CN104868159A - 一种改性石墨负极材料的制备方法 - Google Patents

一种改性石墨负极材料的制备方法 Download PDF

Info

Publication number
CN104868159A
CN104868159A CN201510305083.XA CN201510305083A CN104868159A CN 104868159 A CN104868159 A CN 104868159A CN 201510305083 A CN201510305083 A CN 201510305083A CN 104868159 A CN104868159 A CN 104868159A
Authority
CN
China
Prior art keywords
preparation
cathode material
graphite cathode
modified graphite
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510305083.XA
Other languages
English (en)
Inventor
田东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510305083.XA priority Critical patent/CN104868159A/zh
Publication of CN104868159A publication Critical patent/CN104868159A/zh
Priority to PCT/CN2016/082871 priority patent/WO2016192542A1/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种改性石墨负极材料的制备方法,包括如下步骤:(1)前驱体浆料制备;(2)前驱体干燥;(3)热处理。本发明制备的石墨负极材料具备较高的比容量,通过对材料进行改性,有效提高了材料的导电性,改善了材料的循环稳定性。因此使得该负极材料在用于锂离子电池时,具有较高的能量密度和良好的循环稳定性。

Description

一种改性石墨负极材料的制备方法
技术领域
本发明涉及一种改性石墨负极材料的制备方法,具体涉及一种掺有金属镍和金属硅,并通过包覆处理的石墨负极材料的制备方法。
背景技术
锂离子电池具有体积小,及长时间使用下仍维持高储电量与高放电量等优点,因而被广泛地被运用在通讯、电子等设备中。“石墨材”基于其安全性与成本考量,已然成为锂离子电池负极材料的原料主流;而各式以石墨材为原料的锂离子电池负极材料,以及相关的制备方法,也逐渐被开发出来。
目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。同时,石墨作为负极材料时,在首次充放电过程中在其表面形成一层固体电解质膜(SEI)。 固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其二是在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致石墨片层剥落,尤其在含有PC的电解液中,石墨片层脱落将形成新界面,导致进一步SEI形成,不可逆容量增加,同时循环稳定性下降。而树脂类聚合物热解后形成的无定形碳的有序度低,结构比较松散,锂离子能相对自由地在其中嵌入和脱出而不会对其结构产生大的影响。
由于石墨负极材料的局限性,因此对新型负极材料的开发非常必要。新型的负极材料有合金材料、硅基氧化物材料等。合金材料虽然能提供较高的可逆容量,但其循环性能不够理想。硅基氧化物材料虽然具有较高的可逆容量和较好的循环性能,但它的缺点是首次循环不可逆容量损失较大(常大于50%)。研究发现,金属镍及其氧化物作为锂离子电池的负极材料时,具有较高的比容量,此外金属镍具的延展性好,可使电极材料在锂的嵌脱过程中膨胀率大大降低。但是氧化镍的导电率低,影响了电池的充放电性能。
硅是一种最有希望取代碳材料的负极材料,这是因为硅具有高达4200mAh/g 的最高容量;并且具有类似于石墨的平稳的放电平台。但与其它高容量金属相似,硅的循环性能非常差,不能进行正常的充放电循环。硅作为负极材料使用时,在充放电循环过程中, Li2Si合金的可逆生成与分解伴随着巨大的体积变化,会引起合金的机械分裂( 产生裂缝与粉化),导致材料结构的崩塌和电极材料的剥落而使电极材料失去电接触,从而造成电极的循环性能急剧下降,最后导致电极失效,因此在锂离子蓄电池中很难实际应用。研究表明,小粒径的硅或其合金无论在容量上还是在循环性能上都有很大的提高,当合金材料的颗粒达到纳米级时,充放电过程中的体积膨胀会大大减轻,性能也会有所提高,但是纳米材料具有较大的表面能,容易发生团聚,反而会使充放电效率降低并加快容量的衰减,从而抵消了纳米颗粒的优点;采用各种沉积方法制备的硅膜能够在一定程度上延长材料的循环寿命,却不能消除其较高的首次不可逆容量,从而制约了这种材料的实用化。另外一种改善硅负极性能的研究趋势就是制备硅与其它材料的复合材料或合金,其中,结合碳材料的稳定性和硅的高比容量特性而制备的硅/碳复合材料显示了巨大的应用前景。
发明内容
为了克服现有技术的不足,本发明提供一种改性石墨负极材料的制备方法,使用该方法制备的负极材料,在拥有高容量的情况下,还具有良好的电化学循环稳定性。
为了实现上述目的,本发明提供一种改性石墨负极材料的制备方法,包括如下步骤:
1)前驱体浆料制备:按照石墨:树脂:镍粉:硅粉=100:3~10:3~5:1~5的重量比例,称取各组分分散于有机溶剂乙醇中,调节固含量至20%~40%,加入研磨球,进行球磨混合;
2)前驱体干燥:将球磨完毕后的浆料在30~40℃温度下进行干燥,得到粉体;
3)热处理:将步骤2)中所得到的粉体在惰性气体的保护下,以5~20℃/min 的速度升温至800~1000℃,再保温3~10h,自然降温,冷却后经过粉碎、筛分即得到本发明所述的石墨负极材料。
进一步,步骤1)中所述的石墨为人造石墨或者天然石墨中的一种或两者的混合。
进一步,步骤1)中所述树脂为酚醛树脂、环氧树脂、醇酸树脂、水溶性聚酯树脂、丙烯酸树脂、聚丁二烯树脂中的一种或两种以上的混合物。
进一步,步骤1)中所述的硅粉和镍粉的粒径≤100nm。
进一步,步骤1)中研磨球采用的是非金属材质的氧化锆求、陶瓷球、聚氨酯球中的一种。
进一步,步骤1)中球磨混合的时间为8~24h。
进一步,步骤2)中浆料干燥是在真空负压状态下进行的,其压力≤-0.1Mpa。
进一步,步骤3)中惰性气体为氮气、氩气、氦气中的一种。
本发明的有益效果如下:
1、本发明通过选用纳米粉体,避免了金属硅粉因粒径较大而在充放电时产生的体积效应,保证了材料的在充放电过程中的稳定性,同时和石墨进行复合处理,解决了单一石墨负极材料容量偏低等缺点;
2、本发明采用真空低温负压进行浆料干燥,不仅可避免粉体在高温状态下干燥产生团聚,同时可对有机溶剂进行回收利用,起到节能环保的作用;
3、通过在石墨表面包覆一层无定形碳,能有效提高石墨抗电解液的共嵌性能,同时树脂在热处理过程中,树脂内的小分子过多,在溢出过程中会造成包覆后材料的表面产生过多的空隙,这些空隙可以起到缓冲硅粉的体积效应,保证材料体系的稳定。
本发明制备的石墨负极材料具备较高的比容量,通过对材料进行改性,有效提高了材料的导电性,改善了材料的循环稳定性。因此使得该负极材料在用于锂离子电池时,具有较高的能量密度和良好的循环稳定性。
具体实施方式
实施例1
按照石墨:树脂:镍粉:硅粉=100:10:3:3的比例,称取1000g人造石墨、100g酚醛树脂、30g镍粉、30g硅粉,按照固含量为30%的比例,称取2706g的乙醇溶剂中,采用氧化锆研磨球,球磨12h,得到均匀浆料;再将浆料在-0.1Mpa、30℃的条件下,干燥10h,得到粉体;再将粉体在惰性气体的保护下,以10℃/min的速度升温至1000℃,再保温3h,自然降温,冷却后过筛即得到本发明石墨负极材料。
实施例2
按照石墨:树脂:镍粉:硅粉=100:5:5:1的比例,称取1000g天然石墨、50g环氧树脂、50g镍粉、10g硅粉,按照固含量为40%的比例,称取1665g的乙醇溶剂中,采用氧化锆研磨球,球磨12h,得到均匀浆料;再将浆料在-0.1Mpa、40℃的条件下,干燥80h,得到粉体;再将粉体在惰性气体的保护下,以20℃/min的速度升温至800℃,再保温10h,自然降温,冷却后过筛即得到本发明石墨负极材料。
实施例3
按照石墨:树脂:镍粉:硅粉=100:8:4:3的比例,称取1000g人造石墨、80g酚醛树脂、40g镍粉、30g硅粉,按照固含量为30%的比例,称取2683g的乙醇溶剂中,采用陶瓷研磨球,球磨12h,得到均匀浆料;再将浆料在-0.1Mpa、35℃的条件下,干燥9h,得到粉体;再将粉体在惰性气体的保护下,以10℃/min的速度升温至850℃,再保温14h,自然降温,冷却后过筛即得到本发明石墨负极材料。
对比例1
实施例1中的人造石墨。
对比例2
实施例2中的天然石墨。
电化学性能测试
为检验本发明方法制备的改性锂离子电池石墨负极材料的性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
表1为不同实施例和比较例中负极材料的性能比较
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种改性石墨负极材料的制备方法,包括如下步骤:
1)前驱体浆料制备:按照石墨:树脂:镍粉:硅粉=100:3~10:3~5:1~5的重量比例,称取各组分分散于有机溶剂乙醇中,调节固含量至20%~40%,加入研磨球,进行球磨混合;
2)前驱体干燥:将球磨完毕后的浆料在30~40℃温度下进行干燥,得到粉体;
3)热处理:将步骤2)中所得到的粉体在惰性气体的保护下,以5~20℃/min 的速度升温至800~1000℃,再保温3~10h,自然降温,冷却后经过粉碎、筛分即得到本发明所述的石墨负极材料。
2.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中所述的石墨为人造石墨或者天然石墨中的一种或两者的混合。
3.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中所述树脂为酚醛树脂、环氧树脂、醇酸树脂、水溶性聚酯树脂、丙烯酸树脂、聚丁二烯树脂中的一种或两种以上的混合物。
4.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中所述的硅粉和镍粉的粒径≤100nm。
5.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中研磨球采用的是非金属材质的氧化锆求、陶瓷球、聚氨酯球中的一种。
6.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中球磨混合的时间为8~24h。
7.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤2)中浆料干燥是在真空负压状态下进行的,其压力≤-0.1Mpa。
8.根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤3)中惰性气体为氮气、氩气、氦气中的一种。
CN201510305083.XA 2015-06-05 2015-06-05 一种改性石墨负极材料的制备方法 Pending CN104868159A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510305083.XA CN104868159A (zh) 2015-06-05 2015-06-05 一种改性石墨负极材料的制备方法
PCT/CN2016/082871 WO2016192542A1 (zh) 2015-06-05 2016-05-20 一种改性石墨负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510305083.XA CN104868159A (zh) 2015-06-05 2015-06-05 一种改性石墨负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN104868159A true CN104868159A (zh) 2015-08-26

Family

ID=53913832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510305083.XA Pending CN104868159A (zh) 2015-06-05 2015-06-05 一种改性石墨负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104868159A (zh)
WO (1) WO2016192542A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129522A (zh) * 2016-08-31 2016-11-16 合肥国轩高科动力能源有限公司 一种利用锂离子电池负极回收石墨的制备方法
WO2016192542A1 (zh) * 2015-06-05 2016-12-08 田东 一种改性石墨负极材料的制备方法
CN108682818A (zh) * 2018-05-21 2018-10-19 北方奥钛纳米技术有限公司 干法制备改性石墨的方法及电池
CN114156477A (zh) * 2021-11-29 2022-03-08 广东凯金新能源科技股份有限公司 一种氟掺杂改性石墨负极材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078320B (zh) * 2021-03-26 2022-08-02 山东大学 一种三聚氰胺改性石墨负极材料及其制备方法及应用
CN113942993B (zh) * 2021-09-29 2023-05-12 东方电气集团科学技术研究院有限公司 一种制备硬炭微球的方法
CN114345480A (zh) * 2021-12-06 2022-04-15 山西沁新能源集团股份有限公司 一种用于石墨负极材料制备的湿法研磨方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442124A (zh) * 2007-11-19 2009-05-27 比亚迪股份有限公司 锂离子电池负极用复合材料的制备方法及负极和电池
CN103311514A (zh) * 2013-06-05 2013-09-18 深圳市斯诺实业发展有限公司永丰县分公司 一种改性锂离子电池石墨负极材料的制备方法
CN104617269A (zh) * 2015-01-23 2015-05-13 深圳市贝特瑞新能源材料股份有限公司 一种硅合金复合负极材料、制备方法及锂离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339987A (zh) * 2008-07-21 2009-01-07 长沙市海容电子材料有限公司 一种锂离子电池硅碳复合负极材料及其制备方法
KR101708360B1 (ko) * 2011-10-05 2017-02-21 삼성에스디아이 주식회사 음극 활물질 및 이를 채용한 리튬 전지
CN103606661B (zh) * 2013-11-11 2016-02-10 南京工业大学 一种利用机械化学法合成锂离子电池负极材料的方法
CN104868159A (zh) * 2015-06-05 2015-08-26 田东 一种改性石墨负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442124A (zh) * 2007-11-19 2009-05-27 比亚迪股份有限公司 锂离子电池负极用复合材料的制备方法及负极和电池
CN103311514A (zh) * 2013-06-05 2013-09-18 深圳市斯诺实业发展有限公司永丰县分公司 一种改性锂离子电池石墨负极材料的制备方法
CN104617269A (zh) * 2015-01-23 2015-05-13 深圳市贝特瑞新能源材料股份有限公司 一种硅合金复合负极材料、制备方法及锂离子电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192542A1 (zh) * 2015-06-05 2016-12-08 田东 一种改性石墨负极材料的制备方法
CN106129522A (zh) * 2016-08-31 2016-11-16 合肥国轩高科动力能源有限公司 一种利用锂离子电池负极回收石墨的制备方法
CN108682818A (zh) * 2018-05-21 2018-10-19 北方奥钛纳米技术有限公司 干法制备改性石墨的方法及电池
CN114156477A (zh) * 2021-11-29 2022-03-08 广东凯金新能源科技股份有限公司 一种氟掺杂改性石墨负极材料及其制备方法

Also Published As

Publication number Publication date
WO2016192542A1 (zh) 2016-12-08

Similar Documents

Publication Publication Date Title
CN103346293B (zh) 锂离子电池负极材料及其制备方法、锂离子电池
CN103311514B (zh) 一种改性锂离子电池石墨负极材料的制备方法
CN104868159A (zh) 一种改性石墨负极材料的制备方法
CN105609730B (zh) 一种硅/碳/石墨复合负极材料的制备方法
CN104752698B (zh) 一种用于锂离子电池负极的硅碳复合材料及其制备方法
CN103259005B (zh) 一种高容量高倍率锂离子电池负极材料的制备方法
CN103296257B (zh) 一种改性锂离子电池钛酸锂负极材料的制备方法
WO2011009231A1 (zh) 一种碳包覆锂离子电池正极材料的制备方法
CN104638252A (zh) 一种硅复合负极材料、制备方法及锂离子电池
CN104966828A (zh) 一种高容量锂电池负极材料的制备方法
CN101859886A (zh) 一种锂离子电池负极材料及其制备方法
CN106784833A (zh) 硅碳负极材料及其制备方法
CN103346302A (zh) 一种锂电池硅碳纳米管复合负极材料及其制备方法与应用
CN105355908A (zh) 锂离子电池复合负极材料及其制备方法、使用该材料的负极和锂离子电池
CN102496707A (zh) 一种纳米碳包覆尖晶石钛酸锂电池负极材料的制备方法
CN104993118A (zh) 一种锂离子负极材料Li4Ti5O12/C的合成方法
CN103326009B (zh) 一种高容量钛酸锂负极材料的制备方法
CN110098380A (zh) 一种锂离子电池硅基负极材料的制备方法
CN105140483A (zh) 一种改性锂电池负极材料的制备方法
CN102983307A (zh) 锂离子电池石墨负极的制备方法
CN105006555A (zh) 一种金属锡掺杂复合钛酸锂负极材料的制备方法
CN104659333A (zh) 锂离子二次电池Mg2Si/SiOx/C复合负极材料膜电极的制备方法
CN103326010A (zh) 一种纳米硅掺杂复合钛酸锂负极材料的制备方法
CN104300148B (zh) 一种锂离子电池石墨负极材料及其制备方法
CN102013487A (zh) 碳/硅复合锂离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150826