CN104896675A - 多联机系统的回气过热度测试方法和多联机系统 - Google Patents

多联机系统的回气过热度测试方法和多联机系统 Download PDF

Info

Publication number
CN104896675A
CN104896675A CN201510324118.4A CN201510324118A CN104896675A CN 104896675 A CN104896675 A CN 104896675A CN 201510324118 A CN201510324118 A CN 201510324118A CN 104896675 A CN104896675 A CN 104896675A
Authority
CN
China
Prior art keywords
temperature sensor
heat exchanger
superheat
temperature value
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510324118.4A
Other languages
English (en)
Other versions
CN104896675B (zh
Inventor
罗彬�
李元阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
Guangdong Midea HVAC Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Guangdong Midea HVAC Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Guangdong Midea HVAC Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201510324118.4A priority Critical patent/CN104896675B/zh
Publication of CN104896675A publication Critical patent/CN104896675A/zh
Priority to EP16806624.9A priority patent/EP3309469A4/en
Priority to PCT/CN2016/080247 priority patent/WO2016197726A1/zh
Priority to US15/503,159 priority patent/US20180106518A1/en
Application granted granted Critical
Publication of CN104896675B publication Critical patent/CN104896675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/026Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving liquids

Abstract

本发明公开了一种多联机系统的回气过热度测试方法,其中,多联机系统包括由第一换热器和第二换热器构成的再冷却回路以及第一温度传感器、第二温度传感器和第三温度传感器,回气过热度测试方法包括以下步骤:获取第一温度传感器检测的第一温度值、第二温度传感器检测的第二温度值和第三温度传感器检测的第三温度值;获取第一温度值和第二温度值之间的最小值,并获取第三温度值和第二温度值之间的最大值;以及根据最小值和最大值计算过热度。该回气过热度测试方法全部采用温度传感器来实现对再冷却回路出口处的冷媒过热度进行精确测试,从而可保证进入压缩机的冷媒不会出现液态,并且还大大降低了成本。本发明还公开了一种多联机系统。

Description

多联机系统的回气过热度测试方法和多联机系统
技术领域
本发明涉及空调技术领域,特别涉及一种多联机系统的回气过热度测试方法和一种多联机系统。
背景技术
热回收多联机系统可以同时利用制冷系统的冷凝热和蒸发热,从而大大提高了能源利用效率,具有广阔的市场前景。其中,两管制多联机系统是由高压管和低压管将室外机和分流装置MS连接起来构成的热回收系统。MS可以分配气液态冷媒到不同需求房间的室内机,从而满足不同房间对制冷或制热的要求。
为了防止高压液态制冷冷媒在向室内机输送过程中出现闪发,需要具有足够的过冷度,来保证制冷效果,所以在MS中设置了再冷却回路,并用两个串联的换热器当作再冷却器,这样进入室内机的那部分冷媒被再冷却器再冷,而经过再冷却回路的那部分冷媒则带走再冷却器放出的热量,经过两个换热器与从室内机排出的冷媒混合后回到室外机中的压缩机吸气管。
对于制冷和主制冷状态的两管制多联机系统,由MS返回室外机中压缩机的冷媒需要保证有一定的过热度,使冷媒充分气化后返回压缩机吸气管,这样可以防止液态冷媒损害压缩机,因此需要对经过再冷却器的那部分冷媒的过热度进行测试以保证其具有一定的过热度,进而使压缩机吸气具有一定的过热度。但是,目前对经过再冷却器的那部分冷媒的过热度进行测试时,测试精度不够,并且成本还高。
发明内容
本申请是基于发明人对以下问题的认识和研究做出的:
相关技术中,如图1所示,通过温度传感器Tm3和压力传感器PS3相应测量再冷却回路出口的那部分冷媒的温度和压力,从而求得其饱和温度TePS3,及进入室外机的再冷却回路出口的冷媒过热度SH1=Tm3-TePS3。这样,通过控制该再冷却回路出口的冷媒过热度SH1大于一定值,可以保证进入压缩机的冷媒不会出现液态,避免压缩机出现液击现象。
但是,现有制造工艺中,使用压力传感器不仅成本大大高于温度传感器,其可靠性也比温度传感器低,从而会造成再冷却回路出口的冷媒过热度SH1测试的不准确,无法保证进入压缩机的冷媒的过热度,影响压缩机的安全运行,并且成本还高。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种多联机系统的回气过热度测试方法,全部采用温度传感器来实现对再冷却回路出口处的冷媒过热度进行精确测试,从而可保证进入压缩机的冷媒不会出现液态,并且还大大降低了成本。
本发明的另一个目的在于提出一种多联机系统。
为达到上述目的,本发明一方面实施例提出了一种多联机系统的回气过热度测试方法,其中,所述多联机系统包括由第一换热器和第二换热器构成的再冷却回路以及第一温度传感器、第二温度传感器和第三温度传感器,所述第一温度传感器设置在所述第二换热器的第二换热流路的入口处,所述第二温度传感器设置在所述第二换热器的第二换热流路的出口与所述第一换热器的第二换热流路的入口之间,所述第三温度传感器设置在所述第一换热器的第二换热流路的出口处,所述回气过热度测试方法包括以下步骤:获取所述第一温度传感器检测的第一温度值、所述第二温度传感器检测的第二温度值和所述第三温度传感器检测的第三温度值;获取所述第一温度值和所述第二温度值之间的最小值,并获取所述第三温度值和所述第二温度值之间的最大值;以及根据所述最小值和最大值计算过热度。
根据本发明实施例的多联机系统的回气过热度测试方法,通过第一温度传感器、第二温度传感器和第三温度传感器能够实现对再冷却回路出口处的冷媒过热度即第一换热器的第二换热流路的出口处的冷媒过热度进行精确测试,这样可使得进入室外机中压缩机的冷媒不会出现液态,避免压缩机出现液击现象,保证压缩机安全可靠运行以及室内机的制冷效果,并且无需采用压力传感器,还可大大降低成本,提高了可靠性。
根据本发明的一个实施例,通过以下公式计算所述过热度:
SH=MAX(T2,T)-MIN(T,T1),其中,SH为所述过热度,T1为所述第一温度值,T为所述第二温度值,T2为所述第三温度值。
根据本发明的一个实施例,所述的多联机系统的回气过热度测试方法,还包括:根据所述过热度对室外机中的压缩机进行控制。
其中,所述第一换热器和所述第二换热器均为板式换热器。
在本发明的实施例中,所述多联机系统工作在制冷模式。
为达到上述目的,本发明另一方面实施例提出的一种多联机系统,包括:室外机;室内机;分流装置,所述分流装置包括由第一换热器和第二换热器构成的再冷却回路以及第一温度传感器、第二温度传感器和第三温度传感器,所述第一温度传感器设置在所述第二换热器的第二换热流路的入口处,所述第二温度传感器设置在所述第二换热器的第二换热流路的出口与所述第一换热器的第二换热流路的入口之间,所述第三温度传感器设置在所述第一换热器的第二换热流路的出口处;控制模块,所述控制模块用于获取所述第一温度传感器检测的第一温度值、所述第二温度传感器检测的第二温度值和所述第三温度传感器检测的第三温度值,并获取所述第一温度值和所述第二温度值之间的最小值,以及获取所述第三温度值和所述第二温度值之间的最大值,所述控制模块根据所述最小值和最大值计算过热度。
根据本发明实施例的多联机系统,通过第一温度传感器、第二温度传感器和第三温度传感器能够实现对再冷却回路出口处的冷媒过热度即第一换热器的第二换热流路的出口处的冷媒过热度进行精确测试,这样可使得进入室外机中压缩机的冷媒不会出现液态,避免压缩机出现液击现象,保证压缩机安全可靠运行以及室内机的制冷效果,并且无需采用压力传感器,还可大大降低成本,提高了可靠性。
根据本发明的一个实施例,所述控制模块通过以下公式计算所述过热度:
SH=MAX(T2,T)-MIN(T,T1),其中,SH为所述过热度,T1为所述第一温度值,T为所述第二温度值,T2为所述第三温度值。
根据本发明的一个实施例,所述控制模块还进一步根据所述过热度对室外机中的压缩机进行控制。
其中,所述第一换热器和所述第二换热器均为板式换热器。
在本发明的实施例中,所述多联机系统工作在制冷模式。
附图说明
图1为相关技术中通过温度传感器Tm3和压力传感器PS3测试再冷却回路出口的冷媒过热度的示意图;
图2为根据本发明一个实施例的多联机系统通过第一至第三温度传感器测试再冷却回路出口的冷媒过热度的示意图;以及
图3为根据本发明实施例的多联机系统的回气过热度测试方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的多联机系统的回气过热度测试方法以及多联机系统。
如图2所示,本发明一个实施例的多联机系统包括室外机10、室内机20(室内机可以为多个)、分流装置MS和控制模块(图中未示出)。其中,分流装置MS包括由第一换热器100和第二换热器200构成的再冷却回路以及第一温度传感器11、第二温度传感器12和第三温度传感器13,第一温度传感器11设置在第二换热器200的第二换热流路的入口处,第二温度传感器12设置在第二换热器200的第二换热流路的出口与第一换热器100的第二换热流路的入口之间,第三温度传感器13设置在第一换热器100的第二换热流路的出口处。
并且,如图2所示,第一换热器100的第一换热流路的入口通过高压管连接到室外机10,第一换热器100的第一换热流路的出口通过电磁阀1连接到第二换热器200的第一换热流路的入口,第二换热器200的第一换热流路的出口通过连接到室内机20,且第二换热器200的第一换热流路的出口还通过电磁阀2连接到第二换热器200的第二换热流路的入口,第一换热器100的第二换热流路的出口还通过低压管连接到室外机10。其中,第一换热器100和第二换热器200均为板式换热器。
在本发明的实施例中,控制模块用于获取第一温度传感器11检测的第一温度值T1、第二温度传感器12检测的第二温度值T和第三温度传感器13检测的第三温度值T2,并获取所述第一温度值和所述第二温度值之间的最小值,以及获取所述第三温度值和所述第二温度值之间的最大值,然后控制模块根据所述最小值和最大值计算过热度。
根据本发明的一个实施例,控制模块可通过以下公式计算所述过热度:
SH=MAX(T2,T)-MIN(T,T1),其中,SH为所述过热度,T1为所述第一温度值,T为所述第二温度值,T2为所述第三温度值。
也就是说,在本发明的实施例中,具体为在再冷却回路的气态冷媒入口处即第二换热器的第二换热流路的入口处、再冷却回路的中间即两个换热器的中间、再冷却回路的出口处即第一换热器的第二换热流路的出口处分别设置温度传感器,即第一至第三温度传感器,这样用两个温度传感器来替代原来再冷却回路出口的压力传感器,从而起到降成本的目的。然后计算再冷却回路出口的冷媒过热度为SH=MAX(T2,T中)-MIN(T中,T1)。其中,由于两个换热器的压降都比较大,所以饱和压力会逐渐下降。这样,当再冷却回路的冷媒流量较大的时候,再冷却回路中部温度T还没有过热,会出现T1<T<T2,此时SH=T2-T;当再冷却回路的冷媒流量较小的时候,再冷却回路中部温度T已经过热,会出现T2<T,此时SH=T-T1
因此,在两个板式换热器的中部设置第二温度传感器就解决了板式换热器内部又无法方便测温的问题,可以更精确的估计经过再冷却回路出口的冷媒过热度,从而可以更精确的对各阀体进行控制,保证制冷内机的制冷效果和压缩机的安全可靠运行。即言,根据本发明的一个实施例,控制模块还进一步根据所述过热度SH对室外机中的压缩机进行控制,从而确保测试到的过热度SH大于一定值,这样可使得进入压缩机的冷媒不会出现液态,避免压缩机出现液击现象。
在本发明的实施例中,多联机系统工作在制冷模式,例如主制冷模式或者纯制冷模式。
根据本发明实施例的多联机系统,通过第一温度传感器、第二温度传感器和第三温度传感器能够实现对再冷却回路出口处的冷媒过热度即第一换热器的第二换热流路的出口处的冷媒过热度进行精确测试,这样可使得进入室外机中压缩机的冷媒不会出现液态,避免压缩机出现液击现象,保证压缩机安全可靠运行以及室内机的制冷效果,并且无需采用压力传感器,还可大大降低成本,提高了可靠性。
图3为根据本发明实施例的多联机系统的回气过热度测试方法的流程图。其中,该多联机系统为上述实施例描述的多联机系统,可包括由第一换热器和第二换热器构成的再冷却回路以及第一温度传感器、第二温度传感器和第三温度传感器,所述第一温度传感器设置在所述第二换热器的第二换热流路的入口处,所述第二温度传感器设置在所述第二换热器的第二换热流路的出口与所述第一换热器的第二换热流路的入口之间,所述第三温度传感器设置在所述第一换热器的第二换热流路的出口处。
如图3所示,本发明实施例的多联机系统的回气过热度测试方法包括以下步骤:
S1,获取第一温度传感器检测的第一温度值、第二温度传感器检测的第二温度值和第三温度传感器检测的第三温度值。
S2,获取第一温度值和第二温度值之间的最小值,并获取第三温度值和第二温度值之间的最大值。
S3,根据最小值和最大值计算过热度,即计算再冷却回路出口处的冷媒过热度(第一换热器的第二换热流路的出口处的冷媒过热度)。
根据本发明的一个实施例,可通过以下公式计算所述过热度:
SH=MAX(T2,T)-MIN(T,T1),其中,SH为所述过热度,T1为所述第一温度值,T为所述第二温度值,T2为所述第三温度值。
并且,上述的多联机系统的回气过热度测试方法还包括:根据所述过热度对室外机中的压缩机进行控制。这样,可确保测试到的过热度SH大于一定值,使得进入压缩机的冷媒不会出现液态,避免压缩机出现液击现象。
在本发明的实施例中,多联机系统工作在制冷模式,例如主制冷模式或者纯制冷模式。
根据本发明实施例的多联机系统的回气过热度测试方法,通过第一温度传感器、第二温度传感器和第三温度传感器能够实现对再冷却回路出口处的冷媒过热度即第一换热器的第二换热流路的出口处的冷媒过热度进行精确测试,这样可使得进入室外机中压缩机的冷媒不会出现液态,避免压缩机出现液击现象,保证压缩机安全可靠运行以及室内机的制冷效果,并且无需采用压力传感器,还可大大降低成本,提高了可靠性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种多联机系统的回气过热度测试方法,其特征在于,所述多联机系统包括由第一换热器和第二换热器构成的再冷却回路以及第一温度传感器、第二温度传感器和第三温度传感器,所述第一温度传感器设置在所述第二换热器的第二换热流路的入口处,所述第二温度传感器设置在所述第二换热器的第二换热流路的出口与所述第一换热器的第二换热流路的入口之间,所述第三温度传感器设置在所述第一换热器的第二换热流路的出口处,所述回气过热度测试方法包括以下步骤:
获取所述第一温度传感器检测的第一温度值、所述第二温度传感器检测的第二温度值和所述第三温度传感器检测的第三温度值;
获取所述第一温度值和所述第二温度值之间的最小值,并获取所述第三温度值和所述第二温度值之间的最大值;以及
根据所述最小值和最大值计算过热度。
2.如权利要求1所述的多联机系统的回气过热度测试方法,其特征在于,通过以下公式计算所述过热度:
SH=MAX(T2,T)-MIN(T,T1),其中,SH为所述过热度,T1为所述第一温度值,T为所述第二温度值,T2为所述第三温度值。
3.如权利要求1所述的多联机系统的回气过热度测试方法,其特征在于,还包括:
根据所述过热度对室外机中的压缩机进行控制。
4.如权利要求1-3中任一项所述的多联机系统的回气过热度测试方法,其特征在于,所述第一换热器和所述第二换热器均为板式换热器。
5.如权利要求1所述的多联机系统的回气过热度测试方法,其特征在于,所述多联机系统工作在制冷模式。
6.一种多联机系统,其特征在于,包括:
室外机;
室内机;
分流装置,所述分流装置包括由第一换热器和第二换热器构成的再冷却回路以及第一温度传感器、第二温度传感器和第三温度传感器,所述第一温度传感器设置在所述第二换热器的第二换热流路的入口处,所述第二温度传感器设置在所述第二换热器的第二换热流路的出口与所述第一换热器的第二换热流路的入口之间,所述第三温度传感器设置在所述第一换热器的第二换热流路的出口处;
控制模块,所述控制模块用于获取所述第一温度传感器检测的第一温度值、所述第二温度传感器检测的第二温度值和所述第三温度传感器检测的第三温度值,并获取所述第一温度值和所述第二温度值之间的最小值,以及获取所述第三温度值和所述第二温度值之间的最大值,所述控制模块根据所述最小值和最大值计算过热度。
7.如权利要求6所述的多联机系统,其特征在于,所述控制模块通过以下公式计算所述过热度:
SH=MAX(T2,T)-MIN(T,T1),其中,SH为所述过热度,T1为所述第一温度值,T为所述第二温度值,T2为所述第三温度值。
8.如权利要求6所述的多联机系统,其特征在于,所述控制模块还进一步根据所述过热度对室外机中的压缩机进行控制。
9.如权利要求6-8中任一项所述的多联机系统,其特征在于,所述第一换热器和所述第二换热器均为板式换热器。
10.如权利要求6所述的多联机系统,其特征在于,所述多联机系统工作在制冷模式。
CN201510324118.4A 2015-06-12 2015-06-12 多联机系统的回气过热度测试方法和多联机系统 Active CN104896675B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510324118.4A CN104896675B (zh) 2015-06-12 2015-06-12 多联机系统的回气过热度测试方法和多联机系统
EP16806624.9A EP3309469A4 (en) 2015-06-12 2016-04-26 METHOD FOR CHECKING THE REVERSE OVERHEATING RANGE FOR MULTISPLIT SYSTEM AND MULTISPLIT SYSTEM
PCT/CN2016/080247 WO2016197726A1 (zh) 2015-06-12 2016-04-26 多联机系统的回气过热度测试方法和多联机系统
US15/503,159 US20180106518A1 (en) 2015-06-12 2016-04-26 Return air superheat degree test method for multi-split system and multi-split system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510324118.4A CN104896675B (zh) 2015-06-12 2015-06-12 多联机系统的回气过热度测试方法和多联机系统

Publications (2)

Publication Number Publication Date
CN104896675A true CN104896675A (zh) 2015-09-09
CN104896675B CN104896675B (zh) 2017-12-08

Family

ID=54029500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510324118.4A Active CN104896675B (zh) 2015-06-12 2015-06-12 多联机系统的回气过热度测试方法和多联机系统

Country Status (4)

Country Link
US (1) US20180106518A1 (zh)
EP (1) EP3309469A4 (zh)
CN (1) CN104896675B (zh)
WO (1) WO2016197726A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016457A (zh) * 2016-05-23 2016-10-12 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
WO2016197726A1 (zh) * 2015-06-12 2016-12-15 广东美的暖通设备有限公司 多联机系统的回气过热度测试方法和多联机系统
CN106352445A (zh) * 2016-08-19 2017-01-25 广东美的暖通设备有限公司 多联机系统及其控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114183941B (zh) * 2021-12-14 2022-09-20 珠海格力电器股份有限公司 一种制冷系统、控制方法和制冷设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159589A (ja) * 1994-12-02 1996-06-21 Hitachi Ltd 多室空気調和機およびその運転方法
CN2591494Y (zh) * 2002-06-29 2003-12-10 海尔集团公司 多联空调系统的热回收装置
JP2010249452A (ja) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp 空気調和装置
CN102003773A (zh) * 2010-11-25 2011-04-06 佛山市中格威电子有限公司 变频空调器多联机的分流补偿控制系统
CN104024764A (zh) * 2011-12-28 2014-09-03 大金工业株式会社 制冷装置
JP2014190554A (ja) * 2013-03-26 2014-10-06 Fujitsu General Ltd 空気調和機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235820A (en) * 1991-11-19 1993-08-17 The University Of Maryland Refrigerator system for two-compartment cooling
EP1215449A4 (en) * 1999-09-24 2005-01-19 Sanyo Electric Co COOLING DEVICE WITH MULTI-STAGE COMPACTION
CN1220004C (zh) * 2000-06-07 2005-09-21 三星电子株式会社 空调器过热度控制系统和控制方法
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
JP4670329B2 (ja) * 2004-11-29 2011-04-13 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
DK2008036T3 (en) * 2006-03-27 2016-01-18 Carrier Corp Cooling system with parallel incremental economizer circuits using multi-stage compression
JP5324749B2 (ja) * 2006-09-11 2013-10-23 ダイキン工業株式会社 冷凍装置
JP2009146241A (ja) * 2007-12-17 2009-07-02 Fuji Koki Corp 弁制御装置及び弁制御方法
JPWO2010082325A1 (ja) * 2009-01-15 2012-06-28 三菱電機株式会社 空気調和装置
US9459029B2 (en) * 2009-01-19 2016-10-04 Fujikoki Corporation Valve controller, valve controlling method, refrigeration and cold storage system, device and method for controlling the system
JP5710004B2 (ja) * 2011-08-19 2015-04-30 三菱電機株式会社 空気調和装置
GB2533041B (en) * 2013-08-30 2020-06-24 Mitsubishi Electric Corp Air conditioning apparatus
CN104896675B (zh) * 2015-06-12 2017-12-08 广东美的暖通设备有限公司 多联机系统的回气过热度测试方法和多联机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159589A (ja) * 1994-12-02 1996-06-21 Hitachi Ltd 多室空気調和機およびその運転方法
CN2591494Y (zh) * 2002-06-29 2003-12-10 海尔集团公司 多联空调系统的热回收装置
JP2010249452A (ja) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp 空気調和装置
CN102003773A (zh) * 2010-11-25 2011-04-06 佛山市中格威电子有限公司 变频空调器多联机的分流补偿控制系统
CN104024764A (zh) * 2011-12-28 2014-09-03 大金工业株式会社 制冷装置
JP2014190554A (ja) * 2013-03-26 2014-10-06 Fujitsu General Ltd 空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197726A1 (zh) * 2015-06-12 2016-12-15 广东美的暖通设备有限公司 多联机系统的回气过热度测试方法和多联机系统
CN106016457A (zh) * 2016-05-23 2016-10-12 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN106016457B (zh) * 2016-05-23 2018-12-18 广东美的暖通设备有限公司 多联机系统及其制热节流元件的控制方法
CN106352445A (zh) * 2016-08-19 2017-01-25 广东美的暖通设备有限公司 多联机系统及其控制方法
CN106352445B (zh) * 2016-08-19 2019-12-03 广东美的暖通设备有限公司 多联机系统及其控制方法

Also Published As

Publication number Publication date
US20180106518A1 (en) 2018-04-19
WO2016197726A1 (zh) 2016-12-15
EP3309469A4 (en) 2019-01-16
EP3309469A1 (en) 2018-04-18
CN104896675B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN105091258B (zh) 空调器及其冷却控制方法
US9599377B2 (en) Heat pump apparatus
US9581365B2 (en) Refrigerating apparatus
CN108105912B (zh) 多联机系统及其防冷媒偏流控制方法、控制装置
CN104755855B (zh) 冷冻循环装置
CN101910759B (zh) 空气调节装置和制冷剂量判定方法
US8069682B2 (en) Air conditioner that corrects refrigerant quantity determination based on refrigerant temperature
CN104566823A (zh) 并联多联机的冷媒控制方法
CN102345949A (zh) 一种多联式空调换热器冷媒流量调节系统及其调节方法
EP3483524A1 (en) Control device of multiple-type air conditioning device, multiple-type air conditioning device, method of controlling multiple-type air conditioning device, and computer program of controlling multiple-type air conditioning device
CN112050299B (zh) 空调器
CN104896675A (zh) 多联机系统的回气过热度测试方法和多联机系统
CN107215174B (zh) 用于检测空调热负荷及制冷剂流量的检测方法
CN102506557B (zh) 制冷设备、及其化霜过程中的切换单元控制方法
CN107044692B (zh) 多联机系统及其除霜控制方法和装置
CN105299841A (zh) 多联机系统及其室外换热器的换热阀体的故障检测方法
CN110319541B (zh) 一种大排量变频多联机系统的卸载调节控制方法
JP2008249239A (ja) 冷却装置の制御方法、冷却装置および冷蔵倉庫
CN104345743A (zh) 满液式空调系统的冷媒液位控制方法
JP2007198711A (ja) 空気調和装置
CN113654135A (zh) 热泵式空调系统、控制方法和控制装置
CN109539623A (zh) 空调系统及其补气增焓控制方法
JP7150135B2 (ja) 冷凍サイクル装置
JP3584274B2 (ja) 冷媒量調整方法及び冷媒量判定装置
CN107101298B (zh) 多联机系统及其室外风机的风挡修正控制方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant