CN104857502A - 一种载血管内皮生长因子纳米控释复合物及其制备方法 - Google Patents

一种载血管内皮生长因子纳米控释复合物及其制备方法 Download PDF

Info

Publication number
CN104857502A
CN104857502A CN201510178535.2A CN201510178535A CN104857502A CN 104857502 A CN104857502 A CN 104857502A CN 201510178535 A CN201510178535 A CN 201510178535A CN 104857502 A CN104857502 A CN 104857502A
Authority
CN
China
Prior art keywords
vegf
pcl
nano
peg
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510178535.2A
Other languages
English (en)
Other versions
CN104857502B (zh
Inventor
周建良
朱志刚
聂彬恩
丁静丽
陈佳
徐建军
易应萍
董啸
唐燕华
徐高四
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Affiliated Hospital to Nanchang University
Original Assignee
Second Affiliated Hospital to Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Second Affiliated Hospital to Nanchang University filed Critical Second Affiliated Hospital to Nanchang University
Priority to CN201510178535.2A priority Critical patent/CN104857502B/zh
Publication of CN104857502A publication Critical patent/CN104857502A/zh
Application granted granted Critical
Publication of CN104857502B publication Critical patent/CN104857502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

本发明涉及生物医药材料技术领域,具体涉及一种载血管内皮生长因子纳米控释复合物及其制备方法。本发明提供了一种载血管内皮生长因子纳米复合物,其通过含有下述物质的原料制成:血管内皮生长因子、聚己内酯和聚乙二醇-聚己内酯。本发明还提供了一种载血管内皮生长因子纳米复合物的制备方法,其条件温和,工艺简单,得到的纳米复合物既能保持血管内皮生长因子的活性同时可以延长其半衰期,且能通过控制聚己内酯的分子量及投料量,很好的控制血管内皮生长因子的释放速度和释放周期,一定程度上实现血管内皮生长因子的可控释放。

Description

一种载血管内皮生长因子纳米控释复合物及其制备方法
技术领域
本发明涉及生物医药材料技术领域,具体涉及一种载血管内皮生长因子纳米控释复合物及其制备方法。
背景技术
缺血性心脏病是心血管系统的常见病、多发病,随着人口老龄化进程的推进,缺血性心脏病的发病率呈逐年上升趋势。缺血性心脏病主要是冠状动脉循环体系发生病理改变,致使冠状动脉的灌注与心肌的血液供应失衡,而导致心肌的灌注不足,从而引发心肌的缺血缺氧。目前的治疗措施以改善冠状动脉的灌注和心肌的血供为主,主要包括药物治疗、冠脉搭桥术、经皮腔内冠状动脉成形术等,但有效的侧支循环形成是治疗的关键所在。冠脉搭桥术虽然能直接建立血液循环,但需要开胸手术且仅局限于较大的冠脉,经皮腔内冠状动脉成形术的术后再狭窄率高,故在心脏上诱导侧枝血管形成,自形成血液循环通路,达到解决心肌的血液供应。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是目前研究最广、促进血管形成最强的因子,能直接作用于血管内皮细胞,促进血管内皮细胞的增殖,增加血管通透性,有效诱导血管形成,加速侧支循环的建立。有研究表明,将游离的VEGF注射到病变缺血区域,短期内有一定的效果,但不能持久的使其血管化,游离的VEGF在体内易被蛋白酶降解,半衰期非常短,在病变局部不能维持一定的药物浓度,导致病变部位需多次给药,使局部产生耐药性。应用纳米载药控释系统可解决上述问题。
纳米载药控释系统可作为一种新颖的药物载体,能够携带多种药物且能够严格控制药物的释放速度和释放周期,在局部可达到预定的药物浓度,降低大剂量给药对机体的产生的毒副作用,从而提高药物的生物利用度。
发明内容
本发明所解决的技术问题是:现有技术条件下的血管内皮生长因子半衰期非常短,在体内易被蛋白酶降解,使其在病变局部不能维持一定的药物浓度,且目前应用较广的VEGF包载材料,如PLGA,在降解的过程中易产生酸性微环境,影响VEGF的活性和载药控释系统的释药行为,因此需要提供一种纳米载药系统包载VEGF,使制备得到的纳米控释复合物在保证VEGF的活性的同时,延长VEGF的半衰期,且能很好的控制VEGF的释放速度和释放周期,在一定程度上实现VEGF的可控释放。
具体来说,本发明提供了如下技术方案:
本发明提供了一种载血管内皮生长因子纳米复合物,其通过含有下述物质的原料制成:血管内皮生长因子、聚己内酯和聚乙二醇-聚己内酯。
优选的,所述的血管内皮生长因子为0.5~2重量份,所述的聚己内酯为18000~23000重量份,所述的聚乙二醇-聚己内酯为3000~6000重量份。
更优选的,所述的血管内皮生长因子为1~1.5重量份,所述的聚己内酯为18000~20000重量份,所述的聚乙二醇-聚己内酯为4000~5500重量份。
优选的,所述的纳米复合物通过含有下述物质的原料制成:血管内皮生长因子、磷脂、聚己内酯和聚乙二醇-聚己内酯。
优选的,所述的血管内皮生长因子为0.5~2重量份;所述的磷脂为4000~8000重量份;所述的聚己内酯为18000~23000重量份;所述的聚乙二醇-聚己内酯为3000~6000重量份。
更优选的,所述的血管内皮生长因子为1~1.5重量份;所述的磷脂为5000~6000重量份;所述的聚己内酯为18000~20000重量份;所述的聚乙二醇-聚己内酯为4000~5500重量份。
优选的,所述的血管内皮生长因子包括血管内皮生长因子165。
优选的,所述的聚己内酯的分子量为9000~15000。
优选的,所述的聚乙二醇-聚己内酯的分子量为8000~12000,其中聚乙二醇链段的分子量为2000~4000。
优选的,所述的聚乙二醇链段的分子量为2000。
优选的,所述的纳米复合物对血管内皮生长因子的包封率为70%~80%。
优选的,所述的纳米复合物的粒径为200~280nm。
优选的,所述的纳米复合物,其通过包含如下步骤的方法制备得到:
将所述血管内皮生长因子、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米复合物。
优选的,所述的纳米复合物,其通过包含如下步骤的方法制备得到:
(1)所述血管内皮生长因子与磷脂混合得到血管内皮生长因子-磷脂复合物;
(2)将所述血管内皮生长因子-磷脂复合物、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米粒复合物。
本发明同时提供了一种制备载血管内皮生长因子纳米复合物的制备方法,其包括如下步骤:
将所述血管内皮生长因子、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米粒复合物。
优选的,所述的纳米复合物的制备方法,其包括如下步骤:
(1)所述血管内皮生长因子与磷脂混合得到血管内皮生长因子-磷脂复合物;
(2)将所述血管内皮生长因子-磷脂复合物、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米粒复合物。
优选的,步骤(1)中所述的磷脂溶于有机溶剂中,所述的有机溶剂为叔丁醇。
优选的,步骤(1)制备得到的血管内皮生长因子-磷脂复合物在-56℃~-70℃条件下预冻3~5小时,再经真空干燥15~20小时,得到冻干的血管内皮生长因子-磷脂复合物。
优选的,步骤(2)中,所述油相和所述水溶性聚合物按照体积比为1:5~8的比例进行混合,其中所述的水溶性聚合物选自聚乙烯醇、聚乙烯基吡咯烷酮或乙烯-乙烯醇共聚物。
优选的,所述的水溶性聚合物为聚乙烯醇。
优选的,所述水溶性聚合物浓度为1%~4%(w/v)。
优选的,步骤(2)中,所述的有机溶剂选自二氯甲烷、丙酮或乙酸乙酯。
更优选的,所述的有机溶剂为二氯甲烷。
优选的,步骤(2)中,超声功率为20w~40w,超声时间为1~3min,其中开5~10s,关5~10s,并通过磁力搅拌除去有机溶剂。
优选的,所述的制备方法,还包括下述步骤:向所述的纳米复合物中加入聚乙二醇辛基苯基醚得到纳米粒混悬液,离心干燥得到固体纳米粒。
优选的,所述的纳米粒混悬液于4℃条件下超速离心,离心速度为28000~35000r/pm,离心时间为20~30min。
本发明所述的载血管内皮生长因子纳米复合物在纳米载药控释材料中的应用。
聚乙二醇(polyethylene glycol,PEG)链段以重复乙二醇氧化乙烯为基础结构,具有高度亲水性、无毒、无抗原性和免疫原性及良好组织相容性等优点。聚己内酯(polycaprolactone,PCL)具有优良的药物透过性、优异的生物可降解性和生物相容性。PEG与疏水性PCL链段结合后的PEG-PCL共聚物,可作为优良的药物运输骨架材料,在医药、食品等领域得到广泛应用。经PEG修饰的纳米材料,在体内能避免巨噬细胞吞噬系统的清除,可增加其在体内的滞留时间。PCL和PEG均已被美国FDA组织批准在人体内使用,且PEG-PCL经国际认证无毒害,无免疫原性,具有良好的生物降解性和相容性。
本发明所用的PEG-PCL可以是商购的,也可以通过常规的方法制备得到。
本发明采用乳化溶剂挥发法制备经PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米控释系统,制备条件温和,操作简单。所述VEGF-磷脂复合物,是指水溶性药物VEGF与磷脂的冻干复合物,该方法能将水溶性药物有效的增溶至有机溶剂中,克服了大部分水溶性药物不溶于有机溶剂的缺点。
本发明中纳米控释系统可对VEGF进行良好的包载,使VEGF免受体内蛋白酶的降解,延长VEGF的半衰期,且能通过控制聚己内酯的分子量及投料量很好的控制VEGF的释放速度和释放周期。同时,经PEG修饰的纳米控释复合物能够避免体内巨噬细胞吞噬系统的清除作用,增加其在体内的滞留时间,从而进一步延长VEGF的半衰期。本纳米载体在体内能被多种酶,如脂肪酶,完全降解,且降解产物及其代谢产物对人体无毒害。
本发明所取得的有益效果:
(1)本发明提供了一种载血管内皮生长因子纳米控释复合物,属于纳米控释系统,该系统对VEGF的包封率高,所制备的纳米粒呈球形,表面光滑,形态规整,粒径分布均匀,稳定性好。体外累计释放速度较缓慢,未见明显的突释效应,达到了缓慢控制释放的效果。细胞毒性实验提示纳米粒对脐静脉内皮细胞无毒性作用。
(2)本发明中的载血管内皮生长因子纳米控释复合物采用乳化溶剂挥发法制得,条件温和,设备工艺简单,操作步骤简单,且保持VEGF的活性。
(3)本发明提供的纳米载药系统能将VEGF包封在纳米材料中,避免VEGF受体内蛋白酶的降解,且能通过控制聚己内酯的分子量及投料量很好的控制VEGF的释放速度和释放周期。该纳米载药系统经PEG修饰,在体内又能避免巨噬细胞吞噬系统的清除,增加其在体内的滞留时间,从而进一步延长VEGF的半衰期。
(4)本发明将水溶性药物VEGF与磷脂混合制成冻干复合物,该方法能将水溶性药物增溶至有机溶剂中,克服了大部分水溶性药物不溶于有机溶剂的缺点。
(5)构成载体材料的PEG-PCL和PCL均为可降解材料,可在体内生物酶的作用下完全降解,且降解产物及其代谢产物对人体无毒害,具有良好的生物降解性和相容性。
附图说明
图1为载VEGF纳米控释复合物的制备过程示意图。
图2为PEG-PCL共聚物的红外光谱图,其中3441.88cm-1处为PCL链段末端-OH的伸缩振动峰,1727.26cm-1为PCL链段C=O的伸缩振动峰,1106.56cm-1处为PEG链段C-O-C的伸缩振动峰,2800-3000cm-1处为亚甲基C-H键的伸缩振动峰,证实合成的共聚物由M-PEG链段和PCL链段组成。
图3为共聚物PEG-PCL的核磁共振氢谱图,可见PEG-PCL中PCL段亚甲基的质子峰(δ=1.38、1.65、2.31和4.06ppm)以及PEG段亚甲基的质子峰(主要为δ=3.64ppm),比较弱的4.23ppm峰与PEG和PCL连接处的-OCH2CH2O-有关,表明合成的产物是PEG-PCL共聚物。其中PCL链段的平均分子量可由PCL链段中δ2.31ppm和PEG链段中δ3.64ppm处质子峰的积分估算,从而估计所合成PEG-PCL共聚物的平均分子量为9500。
图4为纳米粒透射电子显微镜图。
图5为纳米粒粒径分布图。
图6为纳米粒Zeta电位图。
图7为纳米粒体外累计释放曲线。
图8为纳米粒在不同浓度硫酸钠溶液中的吸光度。
具体实施方式
本发明的目的在于提供一种载血管内皮生长因子纳米控释复合物及其制备方法,该纳米控释复合物能够保证VEGF的活性且延长VEGF的半衰期,同时能通过控制聚己内酯的分子量及投料量很好的控制VEGF的释放速度和释放周期,在一定程度上实现了VEGF的可控释放。
具体而言,本发明提供了一种载血管内皮生长因子纳米复合物,其通过含有下述物质的原料制成:血管内皮生长因子、聚己内酯和聚乙二醇-聚己内酯。
同时,本发明提供了一种载血管内皮生长因子纳米复合物的制备方法,包括如下步骤:
将所述血管内皮生长因子、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理纳米粒复合物。
在本发明的一种优选实施方式中,提供了一种优选的纳米粒制备方法,其具体如图1所示:
甲氧基聚乙二醇(M-PEG-OH)和ε-己内酯(ε-CL)以辛酸亚锡(Sn(Oct)2)为催化剂,在90℃温度下反应24小时,聚合合成聚乙二醇-聚己内酯(PCL-PEG-M)。然后将聚乙二醇-聚己内酯(PCL-PEG-M)、血管内皮生长因子-磷脂复合物(VEGF-磷脂)和聚己内酯(PCL)溶于二氯甲烷溶液,加入聚乙烯醇(PVA)溶液中,超声并经常温处理制备得到经PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒。
下面通过实施例对本发明作进一步的说明,但并不限制本发明的内容。
在下面的实施中,所用的试剂和仪器的信息如下:
1.试剂
甲氧基聚乙二醇:PEG购于美国Sigma-Aldrich公司,产品编号202509。
ε-己内酯:ε-CL购于美国Sigma-Aldrich公司,产品编号704067。
辛酸亚锡购于美国Sigma-Aldrich公司,产品编号S3252。
叔丁醇购于美国Sigma-Aldrich公司,产品编号471712。
聚己内酯:PCL购于美国Sigma-Aldrich公司,产品编号440752。
聚乙二醇辛基苯基醚:Triton X-100购于美国SIAMA公司,产品编号X-100。
重组人血管内皮生长因子(VEGF)165购于美国PEPROTECH公司,产品编号100-20,其氨基酸序列为:
大豆磷脂购于上海太伟药业有限公司。
聚乙烯醇(PVA)购于阿拉丁试剂(中国)有限公司,产品编号P105128。
RPMI 1640培养基购于美国Hyclone公司。
胎牛血清购于北京全式金生物技术有限公司。
TransDetectTM Cell Counting Kit购于北京全式金生物技术有限公司。
磷酸盐缓冲液(PBS)购于北京全式金生物技术有限公司。
血管内皮生长因子ELISA试剂盒购于武汉优尔生科技股份有限公司。
人脐静脉内皮细胞:购于ATCC。
甲苯、二氯甲烷、乙醚、硫酸钠、二甲基亚砜等其他试剂购于西陇化工股份有限公司。
2.仪器
恒温振荡器:SHA-BA,常州朗越仪器制造有限公司。
冷冻干燥机:FD-1A-50,北京博医康实验仪器有限公司。
傅立叶红外光谱仪:Nicolet 5700,美国热电尼高力公司。
核磁共振谱仪:AVANCEⅢ600MHz,瑞士布鲁克。
透射电子显微镜:JEM-2100,日本。
电子天平:BSA124S,赛多利斯科学仪器有限公司。
多功能酶标仪:VARIOSKAN,美国赛默飞世尔科技公司。
集热式搅拌器:DF-101S,金坛市科析仪器有限公司。
数显恒温磁力加热搅拌器:HJ-2A,江苏金坛晨阳电子仪器厂。
旋转蒸发器:申科R-201,上海申顺生物科技有限公司。
超速离心机:OptimaTM L-100K Ultracentrifuge,美国贝克曼库尔特商贸公司。
激光粒度测定仪:PSA NANO2590,英国马尔文公司。
CO2细胞培养箱:HERACELL 150i,美国赛默飞世尔科技公司。
紫外分光光度计:UV-9600,北京北分瑞利分析仪器有限公司。
超声波细胞粉碎机:SCIENTZ-ⅡD,宁波新芝生物科技股份有限公司。
实施例1
1.聚乙二醇-聚己内酯(PEG-PCL)的合成及表征
1.1聚乙二醇-聚己内酯(PEG-PCL)的合成方法
(1)分别称取经干燥处理的1g PEG和3.507mlε-CL置于干燥的25ml三口圆底烧瓶中,加入20ul辛酸亚锡,并溶于10ml甲苯中,反复抽真空充氮气5次,使反应在氮气环境中进行。
(2)90℃油浴加热磁力搅拌下,开环聚合合成PEG-PCL。经24小时反应后,关闭油浴锅电源,待反应系统冷却至室温关闭氮气,得到PEG-PCL粗产物。
(3)90℃条件下减压旋转蒸发2小时以除去产物中剩余的甲苯,冷却至室温后,加入2ml二氯甲烷使反应产物完全溶解,之后用40ml乙醚对其进行沉淀,4℃静置,之后在减压条件下抽滤,得白色沉淀物。
(4)将步骤(3)得到的白色沉淀物再次溶于2ml二氯甲烷,40ml乙醚对其进行沉淀,4℃静置,减压条件下抽滤,得到白色产物,于真空干燥器干燥后封口并于-20℃保存,备用。
1.2聚乙二醇-聚己内酯(PEG-PCL)的表征方法
1.2.1红外光谱表征
以溴化钾为分散剂,将合成的共聚物于室温干燥条件下研磨成粉末,取样品压片,于400-4000cm-1扫描,测定其红外吸收光谱。
1.2.2核磁共振氢谱表征
将合成的共聚物溶于氘代三氯甲烷中,以四甲基硅烷作为内标物,进行1H-NMR光谱(400MHz)表征。
2.PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒的制备
2.1VEGF-磷脂复合物的制备
精确称取20mg的大豆磷脂于干燥的西林瓶中,按照磷脂/叔丁醇为5mg/ml加入4ml叔丁醇,充分吹打混匀,使磷脂完全溶解。将VEGF溶于三蒸水中,使VEGF的浓度为1μg/ml,最后将1ml磷脂/叔丁醇溶液与1mlVEGF水溶液混合,充分吹打混匀,在冷冻干燥机-56℃条件下预冻3小时,再经真空干燥20小时,封口密封于-20℃保存。
2.2.PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒的制备
如图1所示,按照复合纳米粒的制备路线,采用乳化溶剂挥发法制备经PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒。首先制备O/W型乳剂,油相为含上述冻干的VEGF-磷脂复合物、20mg PCL、4mg PEG-PCL、1ml二氯甲烷的溶液,而水相为6ml 2%(w/v)PVA水溶液。将油相加入水相后立即超声处理,超声功率为30W,时间1min(开5s,关5s)。然后于常温下700rpm磁力搅拌4.5小时以挥去二氯甲烷,滴加30微升1%的Triton X-100溶液,再搅拌30min以破坏未被载入PCL纳米粒的磷脂胶团。将所得纳米粒混悬液经超速离心(32000r/pm,20min,4℃),收集纳米粒沉淀,用三蒸水洗三次,再经冷冻干燥得到干燥固体纳米粒。
3.PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒的验证
3.1透射电子显微镜观察
取100微升纳米粒混悬液,用三蒸水稀释100倍后滴加到覆有支持膜的铜网上,自然干燥后滴加2%磷钨酸溶液,染色2min,滤纸吸去多余的液体。自然干燥后将铜网置于透射电子显微镜下观察。
3.2粒径及分布和Zeta电位
取4ml纳米粒混悬液于激光粒度测定仪上测粒径和Zeta电位。
3.3纳米粒的包封率测定
取步骤2得到的纳米粒混悬液经低温超速离心(32000r/pm,20min,4℃),取上清液,测定游离VEGF的含量(m1)。同时,将步骤2得到的固体纳米粒加入二甲基亚砜破坏后,测定其中总的VEGF含量(m0)。另外以包封VEGF量占总VEGF量的百分率计算包封率。VEGF的含量采用酶联免疫吸附(ELISA)法,利用血管内皮生长因子ELISA试剂盒测定。
VEGF包封率=(m0-m1)/m0×100%
3.4纳米粒的体外释放的测定
取10mg干燥固体纳米粒用5ml PBS(pH7.4)于试管中重新分散,封口后放置于37℃恒温水浴振荡器中,以75rpm匀速持续振荡,于6h时将5ml含纳米粒的分散液超速离心(32000r/pm,20min,4℃),取尽上清液,再用5ml PBS重新分散纳米粒沉淀,封口后再放置于37℃恒温水浴振荡器以75rpm匀速持续振荡,再于下一时间点,即12h时将5ml含纳米粒的分散液进行超速离心,取尽上清液,直至所有时间点取完,其中取样时间点分别为6h、12h、24h、2d、3d、5d、7d等,用酶联免疫吸附(ELISA)法分别测定以上各时间点上清液中VEGF的含量,计算VEGF的累计释放百分数。
3.5复合纳米溶液的细胞毒性的测定
为观察复合纳米溶液是否影响细胞的增殖能力,采用CCK-8法检测复合纳米溶液的细胞毒性,从而评价其作为药物载体的安全性。分别取10mg干燥固体纳米粒,包括载VEGF165组(VEGF-NP)与未载VEGF165组(NL-VEGF-NP),分别用5mlPBS(pH7.4)重新分散制得纳米粒溶液,经孔径0.22μm无菌滤器除菌后备用,单纯PBS组为阴性对照。将生长旺盛的人脐静脉内皮细胞用含10%FBS的RPMI1640细胞培养液制备成5×103/ml的细胞悬液备用;参照TransDetectTM Cell Counting Kit说明书,在96孔细胞培养板上每孔种植100μl上述细胞,每个实验条件设置6个复孔,将培养板置于37℃、5%CO2培养箱内预培养,待细胞贴壁良好后(12-24小时),向培养板相应孔中分别加入10μl的载VEGF组纳米粒(VEGF-NP)、未载VEGF组纳米粒(NL-VEGF-NP)和对照组(PBS);将培养板在培养箱孵育24小时,小心向每孔加入11μl CCK-8溶液,再将培养板在培养箱内孵育2h后,用酶标仪测定450nm处各孔的吸光度值,计算细胞相对增值率(RGR):RGR(%)=实验组平均吸光度值/对照组平均吸光度值。
3.6纳米粒的稳定性的评价
采用不同离子强度的硫酸钠溶液来评价纳米系统的稳定性,以模仿血液循环中纳米粒所处的电解质微环境。在37℃下,将100μl纳米粒混悬液(20mg/ml)加入5ml不同浓度的硫酸钠溶液中,其中硫酸钠的浓度分别为0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L。静置10min后,用紫外分光光度计于560nm分别测定复合纳米粒溶液的吸光度,进而评价复合纳米粒溶液的稳定性。
实施例1的实验结果如下:
1.PEG-PCL红外光谱和核磁共振氢谱表征
经红外光谱和核磁共振氢谱确证,所合成的共聚物为PEG-PCL。
红外光谱如图2所示,3441.88cm-1处为PCL链段末端-OH的伸缩振动峰,1727.26cm-1为PCL链段C=O的伸缩振动峰,1106.56cm-1处为PEG链段C-O-C的伸缩振动峰,2800-3000cm-1处为亚甲基C-H键的伸缩振动峰,证实合成的共聚物由M-PEG链段和PCL链段组成。
核磁共振氢谱如图3所示,PEG-PCL中PCL段亚甲基的质子峰(δ=1.38、1.65、2.31和4.06ppm)以及PEG段亚甲基的质子峰(主要为δ=3.64ppm),比较弱的4.23ppm峰与PEG和PCL连接处的-OCH2CH2O-有关,表明合成的产物是PEG-PCL共聚物。其中PCL链段的平均分子量可由PCL链段中δ2.31ppm和PEG链段中δ3.64ppm处质子峰的积分估算,从而估计所合成PEG-PCL共聚物的平均分子量为9500。
2.透射电子显微镜观察
采用透射电子显微镜观察所制备的复合纳米粒,结果如图4所示,从图中可以看出,所制备的纳米粒呈球形,表面光滑,形态规整,未见明显的黏附和聚集现象,粒子大小分布均匀,粒径为200-250nm。
3.粒径及分布和Zeta电位
采用激光粒度测定仪,湿法进样,以数量为基准,测定所制备的复合纳米粒的粒径和Zeta电位。测定结果表明,纳米粒平均粒径为227nm,粒径多分散指数PDI为0.114,如图5所示,Zeta电位为-9.4mV,如图6所示。
4.纳米粒的包封率
以包封VEGF量占总VEGF量的百分率计算包封率。VEGF的含量采用酶联免疫吸附(ELISA)法测定,经测定得出所制备复合纳米粒的包封率达80%。
5.纳米粒的体外释放
图7为载VEGF纳米粒的体外累计释放曲线,在大约1周的时间内,纳米粒对VEGF释放速度较缓慢,24h内VEGF的累计释放率为43%,之后缓慢释放,3天时达到58%,而且未见明显的突释效应,达到了缓慢控制释放的效果。
6.CCK-8法检测复合纳米溶液的细胞毒性
载VEGF组纳米粒的相对增值率为120.74±5.53%,细胞毒性级别为0级,未载VEGF组纳米粒的相对增值率为98.19±4.87%,细胞毒性级别为0级。由此证实,本发明所制备的纳米控释复合物对细胞无毒性作用。载VEGF组纳米粒,不但没有细胞毒性,反而可促进细胞的增殖,可能由于所包载VEGF的释放,使得培养基中VEGF的浓度升高,从而促进细胞的增殖。
7.纳米粒的稳定性评价
纳米粒在血液循环中所处的微环境十分复杂,如有大量的血细胞、各种电解质等等,其中电解质的浓度直接影响纳米粒的稳定性。纳米粒的稳定性可通过其在不同电解质浓度下的絮凝程度来评价。本发明采用不同离子强度的硫酸钠溶液来评价纳米系统的稳定性,以模仿血液循环中纳米粒所处的电解质微环境。图8为纳米粒在不同浓度硫酸钠溶液中的吸光度,可以看出,纳米粒的临界絮凝点约为0.3mol/L,高于人体血液中的电解质浓度(主要成分为0.14mol/L Na+和0.10mol/L Cl-),推断纳米粒在血液环境中可以稳定存在。
实施例2
实施例2与实施例1的不同之处在于:
实施例2在制备聚乙二醇-聚己内酯(PEG-PCL)时,分别称取经干燥处理的1g PEG和4.601mlε-CL置于干燥的25ml三口圆底烧瓶中,加入20ul辛酸亚锡,并溶于10ml甲苯中,反复抽真空充氮气5次,使反应在氮气环境中进行。
实施例2在制备VEGF-磷脂复合物时,精确称取23.1mg的大豆磷脂于干燥的西林瓶中,按照磷脂/叔丁醇为6mg/ml加入3.85ml的叔丁醇,充分吹打混匀,使磷脂完全溶解。将VEGF溶于三蒸水中,使VEGF的浓度为0.5μg/ml,最后将1ml磷脂/叔丁醇溶液与1mlVEGF水溶液混合,充分吹打混匀,在冷冻干燥机-70℃条件下预冻3小时,再经真空干燥15小时,封口密封于-20℃保存。
实施例2在制备PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒时,将上述冻干的VEGF-磷脂复合物和22mg PCL以及3mg PEG-PCL,溶于1ml二氯甲烷溶液,而水相为5ml 1%(w/v)PVA水溶液。将油相加入水相后立即超声处理,超声功率为40W,时间1min(开10s,关10s)。然后于常温下以700rpm的转速,磁力搅拌4.5小时以挥去二氯甲烷,滴加30微升1%Triton X-100溶液,再搅拌30min以破坏未被载入PCL纳米粒的磷脂胶团。将所得纳米粒混悬液经超速离心(32000r/pm,20min,4℃),收集纳米粒沉淀,用三蒸水洗三次,再经冷冻干燥得到干燥固体纳米粒。
利用激光粒度测定仪测定制备得到的纳米粒平均粒径为200nm,粒径多分散指数PDI为0.314,Zeta电位为-9.7mV,复合纳米粒的包封率达70%。纳米粒的体外累计实验表明,在大约1周的时间内,纳米粒对VEGF释放速度较缓慢,24h内VEGF的累计释放率为45%,之后缓慢释放,3天时达到62%,而且未见明显的突释效应,达到了缓慢控制释放的效果。
实施例3
实施例3与实施例1的不同之处,在于:
实施例3在制备聚乙二醇-聚己内酯(PEG-PCL)时,分别称取经干燥处理的1g PEG和3.218mlε-CL置于干燥的25ml三口圆底烧瓶中,加入20ul辛酸亚锡,并溶于10ml甲苯中,反复抽真空充氮气5次,使反应在氮气环境中进行。
实施例3在制备VEGF-磷脂复合物时,精确称取20mg的大豆磷脂于干燥的西林瓶中,按照磷脂/叔丁醇为8mg/ml加入2.5ml叔丁醇,充分吹打混匀,使磷脂完全溶解。将VEGF溶于三蒸水中,使VEGF的浓度为2μg/ml,最后将1ml磷脂/叔丁醇溶液与1mlVEGF水溶液混合,充分吹打混匀,在冷冻干燥机-56℃条件下预冻3小时,再经真空干燥20小时,封口密封于-20℃保存。
实施例3在制备PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒时,将上述冻干的VEGF-磷脂复合物和6mg PEG-PCL以及23mg PCL、溶于1ml二氯甲烷溶液,而水相为6ml 2%(w/v)PVA水溶液。将油相加入水相后立即超声处理,超声功率为20W,时间3min(开8s,关8s)。然后于常温下以700rpm的转速,磁力搅拌5小时以挥去二氯甲烷,滴加30微升1%Triton X-100溶液,再搅拌30min以破坏未被载入PCL纳米粒的磷脂胶团。将所得纳米粒混悬液经超速离心(32000r/pm,20min,4℃),收集纳米粒沉淀,用三蒸水洗三次,再经冷冻干燥得到干燥固体纳米粒。
利用激光粒度测定仪测定制备得到的纳米粒平均粒径为270nm,粒径多分散指数PDI为0.173。Zeta电位为-8.9mV,复合纳米粒的包封率达75%。纳米粒的体外累计实验表明,在大约1周的时间内,纳米粒对VEGF释放速度较缓慢,24h内VEGF的累计释放率为46%,之后缓慢释放,3天时达到60%,而且未见明显的突释效应,达到了缓慢控制释放的效果。
实施例4
实施例4与实施例1的不同之处,在于:
实施例4在制备聚乙二醇-聚己内酯(PEG-PCL)时,分别称取经干燥处理的1g PEG和3.515mlε-CL置于干燥的25ml三口圆底烧瓶中,加入20ul辛酸亚锡,并溶于10ml甲苯中,反复抽真空充氮气5次,使反应在氮气环境中进行。
实施例4在制备VEGF-磷脂复合物时,精确称取23.4mg的大豆磷脂于干燥的西林瓶中,按照磷脂/叔丁醇为4mg/ml加入5.85ml叔丁醇,充分吹打混匀,使磷脂完全溶解。将VEGF溶于三蒸水中,使VEGF的浓度为1.5μg/ml,最后将1ml磷脂/叔丁醇溶液与1mlVEGF水溶液混合,充分吹打混匀,在冷冻干燥机-56℃条件下预冻3小时,再经真空干燥20小时,封口密封于-20℃保存。
实施例4在制备PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒时,将上述冻干的VEGF-磷脂复合物和5.5mg PEG-PCL以及20mg PCL、溶于1ml二氯甲烷溶液,而水相为8ml 4%(w/v)PVA水溶液。将油相加入水相后立即超声处理,超声功率为20W,时间3min(开5s,关5s)。然后于常温下以700rpm的转速,磁力搅拌5小时以挥去二氯甲烷,滴加30微升1%Triton X-100溶液,再搅拌30min以破坏未被载入PCL纳米粒的磷脂胶团。将所得纳米粒混悬液经超速离心(32000r/pm,20min,4℃),收集纳米粒沉淀,用三蒸水洗三次,再经冷冻干燥得到干燥固体纳米粒。
利用激光粒度测定仪测定制备得到的纳米粒平均粒径为280nm,粒径多分散指数PDI为0.201。Zeta电位为-7.2mV,复合纳米粒的包封率达79%。纳米粒的体外累计实验表明,在大约1周的时间内,纳米粒对VEGF释放速度较缓慢,24h内VEGF的累计释放率为44%,之后缓慢释放,3天时达到57%,而且未见明显的突释效应,达到了缓慢控制释放的效果。
实施例5
实施例5与实施例1的不同之处在于:
实施例5在制备VEGF-磷脂复合物时,精确称取25.8mg的大豆磷脂于干燥的西林瓶中,按照磷脂/叔丁醇为10mg/ml加入2.58ml叔丁醇,充分吹打混匀,使磷脂完全溶解。将VEGF溶于三蒸水中,使VEGF的浓度为1μg/ml,最后将1ml磷脂/叔丁醇溶液与1mlVEGF水溶液混合,充分吹打混匀,在冷冻干燥机-56℃条件下预冻3小时,再经真空干燥20小时,封口密封于-20℃保存。
实施例5在制备PEG-PCL修饰的载VEGF-磷脂复合物的PCL纳米粒时,将上述冻干的VEGF-磷脂复合物和25mg PCL以及8mg PEG-PCL,溶于1ml二氯甲烷溶液,而水相为6ml 1%(w/v)PVA水溶液。将油相加入水相后立即超声处理,超声功率为30W,时间1min(开5s,关5s)。然后于常温下以700rpm的转速,磁力搅拌4.5小时以挥去二氯甲烷,滴加30微升1%Triton X-100溶液,再搅拌30min以破坏未被载入PCL纳米粒的磷脂胶团。将所得纳米粒混悬液经超速离心(32000r/pm,20min,4℃),收集纳米粒沉淀,用三蒸水洗三次,再经冷冻干燥得到干燥固体纳米粒。
利用激光粒度测定仪测定制备得到的纳米粒平均粒径为245nm,粒径多分散指数PDI为0.129,Zeta电位为-8.7mV,复合纳米粒的包封率达76%。纳米粒的体外累计实验表明,虽然未见明显的突释效应,但是在大约1周的时间内,纳米粒对VEGF释放速度较实施例1快,24h内VEGF的累计释放率为50%,之后缓慢释放,3天时达到68%。

Claims (12)

1.一种载血管内皮生长因子纳米复合物,其特征在于,其通过含有下述物质的原料制成:血管内皮生长因子、聚己内酯和聚乙二醇-聚己内酯。
2.根据权利要求1所述的纳米复合物,其特征在于,所述的血管内皮生长因子为0.5~2重量份,优选为1~1.5重量份;所述的聚己内酯为18000~23000重量份,优选为18000~20000重量份;所述的聚乙二醇-聚己内酯为3000~6000重量份,优选为4000~5500重量份。
3.根据权利要求1所述的纳米复合物,其特征在于,所述的纳米复合物通过含有下述物质的原料制成:血管内皮生长因子、磷脂、聚己内酯和聚乙二醇-聚己内酯。
4.根据权利要求3所述的纳米复合物,其特征在于,所述的血管内皮生长因子为0.5~2重量份,优选为1~1.5重量份;所述的磷脂为4000~8000重量份,优选为5000~6000重量份;所述的聚己内酯为18000~23000重量份,优选为18000~20000重量份;所述的聚乙二醇-聚己内酯为3000~6000重量份,优选为4000~5500重量份。
5.根据权利要求1-4任一项所述的纳米复合物,其特征在于,所述的聚己内酯的分子量为9000~15000。
6.根据权利要求1-5任一项所述的纳米复合物,其特征在于,所述的聚乙二醇-聚己内酯的分子量为8000~12000,其中聚乙二醇链段的分子量为2000~4000。
7.权利要求1-6任一项所述的纳米复合物,其特征在于,其通过包含如下步骤的方法制备得到:
将所述血管内皮生长因子、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米复合物。
8.权利要求3-6任一项所述的纳米复合物,其特征在于,其通过包含如下步骤的方法制备得到:
(1)所述血管内皮生长因子与磷脂混合得到血管内皮生长因子-磷脂复合物;
(2)将所述血管内皮生长因子-磷脂复合物、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米粒复合物。
9.权利要求1-8任一项所述的载血管内皮生长因子纳米复合物的制备方法,其特征在于,包括如下步骤:
将所述血管内皮生长因子、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米粒复合物。
10.根据权利要求9所述的制备方法,其特征在于,包括如下步骤:
(1)所述血管内皮生长因子与磷脂混合得到血管内皮生长因子-磷脂复合物;
(2)将所述血管内皮生长因子-磷脂复合物、所述聚己内酯、所述聚乙二醇-聚己内酯和有机溶剂组成的油相以及水溶性聚合物水相超声处理得到纳米粒复合物。
11.根据权利要求9或10所述的制备方法,其特征在于,所述油相和所述水溶性聚合物按照体积比为1:5~8的比例进行混合,其中所述水溶性聚合物选自聚乙烯醇、聚乙烯基吡咯烷酮或乙烯-乙烯醇共聚物,优选为聚乙烯醇。
12.权利要求1-8任一项所述的载血管内皮生长因子纳米复合物在纳米载药控释材料中的应用。
CN201510178535.2A 2015-04-15 2015-04-15 一种载血管内皮生长因子纳米控释复合物及其制备方法 Active CN104857502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510178535.2A CN104857502B (zh) 2015-04-15 2015-04-15 一种载血管内皮生长因子纳米控释复合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510178535.2A CN104857502B (zh) 2015-04-15 2015-04-15 一种载血管内皮生长因子纳米控释复合物及其制备方法

Publications (2)

Publication Number Publication Date
CN104857502A true CN104857502A (zh) 2015-08-26
CN104857502B CN104857502B (zh) 2019-03-15

Family

ID=53903963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510178535.2A Active CN104857502B (zh) 2015-04-15 2015-04-15 一种载血管内皮生长因子纳米控释复合物及其制备方法

Country Status (1)

Country Link
CN (1) CN104857502B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800641A (zh) * 2016-06-29 2017-06-06 四川省人民医院 一种mPEG-b-PCL二嵌段高分子聚合物及其制备应用
CN107497035A (zh) * 2017-09-30 2017-12-22 上海威宁整形制品有限公司 具有vegf缓释pcl涂层的皮肤扩张器及其制作方法
CN108498786A (zh) * 2018-02-13 2018-09-07 南昌大学第二附属医院 载骨保护素的缓释纳米粒及其制备方法和应用
CN109464167A (zh) * 2018-12-11 2019-03-15 先健科技(深圳)有限公司 封堵器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721377A (zh) * 2010-01-18 2010-06-09 上海交通大学 乙醇包亲水油-亲水油包油-油包固体微球制备的方法
CN102895196A (zh) * 2012-09-26 2013-01-30 上海交通大学 纳米颗粒混悬液包油-油包油-油包固制备微球的方法
CN102895193A (zh) * 2012-09-26 2013-01-30 上海交通大学 纳米颗粒混悬液包油-油包油-油包水制备微球的方法
CN102895192A (zh) * 2012-09-26 2013-01-30 上海交通大学 一种纳米颗粒混悬液包油-油包水制备微球的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721377A (zh) * 2010-01-18 2010-06-09 上海交通大学 乙醇包亲水油-亲水油包油-油包固体微球制备的方法
CN102895196A (zh) * 2012-09-26 2013-01-30 上海交通大学 纳米颗粒混悬液包油-油包油-油包固制备微球的方法
CN102895193A (zh) * 2012-09-26 2013-01-30 上海交通大学 纳米颗粒混悬液包油-油包油-油包水制备微球的方法
CN102895192A (zh) * 2012-09-26 2013-01-30 上海交通大学 一种纳米颗粒混悬液包油-油包水制备微球的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800641A (zh) * 2016-06-29 2017-06-06 四川省人民医院 一种mPEG-b-PCL二嵌段高分子聚合物及其制备应用
CN106800641B (zh) * 2016-06-29 2019-03-12 四川省人民医院 一种mPEG-b-PCL二嵌段高分子聚合物及其制备应用
CN107497035A (zh) * 2017-09-30 2017-12-22 上海威宁整形制品有限公司 具有vegf缓释pcl涂层的皮肤扩张器及其制作方法
CN107497035B (zh) * 2017-09-30 2020-12-08 上海威宁整形制品有限公司 具有vegf缓释pcl涂层的皮肤扩张器及其制作方法
CN108498786A (zh) * 2018-02-13 2018-09-07 南昌大学第二附属医院 载骨保护素的缓释纳米粒及其制备方法和应用
CN109464167A (zh) * 2018-12-11 2019-03-15 先健科技(深圳)有限公司 封堵器及其制备方法

Also Published As

Publication number Publication date
CN104857502B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN105778021B (zh) β-环糊精基星形聚合物和制备方法及其单分子胶束诊疗一体化系统
JP6677914B2 (ja) 卵巣癌用の特異的に標的化された生分解性両親媒性ポリマー、それから製造されたポリマーベシクル及びその使用
EP3392289B1 (en) Biodegradable amphiphilic polymer, polymer vesicle prepared therefrom and use in preparing target therapeutic medicine for lung cancer
CN104056275B (zh) 多功能主动靶向透明质酸‑聚乳酸载体合成及其抗肿瘤药物胶束制备方法
JP6246421B2 (ja) 側鎖にジチオ五員環官能基を有するカーボネートポリマー及びその応用
CN106265514B (zh) 一种盐酸阿霉素磁性纳米粒及其制备方法
CN109276721A (zh) 一种靶向介孔聚多巴胺多功能纳米诊疗剂及其制备方法与应用
CN101254309A (zh) 叶酸受体介导靶向乙酰普鲁兰多糖纳米粒及制备方法
CN107865972A (zh) 一种兼有示踪和靶向药物输送作用的多功能膜控型靶向纳米载体的制备方法和应用
CN102319436A (zh) 叶酸修饰的o-羧甲基壳聚糖-脱氧胆酸复合物及其制备方法与应用
CN104857502A (zh) 一种载血管内皮生长因子纳米控释复合物及其制备方法
CN110183601A (zh) 一种含有酰腙键和二硫键的共价有机框架材料的制备方法及应用
CN105999283A (zh) 一种负载阿霉素的聚乙烯亚胺-透明质酸修饰的锂皂石包裹金纳米颗粒的制备方法
CN105859990A (zh) 侧链含硫辛酰基的聚合物、其制备方法及由其制备的聚合物囊泡及其应用
CN103861112B (zh) 基于聚合物纳米粒子载体的药物组合物及其制备方法
CN106729746A (zh) 对FAP‑α酶、还原环境双敏感的粒径收缩型的肿瘤渗透性纳米系统的制备方法及其应用
CN104784700B (zh) 一种药物共载复合物、胶束及胶束的制备方法
CN104958277A (zh) 可控释放血管内皮生长因子的去细胞瓣膜及其制法和应用
CN103524639B (zh) 一种壳寡糖/吲哚美辛接枝物的合成方法及其应用
CN106361724A (zh) 一种20(R)-人参皂苷Rg3缓释纳米微球组合及其制备方法
CN106265513B (zh) 一种紫杉醇纳米粒及其制备方法
CN111135314A (zh) 一种用于胃癌早期诊断和治疗的纳米复合物及其制备方法
CN104628885B (zh) 一种改性葡聚糖及其制备方法、葡聚糖胶束及其制备方法、载药颗粒及其制备方法和水凝胶
CN106860473A (zh) 两亲性mPEG修饰的石胆酸
CN107337653B (zh) 四碘甲腺原氨酸-n-羧基内酸酐、聚四碘甲腺原氨酸及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant