
KR20150082322A (ko) 2015-07-15
KR102273684B1 (ko) 2021-07-07
WO2014075029A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
CN104902806B (zh) 神经病理的评估系统及方法
CN104871160B (zh) 用于感觉和认知剖析的系统和方法
US11529515B2 (en) Transcranial stimulation device and method based on electrophysiological testing
Lotte et al. Electroencephalography (EEG)-based brain-computer interfaces
CN104902814B (zh) 检测生理信号的额部电极传感器的配置和空间放置
CN106407733A (zh) 基于虚拟现实场景脑电信号的抑郁症风险筛查系统和方法
EP3493737A1 (en) In-ear sensing systems and methods for biological signal monitoring
CN109065162A (zh) 一种综合性智能化诊断系统
KR102388595B1 (ko) 뇌 상태를 판단하고, 디지털 컨텐츠 기반의 치료 정보를 제공하는 장치
Knierim et al. Open-source concealed EEG data collection for Brain-computer-interfaces-neural observation through OpenBCI amplifiers with around-the-ear cEEGrid electrodes
Li et al. Multi-modal emotion recognition based on deep learning of EEG and audio signals
CN114640699B (zh) 基于vr角色扮演游戏交互的情绪诱发监测系统
CN115517687A (zh) 基于多模态融合改善焦虑的特异性神经反馈系统
Smith Electroencephalograph based brain computer interfaces
Wang et al. Recording brain activity while listening to music using wearable EEG devices combined with Bidirectional Long Short-Term Memory Networks
Nguyen et al. LIBS: a lightweight and inexpensive in-ear sensing system for automatic whole-night sleep stage monitoring
Simeoni A methodological framework for the real-time adaptation of classifiers for non-invasive brain-computer interfaces towards the control of home automation systems
Hassib Mental task classification using single-electrode brain computer interfaces
Riaz et al. Wearable Sensor Systems to Detect Biomarkers of Personality Traits for Healthy Aging: A Review
Sohaib et al. An empirical study of machine learning techniques for classifying emotional states from EEG data
Klempíř Analysis of Neural Activity in the Human Basal Ganglia: From Micro to Macro
Nia et al. FEAD: Introduction to the fNIRS-EEG Affective Database-Video Stimuli
Ghosh Hajra Brain vital signs: Towards next generation neurotechnologies for rapid brain function assessments at point-of-care
Tayade et al. An Empirical Evaluation of Brain Computer Interface Models from a Pragmatic Perspective
WO2024163742A2 (en) Knitted strain sensor system used for pharyngeal rehabilitation

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant