CN104852058A - 包括锗酸钴锂的水氧化催化剂 - Google Patents

包括锗酸钴锂的水氧化催化剂 Download PDF

Info

Publication number
CN104852058A
CN104852058A CN201410781679.2A CN201410781679A CN104852058A CN 104852058 A CN104852058 A CN 104852058A CN 201410781679 A CN201410781679 A CN 201410781679A CN 104852058 A CN104852058 A CN 104852058A
Authority
CN
China
Prior art keywords
water
oxygen
cobalt lithium
acid cobalt
germanic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410781679.2A
Other languages
English (en)
Other versions
CN104852058B (zh
Inventor
K·J·麦克唐纳德
贾鸿飞
凌晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Engineering and Manufacturing North America Inc filed Critical Toyota Engineering and Manufacturing North America Inc
Publication of CN104852058A publication Critical patent/CN104852058A/zh
Application granted granted Critical
Publication of CN104852058B publication Critical patent/CN104852058B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/89Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及包括锗酸钴锂的水氧化催化剂。具体地,本公开提供了用于催化水的氧化以产生氢离子和氧的方法或工艺、装置和/或组合物。该催化剂包括锗酸钴锂。

Description

包括锗酸钴锂的水氧化催化剂
技术领域
本发明涉及用于电化学水氧化和析氧的催化剂。
背景技术
一直认为氢是一种理想的燃料源,因为其提供了作为化石燃料清洁、无污染的替代物。氢的一种来源是将水分解为氢(H2)和氧(O2),如式(1)中所示:
(1)2H2O→O2+2H2
在电化学半电池中,该水分解反应包括两个半反应:
(2)2H2O→O2+4H++4e-
(3)2H++2e-→H2
并且使用阳光由水制备的氢有望提供一种充足的、可再生的、清洁的能源。尽管还原质子以形成氢是相对容易并且有效的反应,但是析氧反应需要高得多的驱动力以克服与该反应相关的活化能垒,因为该反应包括多个质子耦合电子的转移过程。因此,为了寻找可由水产生氧和氢离子的有效水氧化和析氧反应(OER)催化剂做出了努力。特别地,先前已经鉴定了钌和铱的氧化物。然而,因为它们处于地球上最稀有的元素当中,大规模地使用这些催化剂是不现实的。因此,需要改进的水氧化和OER催化剂。
发明内容
在一个方面,这里公开了一种将水分解为氧和氢离子的水氧化催化剂,该催化剂包括锗酸钴锂。
在另一个方面,这里公开了一种将水分解为氧和氢离子的析氧催化剂,该催化剂包括锗酸钴锂。
在又一个方面,这里公开了一种用于将水电化学水氧化分解为氧 和氢离子的电极,该电极包括基材以及与该基材接触的活性材料。该活性材料包括锗酸钴锂。
在另一个方面,这里公开了一种用于氧化水的方法,包括步骤:提供包括锗酸钴锂的电极;提供水和支持电解质;以及将水和支持电解质置于与锗酸钴锂接触,用施加的氧化过电势催化水氧化为氧和氢离子。
在又一个方面,这里公开了一种用于形成水氧化催化剂的方法,包括步骤:提供LiOH;提供GeO2;组合LiOH和GeO2,从而形成第一溶液;提供在溶剂中的CoCl2;组合该第一溶液和在溶剂中的CoCl2,从而形成第二溶液;将该第二溶液暴露于水热反应,从而形成Li2CoGeO4
附图说明
图1是用于Li2CoGeO4合成的热弹形高压容器(bomb)反应器的图形描述;
图2是晶态Li2CoGeO4纳米颗粒的扫描电子显微镜(SEM)图像;
图3是Li2CoGeO4的X射线衍射图;
图4是Li2CoGeO4的EDX图;
图5是详述Li2CoGeO4的ICP数据的图表;
图6是用于测试Li2CoGeO4的电化学试验装置的图形描述;
图7是对于Li2CoGeO4、CoWO4和IrO2来说电化学性能(包括过电势)对电流密度的图。
具体实施方式
本公开提供了一种用于催化水的氧化以产生氢离子和氧的方法或工艺、装置和/或组合物。
如在此使用的“催化剂”,意指一种在化学电解反应(或其它电化学反应)中包括并且增加该反应的速率的材料,并且其本身作为电解的一部分经历反应,但是在很大程度上未被反应本身消耗,并且可以 参与多个化学转变。在一些使用过程中可消耗极少量的本发明的催化材料,并且在许多实施方案中,可将其再生至其初始化学状态。该反应可包括水氧化或析氧反应。
在一方面,水氧化催化剂或析氧催化剂包括将水分解为氧和氢离子的锗酸钴锂。
在又一方面,这里公开了一种用于将水电化学水氧化分解为氧和氢离子的电极,该电极包括基材和与该基材接触的活性材料。该活性材料包括锗酸钴锂。
该催化剂可以包括多个锗酸钴锂纳米颗粒。在一些情况下,该纳米颗粒尺寸均匀并且可以具有小于1微米的平均颗粒尺寸。在另一方面,该纳米颗粒可以具有500nm或更小的尺寸。
在一方面,该锗酸钴锂可以与导电颗粒例如炭黑组合并且还可以包括粘结剂例如一种由DuPont出售的基于磺化四氟乙烯的含氟聚合物共聚物。可以使用所属领域的技术人员已知的任何方法将该组合的材料附着于电极基材。可以利用能够传导电流的各种电极基材,例如玻璃碳。
该电极可以是用于将水分解为氧和氢离子的电化学电池的一部分。可以使用各种电化学电池,包括光伏电池和具有外部施加的电势的电池。该电化学电池可以包括容器,例如贮器、盒、罐或瓶,在其中可以容纳或携带电化学装置的部件。如所属领域的普通技术人员将已知的那样,可以使用任何已知的技术或材料制备容器。该容器可以具有任何形状或尺寸,只要其能够容纳该电化学装置的部件。可以将该电化学装置的部件安装在该容器内。即一个部件(例如电极)可以与该容器结合,使得将其相对于该容器固定,并且在一些情况下其由该容器支撑。
在一方面,包含本发明的一个实施方案的电化学电池提供了一种使用太阳光照分解水而不需要施加的电势的高效方法。在光阳极处氧化水时,释放氧并且产生氢质子,然后可以在对电极处将该氢质子还原以形成氢气。
作为替代,该电化学电池可以包括向该电池提供过电势的外部来源。在该电化学电池中可以使用与该锗酸钴锂材料相容的各种电解质。支持电解质的一个实例包括NaH2PO4Na2SO4
在另一方面,这里公开了一种用于氧化水的方法,包括步骤:提供包括锗酸钴锂的电极;提供水和支持电解质;以及将水和支持电解质置于与该锗酸钴锂接触,用施加的氧化过电势催化水氧化为氧和氢离子。
在又一方面,这里公开了一种形成水氧化催化剂的方法,包括步骤:提供LiOH;提供GeO2;组合所述LiOH和GeO2,从而形成第一溶液;提供在溶剂中的CoCl2;组合所述第一溶液和在溶剂中的CoCl2,从而形成第二溶液;将所述第二溶液暴露于水热反应,从而形成Li2CoGeO4
可以使用各种溶剂,例如乙二醇。该方法可以包括在150摄氏度的温度下将该第二溶液放置在水热弹形高压容器中72小时。该方法还可以包括水热反应之后的洗涤和干燥Li2CoGeO4的步骤。该方法可以进一步包括干燥步骤之后的研磨Li2CoGeO4从而将Li2CoGeO4分离为颗粒的步骤。该方法提供了一种形成该催化材料而没有复杂的制造步骤的途径,并且可以调节该方法的规模以生产各种不同数量的材料。
1.一种将水分解为氧和氢离子的水氧化催化剂,包含:锗酸钴锂。
2.权利要求1所述的水氧化催化剂,其中所述锗酸钴锂具有式:Li2CoGeO4
3.权利要求1所述的水氧化催化剂,其中所述锗酸钴锂包括尺寸小于1微米的多个纳米颗粒。
4.权利要求3所述的水氧化催化剂,其中所述多个纳米颗粒的尺寸为0.5微米。
5.权利要求1所述的水氧化催化剂,进一步包括导电颗粒和与锗酸钴锂的纳米颗粒组合的粘结剂。
6.权利要求1所述的水氧化催化剂,其中所述催化剂中钴与锗 的比例为约1比1。
7.一种将水分解为氧和氢离子的析氧催化剂,包含:锗酸钴锂。
8.权利要求7所述的析氧催化剂,其中所述锗酸钴锂具有式:Li2CoGeO4
9.权利要求7所述的析氧催化剂,其中所述锗酸钴锂包括尺寸小于1微米的多个纳米颗粒。
10.权利要求9所述的析氧催化剂,其中所述多个纳米颗粒的尺寸为0.5微米。
11.权利要求7所述的析氧催化剂,进一步包括导电颗粒和与锗酸钴锂的纳米颗粒组合的粘结剂。
12.权利要求7所述的析氧催化剂,其中所述催化剂中钴与锗的比例为约1比1。
13.一种用于将水电化学水氧化分解为氧和氢离子的电极,包括:
基材;
与所述基材接触的活性材料,所述活性材料包括锗酸钴锂;
其中将水分解为氧和氢离子。
14.权利要求13所述的析氧催化剂,其中所述锗酸钴锂具有式:Li2CoGeO4
15.权利要求13所述的电极,其中所述锗酸钴锂包括尺寸小于1微米的多个纳米颗粒。
16.权利要求15所述的电极,其中所述多个纳米颗粒的尺寸为0.5微米。
17.权利要求13所述的电极,进一步包括导电颗粒和与锗酸钴锂的纳米颗粒组合的粘结剂。
18.权利要求13所述的电极,其中所述催化剂中钴与锗的比例为约1比1。
19.一种用于氧化水的方法,包括下述步骤:
提供包括锗酸钴锂的电极;
提供水和支持电解质;以及
将水和支持电解质置于与锗酸钴锂接触,用施加的氧化过电势催化水氧化为氧和氢离子。
20.权利要求19所述的方法,其中所述锗酸钴锂具有式:Li2CoGeO4
21.权利要求19所述的方法,其中所述锗酸钴锂包括尺寸小于1微米的多个纳米颗粒。
22.权利要求21所述的方法,其中所述多个纳米颗粒的尺寸为0.5微米。
23.权利要求19所述的方法,进一步包括导电颗粒和与锗酸钴锂的纳米颗粒组合的粘结剂。
24.权利要求19所述的电极,其中所述催化剂中钴与锗的比例为约1比1。
25.一种形成水氧化催化剂的方法,包括下述步骤:
提供LiOH;
提供GeO2
组合所述LiOH和GeO2,从而形成第一溶液;
提供在溶剂中的CoCl2
组合所述第一溶液和在溶剂中的CoCl2,从而形成第二溶液;
将所述第二溶液暴露于水热反应,从而形成Li2CoGeO4
26.权利要求25所述的方法,其中所述溶剂是乙二醇。
27.权利要求25所述的方法,其中所述水热反应包括在150摄氏度的温度下将所述第二溶液放置在水热弹形高压容器中72小时。
28.权利要求25所述的方法,进一步包括水热反应之后的洗涤和干燥Li2CoGeO4的步骤。
29.权利要求28所述的方法,进一步包括干燥步骤之后的研磨Li2CoGeO4从而将Li2CoGeO4分离为颗粒的步骤。
通过下述的实施例进一步描述本发明,它们是实施本发明的具体方式的说明,并不旨在作为限制在权利要求中所定义的本发明的范围。
实施例
Li2CoGeO4的制备
通过在20mL水中溶解0.05mol的LiOH和0.0125mol的GeO2合成Li2CoGeO4。然后,在一个单独的容器中将0.0125mol CoCl2溶解在10mL的乙二醇中。然后在聚四氟乙烯杯中将这两种溶液混合在一起并且将其放置在如图1所示的水热弹形高压容器装置中。使该装置经受150℃的温度持续72小时。72小时以后,将该弹形高压容器从热源移开,并且将固体用水过滤/洗涤,并且然后在真空炉中干燥一夜。干燥后,用研钵和研杵研磨该粉末以分离固体颗粒。
通过SEM(图2)、X-射线衍射(图3)和能量色散X射线(EDX)分析(图4)检测最终的粉末。SEM图像表明该Li2CoGeO4颗粒具有低于1微米并且约500nm的颗粒尺寸。X-射线衍射证实了具有对应于Li2CoGeO4的形成的峰的晶态组成。EDX数据结合图5中的ICP数据证实了包括Li、Co、Ge和O的材料的形成。另外,所形成的材料包括接近1:1的Co:Ge比例。
实施例II
Li2CoGeO4的循环伏安法(CV)
使用全氟磺酸(nafion)作为粘结剂将Li2CoGeO4颗粒与炭黑组合并且然后滴入浇注(drop cast)到玻璃碳电极上。为了检验催化活性,进行了循环伏安法实验。
用具有以重量计5:1:1的Li2CoGeO4:炭黑:全氟磺酸的活性材料浇注如图6中所示的旋转圆盘电极装置,其具有抛光的玻璃碳基材。以1600rpm的旋转速度进行该电压测试。在电池中使用了0.4M NaH2PO40.6M Na2SO4pH 7(O2饱和)的电解质。以50mV/步骤进行了用于水氧化的300-500mV过电势范围的恒电势测量,保持每个步骤直到达到稳态电流。
如图7中所示的Li2CoGeO4的塔菲尔曲线测量显示:在同样的条件和施加的过电势下,Li2CoGeO4具有每单位表面积比CoWO4显著更好的性能以及与IrO2相当的性能。在pH为7(用于电化学电池分解水的所需pH范围)下的Li2CoGeO4的性能特性,表明可使用水热 反应大规模制备的用于分解水的改进的电化学催化剂。
本发明不限于上述的说明性的实施例。所描述的实施例并不旨在限制本发明的范围。在其中的变化、要素的其它组合以及其它用途将由所属领域的技术人员想到。由权利要求的范围限定本发明的范围。

Claims (10)

1.一种将水分解为氧和氢离子的水氧化催化剂,包含:锗酸钴锂。
2.权利要求1所述的水氧化催化剂,其中所述锗酸钴锂具有式:Li2CoGeO4
3.权利要求1所述的水氧化催化剂,其中所述锗酸钴锂包括尺寸小于1微米的多个纳米颗粒。
4.权利要求3所述的水氧化催化剂,其中所述多个纳米颗粒的尺寸为0.5微米。
5.权利要求1所述的水氧化催化剂,进一步包括导电颗粒和与锗酸钴锂的纳米颗粒组合的粘结剂。
6.一种将水分解为氧和氢离子的析氧催化剂,包含:锗酸钴锂。
7.权利要求6所述的析氧催化剂,其中所述锗酸钴锂具有式:Li2CoGeO4
8.权利要求6所述的析氧催化剂,其中所述锗酸钴锂包括尺寸小于1微米的多个纳米颗粒。
9.权利要求8所述的析氧催化剂,其中所述多个纳米颗粒的尺寸为0.5微米。
10.权利要求6所述的析氧催化剂,进一步包括导电颗粒和与锗酸钴锂的纳米颗粒组合的粘结剂。
CN201410781679.2A 2013-12-19 2014-12-16 包括锗酸钴锂的水氧化催化剂 Expired - Fee Related CN104852058B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/134,889 2013-12-19
US14/134,889 US9512526B2 (en) 2013-12-19 2013-12-19 Water oxidation catalyst including lithium cobalt germanate

Publications (2)

Publication Number Publication Date
CN104852058A true CN104852058A (zh) 2015-08-19
CN104852058B CN104852058B (zh) 2019-12-31

Family

ID=53275489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410781679.2A Expired - Fee Related CN104852058B (zh) 2013-12-19 2014-12-16 包括锗酸钴锂的水氧化催化剂

Country Status (4)

Country Link
US (1) US9512526B2 (zh)
JP (1) JP6397748B2 (zh)
CN (1) CN104852058B (zh)
DE (1) DE102014118669A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106378139A (zh) * 2016-08-26 2017-02-08 北京大学深圳研究生院 一种水分解催化剂及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188188B2 (ja) * 2019-02-28 2022-12-13 株式会社豊田中央研究所 酸化反応用電極及びそれを用いた電気化学反応装置
CN114122366B (zh) * 2021-12-07 2023-09-22 滨州学院 一种锗酸钴复合微球材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226291A (en) * 1975-08-25 1977-02-26 Toshiba Corp Humidity sensing element
JP2001052704A (ja) * 1999-08-10 2001-02-23 Hitachi Ltd リチウム二次電池
US20040131939A1 (en) * 2002-12-19 2004-07-08 Adamson George W. Electrode active material and method of making the same
CN102422467A (zh) * 2009-05-04 2012-04-18 觅科科技公司 电极活性复合材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132620A (en) 1978-02-02 1979-01-02 Diamond Shamrock Technologies S.A. Electrocatalytic electrodes
EP0034447A3 (en) * 1980-02-11 1981-12-02 Alfred Chan Chung Tseung Electrocatalyst
US7041239B2 (en) * 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
WO2005113863A2 (en) * 2004-05-20 2005-12-01 Valence Technology, Inc. Secondary electrochemical cell
US20100143811A1 (en) 2007-03-23 2010-06-10 Robin Brimblecombe Water Oxidation Catalyst
AU2009260794A1 (en) 2008-06-18 2009-12-23 Massachusetts Institute Of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
KR20110084225A (ko) 2008-10-08 2011-07-21 메사추세츠 인스티튜트 오브 테크놀로지 물의 전기분해를 위한 촉매 물질, 광양극 및 광전기화학 전지 및 다른 전기화학 기술
US20100133110A1 (en) 2008-10-08 2010-06-03 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other, electrochemical techniques
US20100210454A1 (en) 2009-02-11 2010-08-19 Albert Epshteyn Nanocomposite catalyst materials comprising conductive support (carbon), transition metal compound, and metal nanoparticles
US8192609B2 (en) 2009-12-01 2012-06-05 Wisconsin Alumni Research Foundation Cobalt oxyfluoride catalysts for electrolytic dissociation of water
WO2011163626A2 (en) * 2010-06-24 2011-12-29 Rutgers, The State University Of New Jersey Spinel catalysts for water and hydrocarbon oxidation
US8968534B2 (en) * 2012-01-31 2015-03-03 Toyota Motor Egineering & Manufacturing North America, Inc. Water oxidation catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226291A (en) * 1975-08-25 1977-02-26 Toshiba Corp Humidity sensing element
JP2001052704A (ja) * 1999-08-10 2001-02-23 Hitachi Ltd リチウム二次電池
US20040131939A1 (en) * 2002-12-19 2004-07-08 Adamson George W. Electrode active material and method of making the same
CN102422467A (zh) * 2009-05-04 2012-04-18 觅科科技公司 电极活性复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.R.WEST ET AL: "Preparation and Crystal Chemistry of Some Tetrahedral Li3PO4-Type compound", 《JOURNAL OF SOLID STATE CHEMISTRY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106378139A (zh) * 2016-08-26 2017-02-08 北京大学深圳研究生院 一种水分解催化剂及其制备方法和应用
WO2018036183A1 (zh) * 2016-08-26 2018-03-01 北京大学深圳研究生院 一种水分解催化剂及其制备方法和应用
CN106378139B (zh) * 2016-08-26 2019-10-11 北京大学深圳研究生院 一种水分解催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US9512526B2 (en) 2016-12-06
JP2015116566A (ja) 2015-06-25
CN104852058B (zh) 2019-12-31
DE102014118669A1 (de) 2015-06-25
JP6397748B2 (ja) 2018-09-26
US20150176144A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
Zhu et al. Fe‐Ni‐Mo nitride porous nanotubes for full water splitting and Zn‐air batteries
Peng et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes
Shi et al. High‐performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc–air battery and self‐powered overall water splitting
Lv et al. Activity Promotion of Core and Shell in Multifunctional Core–Shell Co2P@ NC Electrocatalyst by Secondary Metal Doping for Water Electrolysis and Zn‐Air Batteries
Zhao et al. B, N-doped ultrathin carbon nanosheet superstructure for high-performance oxygen reduction reaction in rechargeable zinc-air battery
Askari et al. NiO‐Co3O4‐rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells
Li et al. An effective method for enhancing oxygen evolution kinetics of LaMO3 (M= Ni, Co, Mn) perovskite catalysts and its application to a rechargeable zinc–air battery
Wu et al. Egg‐derived mesoporous carbon microspheres as bifunctional oxygen evolution and oxygen reduction electrocatalysts
Lu et al. Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon
Liu et al. Ultrasmall FeNi 3 N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts
Sheng et al. CoNi nanoparticles supported on N-doped bifunctional hollow carbon composites as high-performance ORR/OER catalysts for rechargeable Zn–air batteries
Guan et al. Rational design of metal‐organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis
Sekhon et al. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: A review
Xu et al. Flexible self-supported bi-metal electrode as a highly stable carbon-and binder-free cathode for large-scale solid-state zinc-air batteries
Feng et al. Facile synthesis of Co9S8 hollow spheres as a high-performance electrocatalyst for the oxygen evolution reaction
Zhu et al. Facilely tuning porous NiCo2O4 nanosheets with metal valence‐state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting
Fang et al. Prussian blue analog-derived 2D ultrathin CoFe 2 O 4 nanosheets as high-activity electrocatalysts for the oxygen evolution reaction in alkaline and neutral media
Stern et al. Ni 2 P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni 2 P nanoparticles
Qin et al. Coupling bimetallic oxides/alloys and N-doped carbon nanotubes as tri-functional catalysts for overall water splitting and zinc–air batteries
Shan et al. Recent progress in Prussian blue/Prussian blue analogue-derived metallic compounds
Li et al. A novel anode for direct borohydride-hydrogen peroxide fuel cell: Au nanoparticles decorated 3D self-supported reduced graphene oxide foam
Wei et al. Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction
Ren et al. Hierarchically porous heteroatoms‐doped vesica‐like carbons as highly efficient bifunctional electrocatalysts for Zn‐air batteries
CN110451489B (zh) 一种氮化钴嵌入多孔氮掺杂石墨烯材料及制备方法与应用
Zhang et al. N species tuning strategy in N, S co-doped graphene nanosheets for electrocatalytic activity and selectivity of oxygen redox reactions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200701

Address after: Aichi Prefecture, Japan

Patentee after: Toyota Motor Corp.

Address before: Kentucky, USA

Patentee before: Toyota Motor Engineering & Manufacturing North America, Inc.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191231

Termination date: 20211216

CF01 Termination of patent right due to non-payment of annual fee