CN104862699A - 微弧氧化处理的镁合金上的表面处理方法 - Google Patents

微弧氧化处理的镁合金上的表面处理方法 Download PDF

Info

Publication number
CN104862699A
CN104862699A CN201410666132.8A CN201410666132A CN104862699A CN 104862699 A CN104862699 A CN 104862699A CN 201410666132 A CN201410666132 A CN 201410666132A CN 104862699 A CN104862699 A CN 104862699A
Authority
CN
China
Prior art keywords
sample
alloy
magnesium alloy
arc oxidation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410666132.8A
Other languages
English (en)
Inventor
陶宏
苏敬豪
李思越
张雪竹
黎国锵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano and Advanced Materials Institute Ltd
Original Assignee
Nano and Advanced Materials Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano and Advanced Materials Institute Ltd filed Critical Nano and Advanced Materials Institute Ltd
Priority to CN201710598780.8A priority Critical patent/CN107523814A/zh
Publication of CN104862699A publication Critical patent/CN104862699A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

使用微弧氧化(MAO)方法在镁合金上形成化学和机械性的保护氧化膜。所获得MAO表面在各个方面得到进一步改进,并且描述了其过程。第一,通过形成超疏水性表面而增强了保护,其中水接触角大于140°,这归因于分层的纳米-微结构。第二,改进了MAO表面的电子性能。具有低至0.05Ω/sq的表面电阻的薄膜是通过在MAO表面上化学镀镍沉积而实现的。第三,黑色是通过MAO样品上的溶胶-凝胶过程所实现的。

Description

微弧氧化处理的镁合金上的表面处理方法
相关申请的交叉引用
本申请基于35 U.S.C.§119(e)要求美国临时申请61/963,017的权益,该美国临时申请于2013年11月21日提交,并且该美国临时申请通过引用而全部结合在本文中。
技术领域
本发明涉及一种在微弧氧化(MAO)处理的镁(Mg)合金表面上形成功能性的涂层的方法,以改变其表面性质。
背景技术
由于例如轻量化、高强度重量比,良好的电磁屏蔽性质以及可铸性的良好性质,镁合金已经越来越多地应用在笔记本电脑的壳体和移动电话的壳体材料。然而,因为在电动势(electromotive force series)和电位势(galvanic series)两方面序列中的活跃位置,镁合金在大气环境中很快腐蚀,尤其是在潮湿环境中[1]。因此,防腐表面处理对于镁合金产品来说是一个不可缺少的制造过程。
在各种防腐表面处理方法中,微弧氧化(MAO)处理是有前途且有效的,从而将具有较好粘合性的厚陶瓷层形成到基板,这同样是兼顾环保性和高性价比。使用电解液将复合镁基陶瓷层形成在其表面上。然而,制造厂商在一些方面并不满意MAO的表面性能。首先,耐腐蚀性需要进一步增强。其次,MAO处理的表面层是绝热和绝缘的。当MAO过程应用到电子壳体材料时,绝缘性质将影响镁合金的一些性质,包括散热性,导电性,和抗电磁干扰性,尤其是在内表面上。第三,使用者并不满意MAO处理的表面的颜色。经过MAO处理之后,颜色选择是有限的,即不同比例下的灰色。
因此,需要提供一种在MAO处理的镁合金表面上的满意的表面处理方法。
发明内容
鉴于前述的背景技术,本发明的目的是提供一种在MAO处理的镁合金表面上的另一种表面处理方法。
因此,一方面,本发明是一种微弧氧化处理的镁(Mg)合金的处理表面的方法,其包括以下步骤:
a.提供一种MAO处理的镁合金样品;
b.将样品浸入到溶液中;和
c.将步骤(b)的样品进行干燥;
其中,从步骤(c)所获得的已处理样品的表面是超疏水的。
在本发明的示范性实施方式中,步骤(c)之后,已处理样品的表面的水接触角至少为140.4°。在另一个示范性实施方式中,步骤(a)的样品在步骤(b)之前通过NaOH溶液所蚀刻。在另外的示范性实施方式中,该溶液选自于由全氟癸基三甲氧基硅烷(perfluorodecyltrimethoxysilane),正辛基三乙氧基硅烷(triethoxyoctylsilane)和全氟癸基三乙氧基硅烷(perfluorodecyltriethoxysilane)组成的组。
在另一示范性实施方式中,溶液是与硅烷混合的四乙基原硅酸酯,并且步骤(b)和步骤(c)重复两次。
在第二方面中,本发明提供了一种镁合金,其包括5-40μm厚度的镁基陶瓷层;和其上的超疏水涂层,该涂层包括硅烷层,从而该表面具有至少140.4°的水接触角。
在示范性实施方式中,该产品是通过发明内容部分的第2到7段中所述的过程而进行制造。在另一示范性实施方式中,合金表面包括鳞片状结构,并且鳞片状结构的薄片具有100到200nm的长度。
在示范性实施方式中,该产品是通过在发明内容部分的第2到6段以及第8段中所述的过程而制造。在另一示范性实施方式中,该表面包括具有200nm大小的纳米颗粒。
在第三方面中,本发明提供了一种处理微弧氧化处理的镁合金的表面的方法,包括:
a.提供微弧氧化处理的镁合金样品;
b.在乙醇溶液中利用醋酸镍溶液预处理该样品;
c.通过还原剂溶液而活化该已预处理样品;以及
d.通过沉积溶液将化学镀镍(electro-less Ni)形成在已活化的样品的表面上。
其中,从步骤(d)获得的已处理样品是导电的。
在示范性实施方式中,还原剂溶液是NaBH4乙醇溶液。在另一示范性实施方式中,沉积溶液包括NiSO4·6H2O、NaH2PO2·H2O、柠檬酸钠、H3BO3、C3H6O3以及硫脲。在另一示范性实施方式中,从步骤(d)获得的已处理样品的表面电阻小于0.05Ω/sq,并且通过四点探针测试法进行测量。
在第四方面中,本发明提供了镁合金,其包括在合金上的10-30μm厚度的镍层,在其之间的微弧氧化处理层的厚度为5-40μm。该镍层在微弧氧化处理层上形成均匀表面,以提供改善的导电性,从而合金具有小于0.05Ω/sq的表面电阻。
在一个示范性实施方式中,微弧氧化处理层具有一些气孔,其具有由镍填充的1-3μm的平均孔径。在另一示范性实施方式中,产品是通过第三方面中的过程所制造。
在第五方面中,本发明提供了一种微弧氧化处理的镁合金表面的处理方法,其包括:
a.提供微弧氧化处理的镁合金样品;
b.将样品浸入到硅烷溶液中;
c.将步骤(b)的样品进行干燥;以及
d.对步骤(c)的样品进行退火;
其中,该溶液是与硅烷相混合的四乙基原硅酸酯,并且步骤(b)和步骤(c)重复三次以上,其中,表面的颜色与标准颜色代码PANTONE 19-0303匹配。
在第六方面,本发明提供了一种镁合金,其包括5-40μm厚度的镁基陶瓷层,和在其上的硅烷涂层,其中该合金的表面颜色与标准颜色代码PANTONE 19-0303相匹配。在示范性实施方式中,镁合金是通过第五方面的过程所制造的。
附图说明
图1(a)和(b)示出了在化学蚀刻过程中形成在MAO处理表面上的纳米结构和其水接触角。
图2(a)和(b)示出了通过溶胶-凝胶过程形成在MAO处理表面上的平均尺寸为200nm的纳米颗粒及其水接触角。
图3(a)和(b)示出了通过EDX在MAO处理样品上的Ni沉积表面的SEM图以及表面上的Ni分布。
图4(a)和(b)示出了通过EDX在MAO处理样品上的Ni沉积横截面的SEM图以及横截面的Ni分布。
图5(a)和(b)示出了通过溶胶-凝胶处理的MAO处理样品的黑色着色。在处理过程中使用不同的硅烷。两个样品的颜色基本上是相同的并且与标准颜色代码PANTONE 19-0303相匹配。
图5(c)示出了在退火之前和之后通过溶胶-凝胶过程进一步处理的MAO样品的XRD峰值。
图5(d)示出了在退火之前和之后通过溶胶-凝胶过程进一步处理的MAO样品的拉曼位移。
具体实施方式
如此处和权利要求书中,“包括”表示包含下列元件,但是并不排除其他。
如此处和权利要求书中,除非另有说明,“联接”或者“连接”指的是直接或者通过一个或者多个电子装置间接电联接或者连接。
如此处和权利要求书中,“MAO处理的镁合金”指的是镁合金,该镁合金包括在MAO处理期间形成在镁合金表面上的镁基陶瓷层。
本发明涉及在微弧氧化(MAO)处理的镁合金的表面上形成功能性涂层、以及通过疏水性处理改变其耐腐蚀性、通过化学镀镍沉积改变电气性质和通过溶胶-凝胶过程而增强颜色外观的方法。
实施例1,MAO处理
由商品等级镁合金AZ31B制成的样品在实验中使用,并且其化学成分列在了表格1中。本领域技术人员将知晓包括至少88%Mg的其他Mg合金也适于本发明。具有30mmx30mmx1mm尺寸的样品通过微弧氧化方法进行了处理。首先,用于MAO处理的电解液是通过将20-30g/L硅酸盐、5-30g/L磷酸盐和3-6g/L氢氧化物溶解到不锈钢容器内的DI水中而制备的。然后,电流强度33-89A/dm2的电流施加到已浸入到电解液容器中的镁合金样品上,以脉冲频率500-2600Hz持续240-720秒。化学和机械保护的镁基陶瓷层是在处理期间形成在其表面上。其水接触角是91.4°。该表面是电绝缘的。
表格1,镁合金AZ31B的化学成分
成分 Al Zn Mn Mg
重量[%] 3.17 0.78 0.31 平衡
实施例2,疏水性处理
在本发明的一个实施方式中,提供了在MAO处理的镁合金(MAO样品)上的疏水性处理过程。化学蚀刻过程是通过在室温下将MAO样品浸入到0.125mol/L NaOH溶液持续24小时而进行的。具有100-200nm长度的精细的纳米结构,如图1(a)和(b)中示出那样,形成在MAO处理表面上。鳞片状结构形成在微孔MAO处理的镁合金的表面上,这将促进改善的疏水性。然后,所蚀刻的样品已经在室温下浸入到包含1g全氟癸基三甲氧基硅烷(或者0.4g正辛基三乙氧基硅烷或1g全氟癸基硅烷)以及10g乙醇的溶液中持续1小时,以形成非常薄的硅烷层,随后在180℃下进行干燥处理1小时。其水接触角增加到145.8°。
在本发明的另一实施方式中,提供了第二疏水性处理方法。四乙基原硅酸酯(TEOS)和乙醇(5mL)以滴液的方式缓慢地增加到NH4OH、H2O和C2H5OH(30.5mL)的混合物中。该混合物可在60℃下搅拌75分钟,以获得硅胶体。溶胶溶液从透明变换到白色不透明。MTES(1.6mL)和乙醇(5mL)然后以滴液方式缓慢增加到混合溶液中。该溶液在60℃下搅拌19小时,并且在环境温度下进一步沉降3天。可以获得白色不透明溶液。MAO样品被浸入到疏水性硅溶胶-凝胶中持续15分钟,并且缓慢抽出,并且在110℃下干燥30分钟,以移除剩余的溶剂。该程序重复两次,以将附加的膜形成在MAO处理表面上。该膜及其水接触角分别在图2(a)和(b)中示出。其水接触角被增加到140.4°。
MAO样品的耐腐蚀性由于增强的疏水性而同样得到改善。具体地说,对于上述的第二疏水性处理,随着在MAO表面的顶部上存在纳米颗粒附加层,盐雾试验进行的操作比没有进行疏水处理更好,如在盐雾试验期间通过第二疏水性处理的表面上没有黑点。
实施例3,导电处理
下列三个步骤化学镀镍沉积程序旨在将导电涂层形成在MAO处理的镁合金(MAO样品)上。第一个步骤是预处理过程,其中MAO样品浸入到醋酸镍的2g/L乙醇溶液中,在室温下持续20s,并且通过DI水进行冲洗。
第二步骤是活化过程,其中MAO样品被浸入到NaBH4的8g/L乙醇溶液中,在室温下持续5分钟,并且通过DI水进行冲洗。NaBH4用作还原剂,来将醋酸镍中的镍离子还原成活化的镍原子,从而一些被还原的镍颗粒形成在MAO处理表面的气孔中;在这种情况下,这些被还原的镍颗粒作为镍层生长的起始。
第三个步骤是化学镀镍沉积过程,其中混合水溶液是由NiSO4·6H2O:10-50g/L、NaH2PO2·H2O:20-40g/L、柠檬酸钠:20g/L、H3BO3(硼酸):20g/L、C3H6O3(乳酸):15mL/L、硫脲:0-2mg/L所形成。MAO样品浸入到混合水溶液(pH 10-11)中,在70℃下持续50分钟,并且通过DI水进行冲洗。图3(a)和(b)示出了通过EDX的MAO样品上NI沉积表面的SEM图以及表面上的Ni分布。图4(a)和(b)示出了通过EDX的MAO样品上Ni沉积的横截面的SEM图以及横截面的Ni分布。镍以10μm厚度沉积在MAO处理表面的顶部上。其表面电阻通过四点探针方法进行测量是≤0.05Ω/sq。这个结果表示了具有较高均匀性和耐腐蚀性的镍层通过化学镀镍被沉积在MAO处理表面上。
根据EDX结果,示出了镍均匀沉积在MAO处理表面上。这些表面的新组合可用于电子壳体材料,尤其是用于需要优秀耐腐蚀性和导电性,例如户外照明固定装置和户外便携电子设备等等。
实施例4,颜色处理
为了MAO处理表面上的颜色处理,溶液通过混合TEOS(1-10g)和C2H5OH(20-100mL)、NH4OH(1-10mL)以及水(0-5mL)所形成。该混合物在60℃下搅拌60分钟。三乙氧基(辛基)硅烷(OTES)(1-10mL)被以滴的形式增加到混合溶液中。该混合物在60℃下连续搅拌6小时,然后在室温下陈化24小时。MAO样品被浸入到疏水性硅溶胶中,持续10分钟,然后在100℃下干燥30分钟,以移除剩余的溶剂。该程序重复三次以上,以获得足够厚的硅膜。在浸涂层之后,样品在真空下在400℃下退火2小时。然后黑色着色形成在MAO处理表面上,以满足市场的美学需要。
图5(a)和(b)示出了通过溶胶-凝胶过程进行MAO处理样品的均匀黑色着色。两个样品的着色基本上是相同的,并且与标准颜色代码PANTONE 19-0303相匹配。图5(c)示出了处理表面的XRD,其中蓝色曲线表示在着色之前的MAO样品,而红色曲线表示了着色之后的MAO样品表面。黑色被认为是在退火期间产生的石墨。在图5(d)中,处理表面的拉曼谱被示出,其中,红色曲线表示着色之前的MAO样品,而黑色曲线表示着色之后的MAO样品。在1350cm-1处黑色曲线的典型峰值表示了退火之后的石墨存在。
本发明的示范性实施方式进行了描述。尽管该描述是参照特定的实施方式,但是对于本领域技术人员而言清楚本发明可通过这些特定细节的变形而实现。因此,本发明将并不限于在此说明的实施方式。
参考文献:
1 J.E.Gray,B.Luan的“镁及其合金上的保护涂层--关键评论”,Journal of Alloys and Compounds 336(2002),第88-113页。

Claims (20)

1.一种微弧氧化处理的镁合金表面的处理方法,其包括:
a)提供微弧氧化处理的镁合金样品;
b)将所述样品浸入到溶液中;以及
c)干燥所述步骤(b)的所述样品;
其中,从所述步骤(c)获得所述已处理样品的表面是超疏水的。
2.如权利要求1所述的方法,其中,在所述步骤(c)之后,所述已处理样品的所述表面的水接触角是至少140.4°。
3.如权利要求1所述的方法,其中,在所述步骤(b)之前所述步骤(a)的所述样品通过NaOH溶液蚀刻。
4.如权利要求3所述的方法,其中所述溶液选自于由全氟癸基三甲氧基硅烷,正辛基三乙氧基硅烷和全氟癸基三乙氧基硅烷组成的组。
5.如权利要求1所述的方法,其中所述溶液是与硅烷相混合的四乙基原硅酸酯,并且所述步骤(b)和步骤(c)被重复两次。
6.一种镁合金,其包括:
5-40μm厚度的镁基陶瓷层;和所述镁基陶瓷层上的超疏水涂层,其中所述涂层包括硅烷层,从而所述合金具有至少140.4°的水接触角。
7.如权利要求6所述的镁合金,其中所述合金的表面包括鳞片状结构;所述鳞片状结构的薄片具有100-200nm的长度。
8.如权利要求7所述的镁合金,其通过如权利要求3或者4所述的方法制造。
9.如权利要求6所述的镁合金,其中所述表面包括具有200nm尺寸的纳米颗粒。
10.如权利要求9所述的镁合金,其通过如权利要求5所述的方法制造。
11.一种微弧氧化处理的镁合金表面的处理方法,其包括:
a)提供微弧氧化处理的镁合金样品;
b)在乙醇溶液中通过醋酸镍溶液预处理所述样品;
c)通过还原剂溶液活化所述预处理的样品;以及
d)利用沉积溶液,在所述已活化的样品的表面上形成化学镀镍,
其中,从所述步骤(d)所获得的所述已处理的样品是导电的。
12.如权利要求11所述的方法,其中所述还原剂溶液是NaBH4的乙醇溶液。
13.如权利要求11所述的方法,其中所述沉淀溶液包括NiSO4·6H2O、NaH2PO2·H2O、柠檬酸钠、H3BO3、C3H6O3以及硫脲。
14.如权利要求11所述的方法,其中从所述步骤(d)获得的所述已处理的镁合金样片的表面电阻为小于0.05Ω/sq。
15.一种镁合金,其包括所述合金上的10-30μm厚度的镍层,其之间的微弧氧化处理的层具有5-40μm厚度;所述镍层形成了所述微弧氧化处理层上的均匀表面,以提供改善的导电性,从而所述合金具有小于0.05Ω/sq的表面电阻。
16.如权利要求15所述的镁合金,其中所述微弧氧化处理层具有孔,该孔具有由镍填充的1-3μm的平均孔径。
17.如权利要求15所述的镁合金,其通过如权利要求11的方法制造。
18.一种微弧氧化处理的镁合金表面的处理方法,其包括:
a)提供微弧氧化处理的镁合金样品;
b)将所述样品浸入到硅烷溶液中;
c)干燥所述步骤(b)的所述样品;以及
d)将所述步骤(c)的所述样品进行退火;
其中,所述溶液是与硅烷相混合的四乙基原硅酸酯,并且所述步骤(b)和步骤(c)重复三次以上;
其中,所述表面的颜色与标准颜色代码PANTONE 19-0303相匹配。
19.一种镁合金,其包括5-40μm厚度的镁基陶瓷层,和所述镁基陶瓷层上的硅烷涂层,其中,所述合金的表面颜色与标准颜色代码PANTONE 19-0303相匹配。
20.如权利要求19的镁合金,其通过如权利要求18的方法制造。
CN201410666132.8A 2013-11-21 2014-11-19 微弧氧化处理的镁合金上的表面处理方法 Pending CN104862699A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710598780.8A CN107523814A (zh) 2013-11-21 2014-11-19 微弧氧化处理的镁合金上的表面处理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361963017P 2013-11-21 2013-11-21
US61/963,017 2013-11-21
US14/543,911 US20150140314A1 (en) 2013-11-21 2014-11-18 Surface treatment method on Micro-arc Oxidation treated Mg alloys
US14/543,911 2014-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710598780.8A Division CN107523814A (zh) 2013-11-21 2014-11-19 微弧氧化处理的镁合金上的表面处理方法

Publications (1)

Publication Number Publication Date
CN104862699A true CN104862699A (zh) 2015-08-26

Family

ID=53173590

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201710598780.8A Pending CN107523814A (zh) 2013-11-21 2014-11-19 微弧氧化处理的镁合金上的表面处理方法
CN201410666132.8A Pending CN104862699A (zh) 2013-11-21 2014-11-19 微弧氧化处理的镁合金上的表面处理方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201710598780.8A Pending CN107523814A (zh) 2013-11-21 2014-11-19 微弧氧化处理的镁合金上的表面处理方法

Country Status (3)

Country Link
US (2) US20150140314A1 (zh)
CN (2) CN107523814A (zh)
HK (1) HK1208506A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119845A (zh) * 2016-06-25 2016-11-16 袁春华 一种耐摩擦抗腐蚀镁合金的制备方法
CN109055841A (zh) * 2018-09-06 2018-12-21 中国石油大学(华东) 铸造可溶镁合金复合材料压裂球表面防护层制备方法
CN109183126A (zh) * 2018-08-11 2019-01-11 桂林理工大学 一种镁合金表面疏水膜层的制备方法
CN111893542A (zh) * 2020-08-06 2020-11-06 嵊州市森拓新材料有限公司 一种超疏水型微弧氧化耐磨涂层的钛合金及其制法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222647A (zh) * 2016-07-23 2016-12-14 中信戴卡股份有限公司 一种镁合金表面处理方法
EP3391915B1 (en) 2017-03-30 2021-04-14 Biomet Manufacturing, LLC Methods of modifying the porous surface of implants
CN110714219A (zh) * 2019-11-04 2020-01-21 吉林大学 镁合金微弧氧化表面电镀镍的方法
CN113046811B (zh) * 2019-12-27 2022-12-09 比亚迪股份有限公司 一种微弧氧化电解液及其应用方法、工件
CN111394771B (zh) * 2020-04-22 2021-05-04 哈尔滨工业大学 一种在铜及其合金表面制备涂层的方法及铜制品
CN113373492B (zh) * 2021-04-30 2022-08-16 上海交通大学 一种镁合金超高频微弧氧化的处理方法
CN113668035B (zh) * 2021-07-15 2024-02-06 桂林理工大学 一种于微弧氧化镁合金表面一步原位生成Zn-MOF涂层及其制备方法
CN113604851B (zh) * 2021-07-15 2024-02-06 桂林理工大学 一种镁合金表面无需低表面能物质修饰的超疏水涂层及其制备方法
CN114672864A (zh) * 2022-04-25 2022-06-28 齐鲁工业大学 一种医用镁合金微弧氧化复合涂层的制备方法
CN114606550B (zh) * 2022-04-25 2023-04-11 齐鲁工业大学 生物医用镁合金制品的电解液及表层制备方法
CN114941164B (zh) * 2022-06-16 2024-01-19 河南大学 一种镁合金表面双功能复合涂层的制备方法
CN115418641A (zh) * 2022-09-08 2022-12-02 南通大学 一种金属材料超疏水防腐表面的制备方法
CN115613103B (zh) * 2022-11-07 2023-07-11 南京工程学院 微弧氧化镁合金表面疏水Mg-Al类水滑石膜及其一步制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423945A (zh) * 2007-11-02 2009-05-06 中国科学院宁波材料技术与工程研究所 一种轻质金属超疏水表面的制备方法
CN101466481A (zh) * 2006-06-23 2009-06-24 3M创新有限公司 具有耐用疏水表面的制品
CN101476142A (zh) * 2008-12-24 2009-07-08 华南理工大学 金属表面超疏水有机纳米薄膜的制备方法
CN102286768A (zh) * 2011-09-07 2011-12-21 大连理工大学 一种制备超疏水镁合金表面的工艺方法
CN102345126A (zh) * 2010-08-05 2012-02-08 汉达精密电子(昆山)有限公司 金属工件的表面处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7235142B2 (en) * 2002-01-04 2007-06-26 University Of Dayton Non-toxic corrosion-protection rinses and seals based on cobalt
US20060016690A1 (en) * 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys
US20080221263A1 (en) * 2006-08-31 2008-09-11 Subbareddy Kanagasabapathy Coating compositions for producing transparent super-hydrophobic surfaces
CN101298200B (zh) * 2007-04-30 2012-03-28 比亚迪股份有限公司 一种镁合金复合材料及其制备方法
CN101092694B (zh) * 2007-08-15 2010-06-23 李克清 镁合金的表面处理方法
US8147607B2 (en) * 2009-10-26 2012-04-03 Ashland Licensing And Intellectual Property Llc Hydrophobic self-cleaning coating compositions
CN101760733B (zh) * 2010-01-28 2011-08-10 西安理工大学 以微弧氧化工艺为前处理的镁合金化学镀镍表面处理方法
CN103014680A (zh) * 2011-09-26 2013-04-03 中国科学院金属研究所 镁合金微弧氧化陶瓷层表面化学镀镍无钯活化方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466481A (zh) * 2006-06-23 2009-06-24 3M创新有限公司 具有耐用疏水表面的制品
CN101423945A (zh) * 2007-11-02 2009-05-06 中国科学院宁波材料技术与工程研究所 一种轻质金属超疏水表面的制备方法
CN101476142A (zh) * 2008-12-24 2009-07-08 华南理工大学 金属表面超疏水有机纳米薄膜的制备方法
CN102345126A (zh) * 2010-08-05 2012-02-08 汉达精密电子(昆山)有限公司 金属工件的表面处理方法
CN102286768A (zh) * 2011-09-07 2011-12-21 大连理工大学 一种制备超疏水镁合金表面的工艺方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAOHUA WANG ET.AL.: "Preparation of superhydrophobic silica film on Mg–Nd–Zn–Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol–gel method", 《SURFACE & COATINGS TECHNOLOGY》 *
SHU-YUAN WU ET.AL.: "Using Micro-Arc Oxidation and Alkali Etching to Produce a Nanoporous TiO2 Layer on Titanium Foil for Flexible Dye-Sensitized Solar Cell Application", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119845A (zh) * 2016-06-25 2016-11-16 袁春华 一种耐摩擦抗腐蚀镁合金的制备方法
CN109183126A (zh) * 2018-08-11 2019-01-11 桂林理工大学 一种镁合金表面疏水膜层的制备方法
CN109055841A (zh) * 2018-09-06 2018-12-21 中国石油大学(华东) 铸造可溶镁合金复合材料压裂球表面防护层制备方法
CN109055841B (zh) * 2018-09-06 2020-08-25 中国石油大学(华东) 铸造可溶镁合金复合材料压裂球表面防护层制备方法
CN111893542A (zh) * 2020-08-06 2020-11-06 嵊州市森拓新材料有限公司 一种超疏水型微弧氧化耐磨涂层的钛合金及其制法
CN111893542B (zh) * 2020-08-06 2021-08-03 牡丹江申佳合金材料有限公司 一种超疏水型微弧氧化耐磨涂层的钛合金及其制法

Also Published As

Publication number Publication date
US20150140314A1 (en) 2015-05-21
CN107523814A (zh) 2017-12-29
US20170137945A1 (en) 2017-05-18
HK1208506A1 (zh) 2016-03-04

Similar Documents

Publication Publication Date Title
CN104862699A (zh) 微弧氧化处理的镁合金上的表面处理方法
Cabral et al. Analytical characterisation and corrosion behaviour of bis-[triethoxysilylpropyl] tetrasulphide pre-treated AA2024-T3
Palomino et al. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl
Zhang et al. A high anticorrosive chromium-free conversion coating prepared with an alkaline conversion bath on electroless Ni–P coating
Amini et al. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent
Seifzadeh et al. Environmentally-friendly method for electroless Ni–P plating on magnesium alloy
CN100507079C (zh) 阳极化镁和镁合金的方法及在阳极化的表面上产生导电层的方法
Wang et al. Facile preparation of a high-quality copper layer on epoxy resin via electroless plating for applications in electromagnetic interference shielding
Zhou et al. The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D
Zhao et al. A new method for electroless Ni–P plating on AZ31 magnesium alloy
Zhang et al. Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition
Peres et al. Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection
JP5809351B2 (ja) 自己析出型銅用表面処理剤および樹脂皮膜付き銅含有基材の製造方法
CN107955961B (zh) 一种镁合金表面导电防腐涂层的制备方法
Li et al. A sol–bath–gel approach to prepare hybrid coating for corrosion protection of aluminum alloy
JP4367838B2 (ja) 導電性陽極酸化皮膜を表面に有するマグネシウム又はマグネシウム合金製品及びその製造方法
Wang et al. Electrodeposited chromate-free organic passive film on the rolled copper foil
Mubarok et al. Effects of anodizing parameters in tartaric-sulphuric acid on coating thickness and corrosion resistance of Al 2024 T3 alloy
Telmenbayar et al. Corrosion resistance of the anodization/glycidoxypropyltrimethoxysilane composite coating on 6061 aluminum alloy
Chen et al. Rare earth passivation and corrosion resistance of zinc coated NdFeB magnets
Heidari et al. Electrodeposition of Cu–Sn alloys: theoretical and experimental approaches
CN109661483A (zh) 用于处理铬加工表面的方法
Castano et al. A comparative study on the corrosion resistance of cerium-based conversion coatings on AZ91D and AZ31B magnesium alloys
Liu et al. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni–P films
Ogutu et al. Hybrid method for metallization of glass interposers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1208506

Country of ref document: HK

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150826

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1208506

Country of ref document: HK