CN110840433B - 与作业任务场景弱耦合的工作负荷测评方法 - Google Patents

与作业任务场景弱耦合的工作负荷测评方法 Download PDF

Info

Publication number
CN110840433B
CN110840433B CN201911222034.4A CN201911222034A CN110840433B CN 110840433 B CN110840433 B CN 110840433B CN 201911222034 A CN201911222034 A CN 201911222034A CN 110840433 B CN110840433 B CN 110840433B
Authority
CN
China
Prior art keywords
strategy
coping
index
sequence
stimulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911222034.4A
Other languages
English (en)
Other versions
CN110840433A (zh
Inventor
丁霖
苗冲冲
安凯
吴旭
刘站平
王满玉
孙国强
张睿明
王晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Aero Polytechnology Establishment
Original Assignee
China Aero Polytechnology Establishment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Aero Polytechnology Establishment filed Critical China Aero Polytechnology Establishment
Priority to CN201911222034.4A priority Critical patent/CN110840433B/zh
Publication of CN110840433A publication Critical patent/CN110840433A/zh
Application granted granted Critical
Publication of CN110840433B publication Critical patent/CN110840433B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/378Visual stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/38Acoustic or auditory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/381Olfactory or gustatory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Cardiology (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供一种与作业任务场景弱耦合的工作负荷测评方法,其包括以下步骤:S1,生成刺激序列和标准应对策略序列;S2,设定应对策略数据的测评指标、生理数据的测评指标和典型作业任务J;S3,使用刺激序列获得每个测试样本的应对策略数据和生理数据;待测试样本恢复至基线水平后进行典型作业任务J之后,立即使用刺激序列再次获得应对策略数据和生理数据;使用策略计算模型对应对策略数据进行处理;S4,给每个测试样本构建第一指标集Ika和第二指标集Ikb;最后计算获得工作负荷指数WL;S5,确定工作负荷等级。本发明不会对真实作业产生额外负担,可灵活调整测评指标,通用性强,采用数字化的分析使得结论客观可靠性高。

Description

与作业任务场景弱耦合的工作负荷测评方法
技术领域
本发明涉及人机工程领域,具体地说是一种与作业任务场景弱耦合的工作负荷测评方法。
背景技术
随着科学技术的发展,装备或产品的自动化、信息化、智能化水平越来越高,人在装备或产品人机系统中的作用也发生了变化,从系统的操作者和控制者变成了系统的监控者和决策者,人在整个人机系统中依然处于主导地位。工作负荷中脑力负荷的比重增加,这恰恰对人的能力提出了更高的要求,人的工作负荷是否合适在整个装备或产品效能发挥中的贡献越来越多。因此,为保护装备或产品使用人员健康,提高作业绩效,急需开展工作负荷测评技术的研究和应用。
目前,工作负荷测评方法主要包含主观测评法和客观测评法两类。主观测评法以问卷量表法为主,典型的主观测评法主要包括库柏哈柏方法、NASA-TLX脑力负荷主观量表和SWAT量表等,这种方法较为简单方便,缺点是测评结果容易受被试主观意识影响,缺少客观依据。
常用的客观测评方法有生理指标测量法、主任务测评法、辅任务测评法等。生理指标测量法是通过人在做某一项脑力类型的工作时某一个或某一些生理指标的变化来判断脑力负荷的大小;主任务测评法是通过测量操作者在工作时的业绩指标来判断这项工作给操作者带来的工作负荷;辅任务测评法是让作业人员进行主任务的同时再完成另一选定的辅任务,通过考核操作者在做主任务时剩余能力来评估工作负荷。综合分析现有的工作负荷客观测评方法可见,其在存在以下问题:均需在真实或近似真实的任务场景下开展,在作业过程中进行数据采集,其难度大且成本较高;生理测评法的指标采集程序较繁琐,对测量环境要求高,难以随装备或产品使用,同时,具有一定侵入性,对作业人员产生一定干预,容易造成误差;主任务测评法还存在工作表现的测量受工作性质本身的影响较大问题,比较两项不同工作带来的脑力负荷时,会发生困难;辅任务测量法的主要假定是人的信息处理系统的能力是一定的或者是没有差别的,这种假定难以让很多人信服,另外,这种方法也容易对主任务产生干扰。
综上,迫切需要一种对作业任务场景耦合度要求低、对人员侵入小、客观并可操性强的工作负荷测评方法。
发明内容
本发明所要解决的技术问题是提供一种与作业任务场景弱耦合的工作负荷测评方法,以方便设计和测评人员开展装备或产品的工作负荷进行测评,具体技术方案如下:
步骤一,生成由刺激组成的第一刺激序列和第二刺激序列,以及他们对应的第一标准应对策略序列和第二标准应对策略序列;
步骤二,根据装备或产品自身的特性,设定应对策略数据的测评指标、生理数据的测评指标和典型作业任务J;
步骤三,测试设备先使用第一刺激序列对每个测试样本进行测试,获得每个测试样本的第一应对策略数据和第一生理数据;待测试样本恢复至基线水平后进行典型作业任务J之后,立即让测试设备使用第二刺激序列对所述测试样本进行测试,获得所述测试样本的第二应对策略数据和第二生理数据;使用策略计算模型对应对策略数据进行处理,获得和应对策略数据的测评指标相对应的数值称为应对策略测评指标数据;
步骤四,构建指标集I,包括应对策略数据的测评指标和生理数据的测评指标,指标集I中测评指标的个数为x个,使用应对策略测评指标数据和生理数据对指标集I进行具体化,获得测试样本k在执行典型作业任务J前的第一指标集Ika,以及测试样本k在执行典型作业任务J后的第二指标集Ikb
依据G1法中指标评价规则评价指标集I中x个测评指标的重要度降序排列,得到指标重要度向量U=[u1,u2,......,ux],其中u1,u2,......,ux分别表示降序排列后的各指标重要度得分;
按式(7)计算指标间的相对重要度rp
Figure BDA0002301121070000031
其中,p为1≤p≤x-1的正整数,up和up+1分别为第p个指标和第p+1个测评指标的重要度得分;
按式(8)计算出最后一个指标的权重值,然后再使用式(9)计算各指标的权重值,得到指标权重向量
Figure BDA0002301121070000032
其中
Figure BDA0002301121070000033
表示各指标权重值:
Figure BDA0002301121070000034
Figure BDA0002301121070000035
其中,p为1≤p≤x-1的正整数,x为指标集I中的评价指标个数,j为正整数,rp为指标间的相对重要度,
按照式(10)计算测试样本k的数据变化率向量Ik
Figure BDA0002301121070000036
如果指标与工作负荷正相关,则计算后取其绝对值;
按照式(11)计算测试样本k的工作负荷指数:
WL(k|J)=WT*Ik (II)
其中,WL(k|J)表示测试样本k进行装备或产品典型作业任务J的工作负荷指数;WT是指标权重向量W的转置矩阵;
依次计算所有测试样本的工作负荷指数后,按照式(12)计算最终的工作负荷指数WL:
Figure BDA0002301121070000041
其中,m表示所有测试样本的个数,i为1≤i≤m的正整数;
步骤五,依据工作负荷指数WL的值给出结论,工作负荷指数WL越大,说明装备或产品典型作业任务J的工作负荷越大;WL越小,说明装备或产品典型作业任务J的工作负荷越小。
优选的,所述步骤一中第一刺激序列、第二刺激序列、第一标准应对策略序列和第二标准应对策略序列具体定义如下:
刺激序列φ′={s′1,s′2,s′3,…,s′n},其中s′1,s′2,s′3,…,s′n代表各刺激,基于刺激序列φ′生成标准应对策略序列Ω′={(t′1,p′1),(t′2,p′2),(t′3,p′3),…,(t′n,p′n)},其中t′1,t′2,t′3,…,t′n代表各标准应对时间,p′1,p′2,p′3,…,p′n代表各标准应对方式;
生成同样具有n个刺激的不同刺激序列φ″={s″1,s″2,s″3,…,s″n},及其标准应对策略序列Ω″={(t″1,p″1),(t″2,p″2),(t″3,p″3),…,(t″n,p″n)},同样,其中s″1,s″2,s″3,…,s″n代表各刺激,其中t″1,t″2,t″3,…,t″n代表各标准应对时间,p″1,p″2,p″3,…,p″n代表各标准应对方式;
第一刺激序列和第二刺激序列在刺激序列
Figure BDA0002301121070000042
和刺激序列
Figure BDA0002301121070000043
中进行选择,第一刺激序列和第二刺激序列不相同,第一标准应对策略序列和第二标准应对策略根据第一刺激序列和第二刺激序列选择相应的标准应对策略。
优选的,所述步骤三的具体实现步骤如下:
将测试样本随机平均分为两组,第一组C′使用刺激序列φ′作为第一刺激序列,使用刺激序列φ‘’作为第二刺激序列,第二组C″使用刺激序列φ‘’作为第一刺激序列,使用刺激序列φ′作为第二刺激序列,
如果第k个测试样本在第一组C′中的测试流程如下:
(a)在进行装备或产品典型作业任务J前测试:
初始化应对策略集合Ωka、Ωkb。测试样本k接受刺激序列φ′中的刺激s′1,s′2,s′3,…,s′n,做出应对策略
Figure BDA0002301121070000051
依次将应对策略记录入集合Ωka,同时根据生理数据的测评指标采集生理数据;
(b)进行装备或产品作业:
等测试样本k恢复至基线水平后,让测试样本k执行所测评装备或产品的典型作业任务J;
(c)在进行装备或产品典型作业任务J后测试:
测试样本k在执行装备或产品典型作业任务J后,立即接受刺激序列φ″中的刺激s″1,s″2,s″3,…,s″n,生成应对策略
Figure BDA0002301121070000052
依次将应对策略记录入集合Ωkb,同时根据生理数据的测评指标采集生理数据;
(d)根据获取的应对策略集合建立策略计算模型并计算:
建立策略计算模型:
设标准应对策略集合
Figure BDA0002301121070000053
其中
Figure BDA0002301121070000054
代表各标准应对时间,
Figure BDA0002301121070000055
代表各标准应对方式;实际所测应对策略集合
Figure BDA0002301121070000056
其中
Figure BDA0002301121070000057
代表各实际所测应对时间,
Figure BDA0002301121070000058
代表各实际所测应对方式;
应对策略数据计算方法为:
按照式(1)判定应对策略是否为正确应对:
Figure BDA0002301121070000059
其中,
Figure BDA00023011210700000510
为实际所测应对策略集合Ωr中策略
Figure BDA00023011210700000511
的正确判定因子;
按照式(2)计算应对策略集Ωr中策略正确个数NoCRr
Figure BDA00023011210700000512
进一步地,按照式(3)判定应对策略是否为错误应对:
Figure BDA0002301121070000061
其中,
Figure BDA0002301121070000062
为实际所测应对策略集合Ωr中策略
Figure BDA0002301121070000063
的错误判定因子;
按照式(4)计算应对策略集Ωr中策略错误个数NoICRr
Figure BDA0002301121070000064
进一步地,按照式(4)判定应对策略是否为超时应对:
Figure BDA0002301121070000065
其中,
Figure BDA0002301121070000066
为实际所测应对策略集合Ωr中策略
Figure BDA0002301121070000067
的超时判定因子;
按照式(6)计算应对策略集Ωr中策略超时个数NoLRr
Figure BDA0002301121070000068
将Ω′、Ω″、Ωka、Ωkb代入策略计算模型中,得到NoCRka、NoCRkb、NoICRka、NoICRkb、NoLRka、NoLRkb的计算结果,其中NoCRka、NoICRka和NoLRka分别为测试样本k在典型作业任务前应对策略集中策略正确个数、策略错误个数和策略超时个数,NoCRkb、NoICRkb和NoLRkb分别为测试样本k在典型作业任务后应对策略集中策略正确个数、策略错误个数和策略超时个数;
其中Ω′、Ω″为分别对应刺激序列
Figure BDA0002301121070000069
Figure BDA00023011210700000610
的标准应对策略集合,Ωka、Ωkb为分别对应刺激序列
Figure BDA00023011210700000611
Figure BDA00023011210700000612
的实际所测应对策略集合;
如果第k个测试样本在第二组C″中的测试流程和在第一组C′中的测试流程相同,区别在于第二组C″中的测试样本是先接受刺激序列φ″中的刺激,进行典型作业任务J后再接受刺激序列
Figure BDA00023011210700000613
中的刺激;
(e)输出数据:
输出并保存测试样本k测试中典型作业任务前的NoCRka、NoICRka和NoLRka,典型作业任务后的NoCRkb、NoICRkb和NoLRkb,以及采集的生理数据。
优选的,所述步骤四中的指标集I为:
I={NoCR,NoICR,NoLR,......,X,......,HRV,APD},
其中,X表示x个评价指标中的一项具体指标,NoCR表示策略正确个数,NoICR表示策略错误个数,NoLR表示策略超时个数,HRV表示心率变异性,APD表示平均瞳孔直径。
优选的,所述指标集I还包括心电、皮电、脑电、眼动、肌电或者面部表情的相应测评指标。
优选的,所述刺激包括视觉、听觉、味觉、温度、数字、图画和音乐刺激。
本发明的效果如下:
与作业任务场景弱耦合,采集数据的设备不会对真实作业产生额外负担,可接受度高;可针对装备、产品及其作业任务自身特性灵活调整测评指标,通用性强,采用数字化的分析使得结论客观可靠性高。
附图说明
图1是本发明的整体流程图;以及
图2是本发明获取应对策略数据的流程图。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
本申请使用测试设备获取测试对象的生理数据和应对策略数据,生理数据是测量测试对象的生理反应得到的数据,通常包括心电、皮电、脑电、眼动、面部表情等,应对策略数据是测试对象接收刺激后做出响应的数据,如反应速度、准确率、错误率等。本领域技术人员都知道,对测试对象的刺激可以采用视觉、听觉、气味、温度、数字、味道等方式,具体的刺激方式可以根据需要进行选择,而对刺激的具体反应也可以根据需要进行相应调整,如点击按键、顺时针/逆时针旋转摇杆、改变敲击频率等。在本实施例中测试设备对测试对象的刺激包括视觉和听觉刺激,具体为:显示屏上会显示白色、黄色、红色、绿色及蓝色等颜色刺激,反应面板上分布有相应颜色的按键;还有形式为黑色的矩形刺激,会分别呈现在屏幕底边的位置上,分别对应不同的脚蹬按键;喇叭会播放不同频率的声音刺激,分别对应反应面板黑色、灰色等的按键。被测试者根据显示屏上的显示内容和喇叭中的声音,分别按压相应的按键。在测试过程中还同时获取心电、皮电、脑电、眼动及面部表情等。如图1所示,使用测试设备进行与作业任务场景弱耦合的工作负荷测评方法的具体步骤如下:
步骤一,生成刺激序列及标准应对策略序列:
生成由颜色刺激、声音刺激及图形刺激组成的刺激序列φ′={s′1,s′2,s′3,…,s′n},其中s′1,s′2,s′3,…,s′n代表各刺激。基于刺激序列φ′生成标准应对策略序列Ω′={(t′1,p′1),(t′2,p′2),(t′3,p′3),…,(t′n,p′n)},其中t′1,t′2,t′3,…,t′n代表各标准应对时间,p′1,p′2,p′3,…,p′n代表各标准应对方式。
进一步地,生成同样具有n个刺激的不同序列φ″={s″1,s″2,s″3,…,s″n},及其标准应对策略序列Ω″={(t″1,p″1),(t″2,p″2),(t″3,p″3),…,(t″n,p″n)},同样,其中s″1,s″2,s″3,…,s″n代表各刺激,其中t″1,t″2,t″3,…,t″n代表各标准应对时间,p″1,p″2,p″3,…,p″n代表各标准应对方式。
本实施例中设定的刺激及其标准应对策略,如表1所示:
表1
Figure BDA0002301121070000081
Figure BDA0002301121070000091
一个示例性的随机产生的刺激序列可以如表2所示,刺激序列全部完成后可重复刺激序列,以达到需要的时长或刺激数量:
表2
Figure BDA0002301121070000092
步骤二,确定测评指标:
根据装备或产品自身的特性,确定基于应对策略的正确个数、漏判个数、误判个数、反应时间等行为绩效的测评指标。进一步地,确定心电、皮电、脑电、眼动及面部表情等测评指标。基于所测评装备或产品,选取典型作业任务J。
步骤三,获得应对策略数据和生理数据的测试流程:
将测试样本随机平均分为两组,第一组C′先接受完整的刺激序列φ′,记录此过程中测试样本的策略及生理、眼动、行为及面部表情等数据;恢复至基线水平后进行装备或产品的典型作业任务J,之后立即接受完整的刺激序列φ″。第二组C″则先接受完整的刺激序列φ″,记录此过程中测试样本的策略及生理、眼动、行为及面部表情等数据;恢复至基线水平后进行装备或产品的典型作业任务J,之后立即接受完整的刺激序列φ′。将测试样本分为两组,是因为刺激序列是随机产生的,所以刺激序列φ′的难度可能和刺激序列φ″不一样,两组测试两本接收的刺激序列的先后顺序相反,可以消除不同刺激序列可能产生的差异化影响。在本发明中,测试样本k在执行装备或产品典型作业任务J前接受的刺激序列称为第一刺激序列,相对于第一刺激序列生成的标准应对策略序列称为第一标准应对策略序列,使用第一刺激序列对测试样本进行测试,获得的策略数据和生理数据分别称为第一应对策略数据和第一生理数据;测试样本k在执行装备或产品典型作业任务J后接受的刺激序列称为第二刺激序列,相对于第二刺激序列生成的标准应对策略序列称为第二标准应对策略序列,使用第二刺激序列对测试样本进行测试,获得的策略数据和生理数据分别称为第二应对策略数据和第二生理数据;
分别记录接受刺激序列φ′、φ″时的应对策略数据及生理、眼动、面部表情等数据,计算测试样本的正确应对策略个数等应对策略数据,输出应对策略数据及生理、眼动、面部表情等数据。
以测试样本k(即第k个测试样本)在第一组C′中为例,具体流程如下:
(a)在进行装备或产品典型作业任务J前测试:
初始化应对策略集合Ωka、Ωkb。测试样本k接受刺激序列φ′中的刺激s′1,s′2,s′3,…,s′n,做出应对策略
Figure BDA0002301121070000101
依次将应对策略记录入集合Ωka。进一步地,基于确定的测试指标采集整个过程中的数据,包括心电、皮电、脑电、眼动及面部表情等数据。
(b)进行装备或产品作业:
等测试样本k恢复至基线水平后,让测试样本k执行所测评装备或产品的典型作业任务J。
(c)在进行装备或产品典型作业任务J后测试:
测试样本k在执行装备或产品典型作业任务J后,立即接受刺激序列φ″中的刺激s″1,s″2,s″3,…,s″n,生成应对策略
Figure BDA0002301121070000111
依次将应对策略记录入集合Ωkb。进一步地,基于确定的测试指标采集整个过程中的数据,包括心电、皮电、脑电、眼动及面部表情等数据。
(d)根据获取的应对策略集合建立策略计算模型并计算:
建立策略计算模型:
设标准应对策略集合
Figure BDA0002301121070000112
其中
Figure BDA0002301121070000113
代表各标准应对时间,
Figure BDA0002301121070000114
代表各标准应对方式;实际所测应对策略集合
Figure BDA0002301121070000115
其中
Figure BDA0002301121070000116
代表各实际所测应对时间,
Figure BDA0002301121070000117
代表各实际所测应对方式;
应对策略数据计算方法为:
按照式(1)判定应对策略是否为正确应对:
Figure BDA0002301121070000118
其中,
Figure BDA0002301121070000119
为实际所测应对策略集合Ωr中策略
Figure BDA00023011210700001110
的正确判定因子,i为正整数。
按照式(2)计算应对策略集Ωr中策略正确个数NoCRr
Figure BDA00023011210700001111
进一步地,按照式(3)判定应对策略是否为错误应对:
Figure BDA0002301121070000121
其中,
Figure BDA0002301121070000122
为实际所测应对策略集合Ωr中策略
Figure BDA0002301121070000123
的错误判定因子。
按照式(4)计算应对策略集Ωr中策略错误个数NoICRr
Figure BDA0002301121070000124
进一步地,按照式(4)判定应对策略是否为超时应对:
Figure BDA0002301121070000125
其中,
Figure BDA0002301121070000126
为实际所测应对策略集合Ωr中策略
Figure BDA0002301121070000127
的超时判定因子。
按照式(6)计算应对策略集Ωr中策略超时个数NoLRr
Figure BDA0002301121070000128
将Ω′、Ω″、Ωka、Ωkb代入策略计算模型中,得到NoCRka、NoCRkb、NoICRka、NoICRkb、NoLRka、NoLRkb的计算结果,其中NoCRka、NoICRka和NoLRka分别为测试样本k在典型作业任务前应对策略集中策略正确个数、策略错误个数和策略超时个数,NoCRkb、NoICRkb和NoLRkb分别为测试样本k在典型作业任务后应对策略集中策略正确个数、策略错误个数和策略超时个数。
其中Ω′、Ω″为分别对应刺激序列
Figure BDA0002301121070000129
Figure BDA00023011210700001210
的标准应对策略集合,Ωka、Ωkb为分别对应刺激序列
Figure BDA00023011210700001211
Figure BDA00023011210700001212
的实际所测应对策略集合。
第二组C″中每个测试样本与第一组C′记录测试数据的方法相同,区别在于第二组C″中的测试样本是先接受完整的刺激序列φ″,记录此过程中测试样本的策略及生理、眼动、行为及面部表情等数据;恢复至基线水平后进行装备或产品的典型作业任务J,之后立即接受完整的刺激序列φ′。此时,Ω″、Ω′分别对应刺激序列
Figure BDA00023011210700001213
Figure BDA00023011210700001214
的标准应对策略集合,Ωka、Ωkb则分别对应刺激序列
Figure BDA00023011210700001215
Figure BDA00023011210700001216
的实际所测应对策略集合。
(e)输出数据:
输出并保存测试样本k测试中作业任务前的NoCRka、NoICRka和NoLRka,作业任务后的NoCRkb、NoICRkb和NoLRkb等应对策略数据,及生理、眼动、面部表情等数据。
步骤四,获得工作负荷指数:
根据装备或产品典型作业任务J前后的应对策略数据及生理、眼动、面部表情等数据的对比分析表征装备使用人员的工作负荷。
通过分析装备或产品典型作业任务J的特点,确定x个与其工作负荷敏感的策略及人机工程评价指标,通常来说,可选择心率变异性HRV、平均瞳孔直径APD等表征工作负荷,如果装备或产品典型作业任务J的工作负荷还与肌电、脑电等其他指标敏感,本领域技术人员可根据需要进行选择;并建立对应指标集I,对应指标集I中包括测试设备测量的x个评价指标,指标集I={NoCR,NoICR,NoLR,......,X,......,HRV,APD},其中X表示x个评价指标中的一项具体指标。
依据G1法中指标评价规则评价所选的工作负荷指标重要度,按照评价进行指标重要度降序排列,得到指标重要度向量U=[u1,u2,......,ux],其中u1,u2,......,ux分别表示降序排列后的各指标重要度得分。现有技术G1法是通过对AHP(层次分析法)进行改进提出的一种无需一致性检验的方法。
按式(7)计算指标间的相对重要度rp
Figure BDA0002301121070000131
其中,p为1≤p≤x-1的正整数,up和up+1为指标重要度得分;
按式(8)计算出最后一个指标的权重值,然后再使用式(9)计算各指标的权重值,得到指标权重向量
Figure BDA0002301121070000132
其中
Figure BDA0002301121070000133
表示各指标权重值:
Figure BDA0002301121070000134
Figure BDA0002301121070000141
其中,p为1≤p≤x-1的正整数,x为指标集I中的评价指标个数,j为正整数,rp为指标间的相对重要度,
对于测试样本k的测试数据表示如下:
输入装备或产品典型作业任务J前后所测的策略及人机工程指标数据,按照应对策略数据计算方法及公知的人机工程指标算法计算出所选指标评价值,输出任务前评价值向量Ika=[NoCRka,NoICRka,NoLRka,......,Xka,......,HRVka,APDka]和任务后评价值向量Ikb=[NoCRkb,NoICRkb,NoLRkb,......,Xkb,......,HRVkb,APDkb]。
按照式(10)计算测试样本k的数据变化率向量Ik
Figure BDA0002301121070000142
需要注意的是,式(10)为计算与工作负荷负相关的指标数据变化率公式,如果某个特定指标与工作负荷正相关,则计算后应取其绝对值。
按照式(11)计算测试样本k的工作负荷指数:
WL(k|J)=WT*Ik (II)
其中,WL(k|J)表示测试样本k进行装备或产品典型作业任务J的工作负荷指数。
依次计算所有测试样本的工作负荷指数后,按照式(12)计算最终的工作负荷指数WL:
Figure BDA0002301121070000143
其中,m表示所有测试样本的个数,i为1≤i≤m的正整数。
步骤五,依据工作负荷指数WL的值给出结论,如:工作负荷指数WL小于0.25,装备或产品典型作业任务J的工作负荷轻松;大于0.25小于0.5,工作负荷较大;大于0.5,工作负荷超重。
以上所述的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (5)

1.一种与作业任务场景弱耦合的工作负荷测评方法,其特征在于,其包括以下步骤:
步骤一,生成由刺激组成的第一刺激序列和第二刺激序列,以及他们对应的第一标准应对策略序列和第二标准应对策略序列;
步骤二,根据装备自身的特性,设定应对策略数据的测评指标、生理数据的测评指标和典型作业任务J;
步骤三,测试设备先使用第一刺激序列对每个测试样本进行测试,获得每个测试样本的第一应对策略数据和第一生理数据;待测试样本恢复至基线水平后进行典型作业任务J之后,立即让测试设备使用第二刺激序列对所述测试样本进行测试,获得所述测试样本的第二应对策略数据和第二生理数据;使用策略计算模型对应对策略数据进行处理,获得和应对策略数据的测评指标相对应的应对策略测评指标数据;步骤四,构建指标集I,包括应对策略数据的测评指标和生理数据的测评指标,指标集I中测评指标的个数为x个,使用应对策略测评指标数据和生理数据对指标集I进行具体化,获得测试样本k在执行典型作业任务J前的第一指标集Ika,以及测试样本k在执行典型作业任务J后的第二指标集Ikb
依据G1法中指标评价规则评价指标集I中x个测评指标的重要度降序排列,得到指标重要度向量U=[u1,u2,......,ux],其中u1,u2,......,ux分别表示降序排列后的各指标重要度得分;
按式(7)计算指标间的相对重要度rp
Figure FDA0003073775230000011
其中,p为正整数且1≤p≤x-1,up和up+1分别为第p个指标和第p+1个测评指标的重要度得分;
按式(8)计算出最后一个指标的权重值,然后再使用式(9)计算各指标的权重值,得到指标权重向量
Figure FDA0003073775230000021
其中
Figure FDA0003073775230000022
表示各指标权重值;
Figure FDA0003073775230000023
Figure FDA0003073775230000024
其中,p为正整数且1≤p≤x-1,x为指标集I中的评价指标个数,j为正整数,rp为指标间的相对重要度,
按照式(10)计算测试样本k的数据变化率向量Ik
Figure FDA0003073775230000025
如果指标与工作负荷正相关,则计算后取其绝对值;
按照式(11)计算测试样本k的工作负荷指数:
WL(k|J)=WT*Ik (11)
其中,WL(k|J)表示测试样本k进行装备典型作业任务J的工作负荷指数;WT是指标权重向量W的转置矩阵;
依次计算所有测试样本的工作负荷指数后,按照式(12)计算最终的工作负荷指数WL:
Figure FDA0003073775230000026
其中,m表示所有测试样本的个数,i为正整数且1≤i≤m;
步骤五,依据工作负荷指数WL的值确定工作负荷等级。
2.根据权利要求1所述的与作业任务场景弱耦合的工作负荷测评方法,其特征在于:
所述步骤一中第一刺激序列、第二刺激序列、第一标准应对策略序列和第二标准应对策略序列具体定义如下:
刺激序列φ'={s'1,s'2,s'3,…,s'n},其中s'1,s'2,s'3,…,s'n代表各刺激,基于刺激序列φ'生成标准应对策略序列Ω'={(t'1,p'1),(t'2,p'2),(t'3,p'3),…,(t'n,p'n)},其中t'1,t'2,t'3,…,t'n代表各标准应对时间,p'1,p'2,p'3,…,p'n代表各标准应对方式;
生成同样具有n个刺激的不同刺激序列φ″={s″1,s″2,s″3,…,s″n},及其标准应对策略序列Ω″={(t″1,p″1),(t″2,p″2),(t″3,p″3),…,(t″n,p″n)},同样,其中s″1,s″2,s″3,…,s″n代表各刺激,其中t″1,t″2,t″3,…,t″n代表各标准应对时间,p″1,p″2,p″3,…,p″n代表各标准应对方式;
第一刺激序列和第二刺激序列在刺激序列φ'和刺激序列φ″中进行选择,第一刺激序列和第二刺激序列不相同,第一标准应对策略序列和第二标准应对策略根据第一刺激序列和第二刺激序列选择相应的标准应对策略。
3.根据权利要求2所述的与作业任务场景弱耦合的工作负荷测评方法,其特征在于:
所述步骤三的具体实现步骤如下:
将测试样本随机平均分为两组,第一组C'使用刺激序列φ'作为第一刺激序列,使用刺激序列φ″作为第二刺激序列,第二组C″使用刺激序列φ″作为第一刺激序列,使用刺激序列φ'作为第二刺激序列,
第k个测试样本测试流程如下:
当第k个测试样本在第一组C'中时,
(a)在进行装备典型作业任务J前测试:
初始化应对策略集合Ωka、Ωkb,测试样本k接受刺激序列φ'中的刺激s'1,s'2,s'3,…,s'n,做出应对策略
Figure FDA0003073775230000033
依次将应对策略记录入集合Ωka,同时根据生理数据的测评指标采集生理数据;
(b)进行装备作业:
等测试样本k恢复至基线水平后,让测试样本k执行所测评装备的典型作业任务J;
(c)在进行装备典型作业任务J后测试:
测试样本k在执行装备典型作业任务J后,立即接受刺激序列φ″中的刺激s″1,s″2,s″3,…,s″n,生成应对策略
Figure FDA0003073775230000041
依次将应对策略记录入集合Ωkb,同时根据生理数据的测评指标采集生理数据;
(d)根据获取的应对策略集合建立策略计算模型并计算:
建立策略计算模型:
设标准应对策略集合
Figure FDA0003073775230000042
其中
Figure FDA0003073775230000043
代表各标准应对时间,
Figure FDA0003073775230000044
代表各标准应对方式;实际所测应对策略集合
Figure FDA0003073775230000045
其中
Figure FDA0003073775230000046
代表各实际所测应对时间,
Figure FDA0003073775230000047
代表各实际所测应对方式;
应对策略数据计算方法为:
按照式(1)判定应对策略是否为正确应对:
Figure FDA0003073775230000048
其中,
Figure FDA0003073775230000049
为实际所测应对策略集合Ωr中策略
Figure FDA00030737752300000410
的正确判定因子,i为正整数;
按照式(2)计算应对策略集Ωr中策略正确个数NoCRr
Figure FDA00030737752300000411
进一步地,按照式(3)判定应对策略是否为错误应对:
Figure FDA00030737752300000412
其中,
Figure FDA00030737752300000413
为实际所测应对策略集合Ωr中策略
Figure FDA00030737752300000414
的错误判定因子;
按照式(4)计算应对策略集Ωr中策略错误个数NoICRr
Figure FDA0003073775230000051
进一步地,按照式(5)判定应对策略是否为超时应对:
Figure FDA0003073775230000052
其中,
Figure FDA0003073775230000053
为实际所测应对策略集合Ωr中策略
Figure FDA0003073775230000054
的超时判定因子;
按照式(6)计算应对策略集Ωr中策略超时个数NoLRr
Figure FDA0003073775230000055
将Ω'、Ω″、Ωka、Ωkb代入策略计算模型中,得到NoCRka、NoCRkb、NoICRka、NoICRkb、NoLRka、NoLRkb的计算结果,其中NoCRka、NoICRka和NoLRka分别为测试样本k在典型作业任务前应对策略集中策略正确个数、策略错误个数和策略超时个数,NoCRkb、NoICRkb和NoLRkb分别为测试样本k在典型作业任务后应对策略集中策略正确个数、策略错误个数和策略超时个数;
其中Ω'、Ω″为分别对应刺激序列
Figure FDA0003073775230000056
Figure FDA0003073775230000057
的标准应对策略集合,Ωka、Ωkb为分别对应刺激序列
Figure FDA0003073775230000058
Figure FDA0003073775230000059
的实际所测应对策略集合;
当第k个测试样本在第二组C″中时:
测试样本k先接受刺激序列φ″中的刺激,进行典型作业任务J后再接受刺激序列
Figure FDA00030737752300000510
中的刺激;具体记录测试数据的方法也是执行步骤(a)-(d);
(e)输出数据:
输出并保存测试样本k测试中典型作业任务前的NoCRka、NoICRka和NoLRka,典型作业任务后的NoCRkb、NoICRkb和NoLRkb,以及采集的生理数据。
4.根据权利要求3所述的与作业任务场景弱耦合的工作负荷测评方法,其特征在于:
所述步骤四中的指标集I为I={NoCR,NoICR,NoLR,......,X,......,HRV,APD},其中X表示x个评价指标中的一项具体指标,NoCR表示策略正确个数,NoICR表示策略错误个数,NoLR表示策略超时个数,HRV表示心率变异性,APD表示平均瞳孔直径。
5.根据权利要求4所述的与作业任务场景弱耦合的工作负荷测评方法,其特征在于:
所述指标集I中的X是心电、皮电、脑电、眼动、肌电或者面部表情的相应测评指标。
CN201911222034.4A 2019-12-03 2019-12-03 与作业任务场景弱耦合的工作负荷测评方法 Active CN110840433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911222034.4A CN110840433B (zh) 2019-12-03 2019-12-03 与作业任务场景弱耦合的工作负荷测评方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911222034.4A CN110840433B (zh) 2019-12-03 2019-12-03 与作业任务场景弱耦合的工作负荷测评方法

Publications (2)

Publication Number Publication Date
CN110840433A CN110840433A (zh) 2020-02-28
CN110840433B true CN110840433B (zh) 2021-06-29

Family

ID=69607427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911222034.4A Active CN110840433B (zh) 2019-12-03 2019-12-03 与作业任务场景弱耦合的工作负荷测评方法

Country Status (1)

Country Link
CN (1) CN110840433B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049236A (zh) * 2007-05-09 2007-10-10 西安电子科技大学 基于脑机交互的注意力状态即时检测系统及检测方法
CN104902806A (zh) * 2012-11-10 2015-09-09 加利福尼亚大学董事会 神经病理的评估系统及方法
CN107788970A (zh) * 2017-11-15 2018-03-13 中国航天员科研训练中心 一种基于多生理参数方法融合的脑力负荷评估方法
CN109492931A (zh) * 2018-11-27 2019-03-19 中铁二院工程集团有限责任公司 一种铁路速度目标值方案评价确定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065036A2 (en) * 2004-01-07 2005-07-21 Nexsig, Neurological Examination Technologies Ltd. Neurological and/or psychological tester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101049236A (zh) * 2007-05-09 2007-10-10 西安电子科技大学 基于脑机交互的注意力状态即时检测系统及检测方法
CN104902806A (zh) * 2012-11-10 2015-09-09 加利福尼亚大学董事会 神经病理的评估系统及方法
CN107788970A (zh) * 2017-11-15 2018-03-13 中国航天员科研训练中心 一种基于多生理参数方法融合的脑力负荷评估方法
CN109492931A (zh) * 2018-11-27 2019-03-19 中铁二院工程集团有限责任公司 一种铁路速度目标值方案评价确定方法

Also Published As

Publication number Publication date
CN110840433A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Wierzgała et al. Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis
CN111095232B (zh) 发掘用于机器学习技术中的基因组
CN110215206A (zh) 基于脑电信号的立体显示视疲劳评价方法、系统、装置
JP2007524448A (ja) 初期の緑内障を検出し、モニタする自動処置方法及び装置
CN104771164A (zh) 运用事件相关电位仪辅助筛查轻度认知障碍的方法
Serener et al. Geographic variation and ethnicity in diabetic retinopathy detection via deeplearning
CN112057043A (zh) 中医脉搏数据处理方法、设备及存储介质
Reñosa et al. Classification of confusion level using EEG data and artificial neural networks
Gillette et al. MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations
CN110840433B (zh) 与作业任务场景弱耦合的工作负荷测评方法
CN108703762A (zh) 一种基于心算和工作记忆等的脑力负荷诱发技术
WO2018155447A1 (ja) 脳情報解析装置及び脳情報模倣演算装置
Pleydell-Pearce et al. Multivariate analysis of EEG: Predicting cognition on the basis of frequency decomposition, inter-electrode correlation, coherence, cross phase and cross power
Zewdie et al. Fully automated myocardial infarction classification using ordinary differential equations
JP4649429B2 (ja) 心拍測定システム及び方法
CN105982648A (zh) 生理监控反馈系统及其运作方法
Abe et al. Paraconsistent neurocomputing and biological signals analysis
WO2021246923A1 (ru) Способ детектирования фокальных эпилептиформных разрядов в длительной записи ээг
Shutov et al. Artificial intelligence in clinical physiology: How to improve learning agility
Zhou et al. A new functional data‐based biomarker for monitoring cardiovascular behavior
CN112656372B (zh) 基于脑网络拓扑规律的脑力疲劳检测方法及系统
JP6821171B2 (ja) 脳活動状態定量化方法および脳活動状態計測装置
CN117577334B (zh) 一种基于医疗器械设备的健康监测系统
CN107529648A (zh) 基于任务转换测试行为学数据的精神分裂症分类方法
Bermeo et al. Statistical characterization of the finger tapping test using an android mobile app

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant