CN104844700A - 新的水稻杂种劣势基因及其应用 - Google Patents

新的水稻杂种劣势基因及其应用 Download PDF

Info

Publication number
CN104844700A
CN104844700A CN201410052285.3A CN201410052285A CN104844700A CN 104844700 A CN104844700 A CN 104844700A CN 201410052285 A CN201410052285 A CN 201410052285A CN 104844700 A CN104844700 A CN 104844700A
Authority
CN
China
Prior art keywords
polypeptide
gene
gramineae plant
plant
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410052285.3A
Other languages
English (en)
Other versions
CN104844700B (zh
Inventor
林鸿宣
陈沈
陈豪
高继平
单军祥
施敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center for excellence and innovation in molecular plant science, Chinese Academy of Sciences
Original Assignee
Shanghai Institutes for Biological Sciences SIBS of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institutes for Biological Sciences SIBS of CAS filed Critical Shanghai Institutes for Biological Sciences SIBS of CAS
Priority to CN201410052285.3A priority Critical patent/CN104844700B/zh
Publication of CN104844700A publication Critical patent/CN104844700A/zh
Application granted granted Critical
Publication of CN104844700B publication Critical patent/CN104844700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了新的稻杂种劣势基因及其应用。具体地,本发明提供了来源于水稻的新基因(25L1、25L2)以及新的突变基因(AD2)。本发明人发现,当需要培育的母本植株同时存在上述三种基因时,所培育的子代水稻会产生杂种劣势现象,且该现象受温度的调控。因此,可检测选自上述基因的任意1个、2个或3个基因,用于预测是否会产生杂种劣势,或采用转基因或分子生物学方法降低上述三种基因中1个、2个或3个基因或其蛋白的表达量和/或活性,从而避免杂交稻产生杂种劣势,从而具有广泛的应用前景。

Description

新的水稻杂种劣势基因及其应用
技术领域
本发明属于生物技术和育种领域,具体地,本发明涉及导致水稻杂种劣势的基因及其应用。
背景技术
水稻(Oryza sativa)是最重要的粮食作物,世界上三分之一以上的人口以水稻为主食。由于水稻具有基因组小、遗传和物理图谱精细、转基因技术相对容易及与其它禾本科作物的共线性的优点,水稻也一直作为优良的模式植物。随着水稻基因组测序的完成,人类开始进入后基因组时代,全面开展水稻功能基因组研究和基因注释己成为生命科学的前沿领域。因此水稻功能基因的研究对社会经济发展和生物学研究具有重大意义。
为解决人口增长与耕地面积减少的矛盾,提高水稻品质(如提高水稻抗旱能力,提高水稻单位面积产量)是人们面临的重大挑战。虽然20世纪50、60年代的矮化育种和70年代的杂交水稻培育是水稻科学的两次革命,但近几年来水稻的品质提高开始徘徊。
杂种劣势是一种生殖隔离形式,表现为不同物种间、或者同一物种不同亚群间,通过人为构建或自然杂交形成的F1植株,生长和发育出现异常,通常不能存活至生殖生长阶段,从而阻碍了亲本间的基因交流。而这种不同亲本间的遗传交流,正是利用杂种优势的前提条件,所以说杂种劣势的存在阻碍了育种家对杂种优势的充分发掘和全面利用。实践表明杂种优势能够极大提高作物产量,对解决世界粮食安全问题具有特别重要的意义。由此可见,对杂种劣势基因的分离和克隆,不仅有助于我们深刻理解物种形成的分子机理,还能指导我们对杂种优势的充分利用。
因此,本领域迫切需要对水稻培育过程中出现的杂种劣势现象进行研究,从而培育出性能优良的新的水稻品种。
发明内容
本发明发现了野生稻中存在的三种新的基因,以及这三种基因及其蛋白在水稻杂种劣势现象中所起到的作用。
本发明第一方面,提供了一种多肽集合,所述的多肽集合包括SEQ ID NO.:3所示的突变蛋白,和选自下组的多肽序列:
(i)SEQ ID NO.:1-2所示的多肽;
(ii)将如SEQ ID NO.:1-2所示的多肽序列经过一个或几个氨基酸残基的保守性取代、缺失或添加而形成的由(a)衍生的衍生多肽;或
(c)氨基酸序列与SEQ ID NO.:1-2所示氨基酸序列的同源性≥90%(较佳地≥95%,更佳地98%)由(a)衍生的衍生多肽。
在另一优选例中,所述多肽集合使得禾本植物产生杂种劣势;优选地,所述禾本植物是小麦、大麦、水稻、玉米;优选地,所述禾本植物是水稻。
在另一优选例中,所述杂种劣势在高温下产生。
在另一优选例中,所述SEQ ID NO.:1所示的多肽或其衍生的多肽与SEQ IDNO.:2所示的多肽或其衍生的多肽之间同源性大于70%,较佳地,大于75%、80%、85%、90%。
在另一优选例中,SEQ ID NO.:3所示的突变蛋白与野生型枯草杆菌蛋白酶相比,所述突变蛋白的第531位氨基酸由组氨酸(His)突变为亮氨酸(Leu)。
本发明第二方面,提供了一种基因集合,所述的基因集合中的基因分别编码本发明第一方面所述的多肽集合中的突变蛋白或多肽。
在另一优选例中,所述的基因集合中的基因包括该基因的序列全长、cDNA。
在另一优选例中,编码SEQ ID NO.:1-2所示多肽的基因的cDNA序列如SEQ ID NO.:4-5所示。
在另一优选例中,编码本发明第一方面所述多肽集合中突变蛋白基因的cDNA序列如SEQ ID NO.:6所示。
在另一优选例中,所述突变蛋白的编码序列与编码野生型蛋白基因的cDNA序列相比,所述突变蛋白的编码cDNA序列在1592位由A突变为T。
在另一优选例中,所述基因集合中的基因主要表达于禾本植物的根茎部。
本发明第四方面,提供了一种表达载体,所述表达载体包含本发明第二方面所述基因集合中的1个、2个或3个基因或其互补序列。
在另一优选例中,所述的基因包括双链、或单链形式(如正义链序列和反义链序列(即互补序列))。
本发明第四方面,提供了一种转基因禾本植物细胞,所述禾本植物细胞包含本发明第三方面所述的表达载体,或者所述禾本植物细胞的染色体中整合有本发明第二方面所述基因集合中的1个、2个或3个基因或其互补序列。
在一优选例中,所述禾本植物细胞来自小麦、大麦、水稻、玉米、高粱;优选地,所述禾本植物细胞是水稻细胞。
本发明第四方面,提供了1个、2个或3个选自本分那么第一方面所述多肽集合的多肽或其编码基因的用途,(i)用于预测禾本植物育种过程中产生的杂种劣势现象;(ii)用于转基因禾本植物中的选择标记;或(iii)用于筛选禾本植物育种杂种劣势现象的抑制剂。
在一优选例中,所述禾本植物是小麦、大麦、水稻、玉米、高粱;更优选地,所述禾本植物是水稻。
本发明第六方面,提供了1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码基因的抑制剂的用途,用于消除禾本植物育种杂种劣势现象。
在一优选例中,所述禾本植物是小麦、大麦、水稻、玉米、高粱;更优选地,所述禾本植物是水稻。
在另一优选例中,所述的水稻包括籼稻、粳稻、或普通野生稻。
在另一优选例中,所述选自本发明第一方面所述多肽集合的多肽序列如SEQID NO.:1-3所示。
在另一优选例中,所述的抑制剂包括所述多肽的抗体、核酸抑制剂、小分子化合物。
在另一优选例中,所述的核酸抑制剂包括miRNA(siRNA、shRNA)。
在另一优选例中,所述的杂种劣势表现为植株矮化、不定根数目减少、茎部或叶部出现类病斑、植株开花前死亡、或单株产量减少。
本发明第七方面,提供了一种消除禾本植物杂种劣势的方法,所述方法通过降低禾本植株中1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码序列的表达量和/或活性,从而消除禾本杂种劣势。
在一优选例中,所述降低禾本植株中1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码序列的表达量和/或活性,包括敲除1个、2个或3个选自本发明第一方面所述多肽集合的多肽的编码基因。
在一优选例中,所述禾本植物是小麦、大麦、水稻、玉米、高粱;优选地,所述禾本植物是水稻。
本发明第八方面,提供了一种筛选禾本植物杂种劣势抑制剂的方法,包括步骤:
(a)测定禾本植物中1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码序列的表达量和/或活性,并待测物质的存在或不存在的情况下,培育所述表达量和/或活性高的禾本植物;
(b)测定培育的所述禾本植物中1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码序列的表达量和/或活性;
如果与不存在所述待测物质的禾本植物相比,存在所述待测物质的禾本植物中所述1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码序列的表达量和/或活性降低,则说明该待测物质能够作为禾本植物杂种劣势的抑制剂。
在一优选例中,所述禾本植物是小麦、大麦、水稻、玉米、高粱;优选地,所述禾本植物是水稻。
本发明第九方面,提供了一种制备转基因禾本植物的方法,所述方法包括以下步骤:
(a)获得本发明第四方面所述的禾本植物细胞;和
(b)将步骤(a)所得的转基因禾本植物细胞培育成独立的植株。
在一优选例中,所述禾本植物是小麦、大麦、水稻、玉米、高粱;优选地,所述禾本植物是水稻。
本发明第十方面,提供了一种禾本植物愈伤组织或禾本植物体细胞胚胎,所述禾本植物愈伤组织或禾本植物体细胞胚胎包含下述禾本植物细胞或由下述禾本植物细胞构成:所述禾本植物细胞含有本发明第三方面所述的表达载体、或其染色体整合有本发明第二方面所述的基因集合中的基因。
本发明第十一方面,提供了一种分离的多肽,所述的多肽选自下组:
(a)SEQ ID NO.:1-2任一所示的多肽;
(b)将如SEQ ID NO.:1-2所示的多肽序列经过一个或几个氨基酸残基的保守性取代、缺失或添加而形成的由(a)衍生的多肽;或
(c)氨基酸序列与SEQ ID NO.:1-2所示氨基酸序列的同源性≥90%(较佳地≥95%,更佳地98%)由(a)衍生的多肽。
本发明第十二方面,提供了一种分离的多核苷酸,所述的多核苷酸编码本发明第一方面所述的多肽。
本发明第十三方面,提供了一种突变的枯草杆菌蛋白酶,所述突变枯草杆菌蛋白酶在对应于野生型枯草杆菌蛋白酶的第531位氨基酸由组氨酸(His)突变为亮氨酸(Leu)。
在另一优选例中,所述的突变蛋白酶如SEQ ID NO.:3所示。
本发明第十四方面,提供了一种分离的多核苷酸,所述的多核苷酸编码如本发明第十三方面所述的突变枯草杆菌蛋白酶。
在另一优选例中,所述的多核苷酸的序列如SEQ ID NO.:6所示。
本发明第十五方面,提供了本发明第二方面所述基因集合或其编码蛋白、或本发明第十四方面所述的多核苷酸或其编码蛋白的用途,用于调控禾本植物的抗病性。
在另一优选例中,所述的调控包括上调本发明第二方面所述基因集合或其编码蛋白、或本发明第十四方面所述的多核苷酸或其编码蛋白的表达量和/或活性,从而增加所述的禾本植物的抗病性。
在另一优选例中,所述的调控包括下调本发明第二方面所述基因集合或其编码蛋白、或本发明第十四方面所述的多核苷酸或其编码蛋白的表达量和/或活性,从而降低所述的禾本植物的抗病性。
在另一优选例中,所述的抗病性包括抗水稻白叶枯病。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1显示了水稻地上部、地下部接受不同温度处理的示意图。
图2显示了杂种劣势植株的表型以及植株体内防卫反应的激活。图2a为NIL(ad1)和NIL(AD1)在孕穗期表型。图2b为NIL(ad1)和NIL(AD1)萌发后30天幼苗根茎结合部表型。图2c为根茎结合部切片。图2d为根茎结合部细胞TUNEL染色法检测细胞程序化死亡状态。图2e为温度对杂种劣势的影响。图2f为NIL(ad1)和NIL(AD1)中PR基因的表达。图2g为根茎结合部和叶鞘中自由水杨酸含量。图2h根茎结合部和叶鞘中茉莉酸含量。图2i和图2j是NIL(ad1)和NIL(AD1)在苗期对白叶枯生理小种Zhe-173(图2i)和Ks6-6(图2j)的抗性。
图3显示了高温诱导杂种劣势发生以及地上部、地下部对高温的不同响应。图3a为持续低温(20℃)生长或低温生长7周后转移至高温(30℃)生长至88天后NIL(ad1)和NIL(AD1)根茎结合部表型。图3b为持续高温生长或高温生长7周后转移至低温生长至88天后NIL(ad1)和NIL(AD1)根茎结合部表型。图3c为在图a生长条件下根数木的量化分析。图3d为图3b生长条件下根数目的量化分析。图3e为地上部和地下部不同温度处理对杂种劣势发生的影响。图3f为在图e生长条件下根数目的量化分析。
图4显示了AD1(25L1和25L2)和AD2(290)基因的表达及编码蛋白的亚细胞定位。图4a-c为AD1和AD2在不同组织的表达。图4d-f为温度对AD1和AD2表达的影响。图4g为AD1的亚细胞定位。图4h为AD2的亚细胞定位。
图5显示了AD2功能SNP的分析和验证。图5a为AD2启动子上游1200bp、基因编码区和终止密码子下游500bp内亲本间多态性分析。图b为携带1592T材料与SW115杂交后代F2群体中出现劣势表型分离。图c为携带1592A材料与SW115杂交后代F2群体中没有出现劣势表型。
图6显示了AD1和AD2在不同水稻中的分布及诱导杂种劣势发生的遗传和生化模型。图6a为AD1座位不同形式的示意图。图6b为AD1和AD2等位基因在不同水稻中的分布。图6c为不同AD1座位形式在野生稻不同亚组中的分布。图6d为不同AD1座位形式在野生稻中的地理分布。图6e为AD1,AD2调控的杂种劣势发生的遗传模式。图6f为杂种劣势发生的可能的作用模型。
具体实施方式
本发明人经过广泛而深入的研究,首次意外地发现了三种基因或其蛋白的组合能够在一定条件下能导致禾本科(尤其是水稻)的野生稻与栽培稻杂交时产生杂种劣势。本发明人还首次鉴定了三种基因中,编码25L1(SEQ ID NO.:1)、25L2(SEQ ID NO.:2)的全新基因,以及编码SEQ ID NO.:3所示蛋白的全新突变基因。三种基因共同存在的情况下,能够导致禾本科植物免疫功能持续激活,并导致植株矮小、产量下降甚至早期死亡的杂种劣势。本发明人还通过实验证明,该现象可在低温下得以抑制。在此基础上,完成了本发明。
本发明多肽
如本文所用,术语“多肽集合”、“蛋白集合”指的是SEQ ID NO.:3所示的突变蛋白以及SEQ ID NO.:1-2所示多肽或其衍生多肽组成的蛋白的组合。优选地,本发明的多肽集合有SEQ ID NO.:1-3所示的多肽。
如本文所用,术语“SEQ ID NO.:1-2所示多肽”“25L1、25L2蛋白”指来源于水稻等植物的AD1基因座的,分别命名为25L1蛋白(SEQ ID NO.:1)、25L2蛋白(SEQ ID NO.:2)的多肽及其变体。
如本文所用,术语“分离的多肽”指的是选自SEQ ID NO.:1-2任一的多肽或其衍生多肽。其中“25L1蛋白”、“25L2蛋白”,其中,25L1蛋白对应的是SEQID NO.:1所述的多肽,25L2所述的多肽。
如本文所用,术语“AD1基因”、“AD1基因座”指的是含有25L1和25L2蛋白编码基因的基因座。
如本文所用,术语“AD2蛋白”、“突变蛋白酶”、“突变蛋白”“SEQ ID NO.:3所示蛋白酶”可互换使用,均指与野生型枯草杆菌蛋白酶相比,所述突变蛋白的第531位氨基酸由组氨酸(His)突变为亮氨酸(Leu)的AD2突变蛋白。
如本文所用,术语“基因集合”、“核苷酸集合”可互换使用,均指分别编码所述多肽集合中多肽的基因的组合。其中,所述的基因包括基因序列的全长或基因的cDNA。一种优选的基因集合由25L1的编码基因(SEQ ID NO.:4)、25L2的编码基因(SEQ ID NO.:5)以及AD2的编码基因(SEQ ID NO.:6)所示,三者分别编码SEQ ID NO.:1-3所示的蛋白。
如本文所用,术语“本发明基因”、“分离的多核苷酸”、“编码序列”指的是所述基因集合中任一基因或其变体,所述的基因包括全长或其cDNA。其中,所述突变蛋白的编码序列与编码野生型枯草杆菌蛋白酶蛋白基因的cDNA序列相比,所述突变蛋白的编码cDNA序列在1592位由A突变为T。而编码25L1和25L2蛋白的多核苷酸还包括对SEQ ID NO.:4-5序列进行密码子优化或简并的碱基序列。
如本文所用,术语“特异性表达”是指目的基因在植物中特定的时间和/或特定的组织的表达。
如本文所用,“外源的”或“异源的”是指不同来源的两条或多条核酸或蛋白质序列之间的关系。例如,如果启动子与目的基因序列的组合通常不是天然存在的,则启动子对于该目的基因来说是外源的。特定序列对于其所插入的细胞或生物体来说是“外源的”。
本发明还包括与本发明的优选基因序列(SEQ ID NO.:4或5)具有50%或以上(优选60%以上,70%以上,80%以上,更优选90%以上,更优选95%以上,最优选98%以上,如99%)同源性的核酸,所述同源性核酸也能有效地与AD2基因在高温环境共同导致水稻杂种劣势。“同源性”是指按照位置相同的百分比,两条或多条核酸之间的相似水平(即序列相似性或同一性)。在本文中,所述基因的变体可以通过插入或删除调控区域,进行随机或定点突变等来获得。
在本发明中,SEQ ID NO.:4或5中的核苷酸序列可以经过取代、缺失或添加一个或多个,生成SEQ ID NO.:4或5的衍生序列,由于密码子的简并性,即使与SEQ ID NO.:4或5的同源性较低,也能基本编码出如SEQ ID NO.:1或2所示的多肽序列。另外,“在SEQ ID NO.:4或5中的核苷酸序列经过取代、缺失或添加至少一个核苷酸衍生序列”的含义还包括能在中度严谨条件下,更佳的在高度严谨条件下与SEQ ID NO.:4或5所示的核苷酸序列杂交的核苷酸序列。这些变异形式包括(但并小限于):若干个(通常为1-90个,较佳地1-60个,更佳地1-20个,最佳地1-10个)核苷酸的缺失、插入和/或取代,以及在5’和/或3’端添加数个(通常为60个以内,较佳地为30个以内,更佳地为10个以内,最佳地为5个以内)核苷酸。
应理解,尽管本发明的实例中提供的基因来源于水稻,但是来源于其它类似的植物,尤其是与水稻属于同一科或属的植物(例如禾本科植物,如小麦、大麦、玉米、高粱)的、与本发明的序列(优选地,序列如SEQ ID NO.:1-2所示)具有一定同源性(保守性)的25L1或25L2基因序列,也包括在本发明的范围内,只要本领域技术人员在阅读了本申请后根据本申请提供的信息可以方便地从其它植物中分离得到该序列。
本发明还包括与本发明的SEQ ID NO.:1或2所示序列具有50%或以上(优选60%以上,70%以上,80%以上,更优选90%以上,更优选95%以上,最优选98%以上,如99%)同源性的具有相同或相似功能的多肽或蛋白。
所述“相同或相似功能”主要是指与AD2基因在高温环境共同导致水稻杂种劣势。本发明中,所述的多肽变体是如SEQ ID NO.:1或2所示的氨基酸序列,经过若干个(通常为1-60个,较佳地1-30个,更佳地1-20个,最佳地1-10个)取代、缺失或添加至少一个氨基酸所得的衍生序列,以及在C末端和/或N末端添加一个或数个(通常为20个以内,较佳地为10个以内,更佳地为5个以内)氨基酸。例如,在所述蛋白中,用性能相近或相似的氨基酸进行取代时,通常不会改变蛋白质的功能,在C末端和/或\末端添加一个或数个氨基酸通常也不会改变蛋白质的功能。这些保守性变异最好根据表1进行替换而产生。
表1
本发明还包括所要求保护的蛋白的类似物。这些类似物与天然SEQ ID NO.:1或2差别可以是氨基酸序列上的差异,也可以是不影响序列的修饰形式上的差异,或者兼而有之。这些蛋白的类似物包括天然或诱导的遗传变异体。诱导变异体可以通过各种技术得到,如通过辐射或暴露于诱变剂而产生随机诱变,还可通过定点诱变法或其他已知分了生物学的技术。类似物还包括具有不同于天然L-氨基酸的残基(如D-氨基酸)的类似物,以及具有非天然存在的或合成的氨基酸(如β、γ-氨基酸)的类似物。应理解,本发明的蛋白并不限于上述例举的代表性的蛋白。
修饰(通常不改变一级结构)形式包括:体内或体外蛋白的化学衍生形式如乙酸化或羧基化。修饰还包括糖基化,如那些在蛋白质合成和加工中进行糖基化修饰。这种修饰可以通过将蛋白暴露于进行糖基化的酶(如哺乳动物的糖基化酶或去糖基化酶)而完成。修饰形式还包括具有磷酸化氨基酸残基(如磷酸酪氨酸,磷酸丝氨酸,磷酸苏氨酸)的序列。
表达载体和宿主细胞
本发明还提供了用于抑制本发明多肽表达的重组载体。作为一种优选的方式,重组载体的启动子下游包含多克隆位点或至少一个酶切位点。当需要抑制目的基因时,将抑制目的基因的核苷酸序列连接入适合的多克隆位点或酶切位点内,从而将所述序列与启动子可操作地连接。作为另一种优选方式,所述的重组载体包括(从5’到3’方向):启动子,外源序列,和终止子。如果需要,所述的重组载体还可以包括选自下组的元件:3’多聚核苷酸化信号;非翻译核酸序列;转运和靶向核酸序列;抗性选择标记(二氢叶酸还原酶、新霉素抗性、潮霉素抗性以及绿色荧光蛋白等);增强子;或操作子。
制备重组载体的方法是本领域普通技术人员所熟知的。表达载体可以是细菌质粒、噬菌体、酵母质粒、植物细胞病毒、哺乳动物细胞病毒或其他载体。总之,只要其能够在宿主体内复制和稳定,任何质粒和载体都是可以被采用的。
本领域普通技术人员可以使用熟知的方法构建含有本发明所述的基因的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。使用本发明的基因构建重组表达载体时,可在其转录起始核苷酸前加上任何一种增强型、组成型、组织特异型或诱导型启动子,如花椰菜花叶病毒(CAMV)35S启动子、泛素(Ubiquitin)基因启动子(pUbi)等,它们可单独使用或与其它的启动子结合使用。
包括外源序列的载体可以用于转化适当的宿主细胞,以使宿主表达蛋白质。宿主细胞可以是原核细胞,如大肠杆菌,链霉菌属、农杆菌:或是低等真核细胞,如酵母细胞;或是高等真核细胞,如植物细胞。本领域一般技术人员都清楚如何选择适当的载体和宿主细胞。用重组DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿主为原核生物(如大肠杆菌)时,可以用CaCl2法处理,也可用电穿孔法进行。当宿主是真核生物,可选用如下的DNA转染方法:磷酸钙共沉淀法,常规机械方法(如显微注射、电穿孔、脂质体包装等)。转化植物也可使用农杆菌转化或基因枪转化等方法,例如叶盘法、幼胚转化法、花芽浸泡法等。对于转化的植物细胞、组织或器官可以用常规方法再生成植株,从而获得转基因的植物。
在优选的实施方式中,制备转基因植物的方法是:将携带编码本发明多肽基因或其互补序列的载体转入农杆菌,农杆菌再将含基因或其互补序列的载体片段整合到植物的染色体上。
基因重组和选择标记
作为本发明的一种优选方式,制备转基因植物的方法是:将携带启动子和外源序列(两者可操作地连接)的载体转入农杆菌,农杆菌再将含启动子和外源序列的载体片段整合到植物的染色体上。
为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入在植物中表达可产生颜色变化的酶或发光化合物的基因(GUS基因、GFP基因、萤光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因(如抗除草剂基因)等。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。
本发明还提供了一种调节或提供水稻温敏叶色性状的方法,包括步骤:降低水稻中TCD5多肽或其编码基因的表达或活性。在本发明的一个优选例中,所述方法包括步骤:(a)提供携带反义表达载体的农杆菌,所述表达载体含有抑制TCD5多肽表达的编码序列;(b)将植物细胞或组织或器官与步骤(a)中的农杆菌接触,从而使抑制TCD5多肽表达的编码序列转入植物细胞,并且整合到植物细胞的染色体上;(c)选择已转入抑制TCD5多肽表达的编码序列的植物细胞、或组织、或器官;(d)将步骤(c)中的植物细胞、或组织、或器官再生为植株。
本发明通过实验发现,当AD1与AD2基因共同存在时,在高温下(26℃以上)可导致栽培稻与野生稻杂交后产生的杂种劣势,具体表现为植株矮化、不定根数目减少、茎部或叶部出现类病斑、植株开花前死亡、或单株产量减少。
因此,实际应用中,可通过降低任意1个、2个或3个选自AD1基因、AD2基因或其蛋白的表达量和/或活性,从而消除水稻杂交后产生的杂种劣势。所述降低基因或其蛋白表达量和/或活性的方法可采用多种现有技术中已知的抑制方法,比如采用构件含有其互补序列的载体、构件miRNA(siRNA、shRNA)或筛选所述蛋白的抗体,从而有效地降低所述基因或其蛋白的表达量和/或活性。
本发明的基因可以被可操作地与外源基因连接,该外源基因相对于本发明基因而言可以是外源(异源)的。本发明所述的外源基因(也称为目的基因)没有特别的限制,可以为RNAi基因或编码具有特定功能蛋白的基因,例如某些在农业或植物改良上具有重要特性或功能的蛋白。
所述外源基因的代表性例子包括(但不限于):抗性基因、筛选标记基因、抗原蛋白基因及生物制剂基因、或植物品质相关基因。
所述的抗性基因选自下组:抗除草剂基因、抗病毒基因、耐寒基因、耐高温基因、抗旱基因、抗涝基因、或抗虫基因。所述的筛选标记基因选自下组:GUS(β-葡萄糖苷酸酶)基因、hyg(潮霉素)基因、neo(新霉素)基因、或gfp(绿色荧光蛋白)基因。所述的抗原蛋白基因及生物制剂基因选自下组:细菌类抗原蛋白(如霍乱毒素B,破伤风毒素等)、病毒类抗原蛋白(如犬细小病毒)、原生动物类抗原蛋白(阿米巴病原LecA)、自身抗原蛋白(如I型糖尿病的CTB–pins)、或生物制剂(如α2b干扰素,胰岛素样生长因子等)。所述的植物品质相关基因选自下组:氨基酸改良相关基因、脂肪改良相关基因、淀粉改良相关基因或雄性不育相关基因。
本发明还提供了一种基因表达盒,所述表达盒从5’-3’依次具有下列元件:启动子、本发明基因ORF序列、和终止子。
本发明还提供了一种包括本发明的基因表达盒的重组载体。作为一种优选的方式,重组载体的启动子下游包含多克隆位点或至少一个酶切位点。当需要表达目的基因时,将目的基因连接入适合的多克隆位点或酶切位点内,从而将目的基因与启动子可操作地连接。作为另一种优选方式,所述的重组载体包括(从5’到3’方向):启动子,目的基因,和终止子。如果需要,所述的重组载体还可以包括选自下组的元件:3’多聚核苷酸化信号;非翻译核酸序列;转运和靶向核酸序列;抗性选择标记(二氢叶酸还原酶、新霉素抗性、潮霉素抗性以及绿色荧光蛋白等);增强子;或操作子。
用于制备重组载体的方法是本领域普通技术人员所熟知的。表达载体可以是细菌质粒、噬菌体、酵母质粒、植物细胞病毒、哺乳动物细胞病毒或其他载体。总之,只要其能够在宿主体内复制和稳定,任何质粒和载体都是可以被采用的。
本领域普通技术人员可以使用熟知的方法构建含有本发明所述的目的基因序列的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。
本发明的表达盒或载体,可以用于转化适当的宿主细胞,以使宿主表达蛋白质。宿主细胞可以是原核细胞,如大肠杆菌,链霉菌属、农杆菌:或是低等真核细胞,如酵母细胞;或是高等真核细胞,如植物细胞。本领域一般技术人员都清楚如何选择适当的载体和宿主细胞。用重组DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。当宿主为原核生物(如大肠杆菌)时,可以用CaCl2法处理,也可用电穿孔法进行。当宿主是真核生物,可选用如下的DNA转染方法:磷酸钙共沉淀法,常规机械方法(如显微注射、电穿孔、脂质体包装等)。转化植物也可使用农杆菌转化或基因枪转化等方法,例如叶盘法、幼胚转化法、花芽浸泡法等。对于转化的植物细胞、组织或器官可以用常规方法再生成植株,从而获得转基因的植物。
作为本发明的一种优选方式,制备转基因植物的方法是:将携带目的基因(两者可操作地连接)的载体转入农杆菌,农杆菌再将含目的基因的载体片段整合到植物的染色体上。涉及的转基因受体植物例如是拟南芥、烟草、果树等。
杂种劣势
杂种劣势是一种生殖隔离形式,表现为不同物种间、或者同一物种不同亚群间,通过人为构建或自然杂交形成的F1植株,生长和发育出现异常,通常不能存活至生殖生长阶段,从而阻碍了亲本间的基因交流。而这种不同亲本间的遗传交流,正是利用杂种优势的前提条件,所以说杂种劣势的存在阻碍了育种家对杂种优势的充分发掘和全面利用。
海南普通野生稻
普通野生稻是水稻的祖先,主要分布于江河流域、平原地区的池塘、溪沟、水涧与藕塘、稻田、沼泽等低湿地。适生于温暖潮湿的热带、亚热带气候,生长期间是温度高和雨量充沛的季节。我国普通野生稻的遗传多样性有着共性以及差异性。可用于本发明的普通野生稻为从我国海南省收集的普通野生稻(Oryza rufipogon)材料,普通野生稻是栽培蹈的祖先,蕴藏许多优良的基因如抗病虫、抗旱抗盐等基因。目前已有研究通过二代测序技术对一些野生稻材料进行了重测序,但精确度不高。
应理解,虽然本发明仅采用海南普通野生稻作为野生稻标本,但基于本发明的启示,在采用其他普通野生稻作为杂交稻培育母本时,可以测定其他野生稻中25L1、25L2以及AD2基因或其同源性基因的表达量和/或活性。因此,本发明基因集合以及多肽集合能适用于各种不同稻种,从而预测(预先判断)该稻种与栽培稻(包括籼稻和粳稻)杂交后是否会产生杂种劣势,并通过进一步的转基因或分子生物手段,降低本发明基因或多肽的表达量和/或活性,从而达到避免杂种劣势的培育目的。
病程相关基因(PRs)
植物在遭受病原菌侵袭后,一类基因的表达受到诱导,产生出具有广谱抗性的可溶性蛋白,参与植物的防卫应答,这类基因被称为病程相关基因。
在本发明中,所测定的PRs包括PR1a、PR1b、PR4、JIOsPR10、PBZ1。
实验表明,本发明多肽的表达量和/或活性升高后,与病程相关基因呈正相关。
本发明还提供一种筛选禾本植物杂种劣势抑制剂的方法,包括步骤:
(a)测定禾本植物中1个、2个或3个本发明多肽集合的多肽或其编码序列的表达量和/或活性,并待测物质的存在或不存在的情况下,培育所述表达量和/或活性高的禾本植物;
(b)测定所述禾本植物中1个、2个或3个选自本发明多肽集合的多肽或其编码序列的表达量和/或活性。
如果与不存在所述待测物质的禾本植物相比,存在所述待测物质的禾本植物中所述1个、2个或3个选自本发明第一方面所述多肽集合的多肽或其编码序列的表达量和/或活性降低,则说明该待测物质能够作为禾本植物杂种劣势的抑制剂。
在一优选例中,所述禾本植物是小麦、大麦、水稻、玉米、高粱;优选地,所述禾本植物是水稻。
本发明还提供了一种制备转基因禾本植物的方法,所述方法包括以下步骤:
(a)获得所述的禾本植物细胞;和
(b)将步骤(a)所得的转基因禾本植物细胞培育成独立的植株。
在优选的实施方式中,制备转基因植物的方法是:将携带编码本发明多肽基因或其互补序列的载体转入农杆菌,农杆菌再将含基因或其互补序列的载体片段整合到植物的染色体上。
本发明的有益效果:
本发明AD1基因座的25L1、25L2基因以及本发明突变基因AD2在同时存在的情况下,导致子代水稻产生杂种劣势现象,且该现象受温度的调控。因此,可检测选自上述基因的任意1个、2个或3个基因,用于预测是否会产生杂种劣势,或采用转基因或分子生物学方法降低上述三种基因中1个、2个或3个基因或其蛋白的表达量和/或活性,从而避免杂交稻产生杂种劣势。本发明人还发现上述三个基因与水稻的免疫功能密切相关。另外,对上述三个基因在水稻品种中的分布分析也能够指导在杂交育种中尽量避免劣势配组,具有直接的实践意义。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(NewYork:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。
实施例1 AD1、AD2的发现、定位克隆
从特青为轮回亲本、海南普通野生稻为供体亲本构建的CSSLs(染色体片段替换系)中,发现一个株系05-SW52表现出杂种劣势的表型。用该CSSL和特青杂交构建BC4F2分离群体,对来自野生稻的显性基因AD1进行遗传分析和初定位(而来自栽培稻如特青的基因为隐性基因ad1)。进一步利用分离群体中AD1座位表现为杂合状态的植株,衍生精细定位作图群体,最终将AD1定位到第11染色体短臂13.2kb的范围内。同时通过回交,构建遗传背景一致,只在AD1座位存在差异的一对近等基因系(NIL)NIL(ad1)和NIL(AD1)。
其中NIL(AD1)显现杂种劣势症状,而NIL(ad1)的生长发育正常、与特青基本一致(图2a)
而NIL(AD1)和NIL(ad1)相比,植株矮化(图2a,e)、不定根数目减少(图2b,e)、茎基部和叶鞘基部出现类病斑、绝大多数植株在开花结实前死亡、少数存活的NIL(AD1)其单株产量也显著少于NIL(ad1)。组织分析发现NIL(AD1)根茎结合部细胞褐化、细胞程序化死亡(PCD)被激活、不定根的发生受到抑制(图2c、d)。
对NIL(AD1)和粳稻品种日本晴构建的F2分离群体进行遗传分析,发现出现杂种劣势表型的植株与正常生长的植株比值符合9:7而非3:1,这提示可能存在另一个座位AD2与AD1共同作用,调控杂种劣势的发生。利用该分离群体及其衍生群体,对AD2进行初定位和精细定位,并最终将AD2定位到第1染色体35.4kb范围内。
实施例2 AD1载体的构建
利用发明人新构建的海南普通野生稻BAC文库,筛选到一个包含AD1座位的BAC克隆。通过对BAC克隆的全测序,对海南野生稻AD1座位进行序列分析发现,与特青相比,海南野生稻中存在一个大约30kb的大片段插入。该片段含有25L1和25L2两个功能编码基因。
利用BAC克隆构建亚克隆文库:对BAC克隆进行Sau3AI部分酶切,挑取20kb~40kb片段连接到事先用BamHI消化的双元载体pYLTAC747-SacB,通过电转化(2.0kV,200Ω,252F)的方法将连接子转入大肠杆菌感受态DH10B中。设计25L1,25L2特异引物:
25L1-F:GGCGTCTTGAACTGGTAG;(SEQ ID NO.:7)
25L1-R:GCTGTGGTGTAGGTATGC;(SEQ ID NO.:8)
25L2-F:CCAGAGGCAATCCTGAACAT;(SEQ ID NO.:9)
25L2-R:CACTGAGATTATTGAATGCGAAC;(SEQ ID NO.:10)
通过PCR扩增的方法筛选亚克隆库,对包含25L1,25L2的候选克隆末端测序,最终选用包含完整25L1和其相邻基因LOC_Os11g02725的克隆2F2;包含完整25L1和25L2的克隆1D2;包含完整25L2、相邻基因LOC_Os11g02730和LOC_Os11g02740的克隆1A3以及包含完整25L2的克隆1H4等四种构建转化水稻,每种3株,进行AD1互补测验。
实施例3 AD2载体的构建与验证
AD2互补载体构建过程中,由于目的片段较长,用包含AD2基因的特青BAC克隆做为模板,利用高保真扩增酶KOD,用下列引物分段扩增目的基因片段290C1(基因上游2646位到基因内部4780位)和290C2(基因内部4346位到转录结束位点下游1485位)。
290C1-F:ACATGCATGCTCCTTCCGTTGTTAATTGTTAC(SEQ ID NO.:11)
290C1-R:GGACGCTGACTCCATCTACC(SEQ ID NO.:12)
290C2-F:GAACTACCAACCACCCAATAAAC(SEQ ID NO.:13)
290C2-R:GGGGCCAAACATGGCGACGATACGAT(SEQ ID NO.:14)
分别利用SphI和StuI以及StuI和EcoRI双酶切片段290C1和290C2。同时用SphI和EcoRI酶切双元表达载体pCAMBIA1301。通过T4连接酶将9.13kb的目的片段接入到pCAMBIA1301中,对多个重组子进行测序,验证序列正确性。
实施例4 AD1、AD2互补构建载体通过农杆菌的转化
利用电转化(2.0kV,200Ω,252F)的方法将AD1和AD2的互补构建转入农杆菌感受态EHA105中,采用常规的农杆菌转化方法转化水稻材料的幼胚愈伤。取授粉后12-15天的中花11未成熟种子经70%乙醇浸泡1分钟后,于NaClO溶液中(与水1:3混合,加2-3滴吐温20)消毒90分钟以上,用无菌水冲洗4-5次,然后用解剖刀和摄子挑出幼胚并接种于N6D2培养基上诱导愈伤组织,在26±1℃、避光条件下培育,4天后可用于转化。将幼胚愈伤浸泡入新鲜的AAM农杆菌菌液中并不时摇动,20分钟后将水稻材料移出,在无菌滤纸上吸去过多的菌液,随即转移到N6D2C培养基上,于26℃共培养3天。共培养时,在共培养培养基中加入乙酰丁香酮作为农杆菌Vir基因活化物,使用浓度为1002mol/L。
3天后,从共培养培养基上取出愈伤组织,切去胚芽并转入选择培养基N6D2S1(Hyg25mg/l)进行选择培养。7-10天后将抗性愈伤组织转到N6D2S2(Hyg50mg/l)选择培养基上继续筛选。10-12天后将生长旺盛的抗性愈伤组织转移到预分化培养基上培养一周左右,再移至分化培养基上分化(12小时光照/天)。再生的小苗在1/2MS0H培养基上生根壮苗,随后移入人工气候室盆土栽培。
AD1的互补实验表明,只有携带1D2的转基因植株(受体是只携带有AD2的正常生长的特青,AD2是有功能、ad2是没有功能)能够诱导杂种劣势表型的发生,而仅携带有25L1的2F2转基因植株以及仅携带有25L2的1A3转基因植株均能够正常发育,表明25L1和25L2对于诱导杂种劣势都是必需的。AD2的遗传互补也证明AD2能够诱导HW株系(该受体株系只携带有AD1而没有AD2的正常水稻株系)发生杂种劣势。
实施例5 AD1、AD2对高温的响应实验
当年新收种子于42℃烘箱内打破休眠至少一周后(陈年种子可不用打破休眠),室温下自来水浸种1-2天(d),37℃催芽2d。等萌发后选择发芽整齐的种子点播于剪掉底部的96孔板,然后移入光照培养箱进行培养。
水稻置于光照培养箱中,营养液培养。每周更换一次营养液。设置培养箱光照时间为10h黑暗/14h光照,湿度恒定为50%。分别用20℃-34℃处理NIL(ad1)和NIL(AD1)植株,观察杂种劣势发生对温度的响应。
根据不同温度条件下的表型,设定20℃和30℃为低温处理和高温处理的条件。并且进一步统计植物在高、低温生长条件下株高和根数的动态变化,并收集不同植物组织,用于表达分析或组织学、细胞学观察。在地上部、地下部不同温度处理时,将水稻萌发的种子种于大试管内,放入水浴锅中控制地下部温度,地上部温度通过空调调节,具体图(1)。
由图2e可见,当温度低于26℃时,NIL(AD1)的杂种劣势表型受到抑制。已经出现的杂种劣势表型也可以被低温条件恢复(图3a-c),具体表现为已经出现严重劣势症状的NIL(AD1)植株(由于是特青遗传背景、因此携带有AD2)(高温条件下生长7周)在转入低温生长3周后,又有新根生出,而持续高温条件培养的NIL(AD1)对照植株则没有新根生成。此外研究还发现地下部,尤其是根茎结合部的温度对杂种劣势的发生是最为关键的(图3e-f)。
由图4可见,AD1(25L1和25L2)以及AD2主要在根茎结合部表达(图4a-c),并且表达受高温诱导,可以利用其温度诱导型的启动子用于基础研究和基因工程改造(图4d-f)。亚细胞定位表明AD1座位的两个蛋白均定位于细胞质膜上,AD2是一个分泌至细胞外的分泌蛋白(图4g,h)。
实施例6 AD1、AD2的NIL和转基因株系的抗病基因表达分析
对NIL(ad1)和NIL(AD1)由低温转入高温生长的幼苗根茎结合部的Affymetrix基因表达芯片分析发现,伴随杂种劣势表型的发生,NIL(AD1)中抗病信号通路被显著激活。为了进一步验证这一结果,通过Real-time PCR对不同温度条件下,一系列病程相关基因PRs在NIL(ad1)、NIL(AD1)以及转基因株系中根茎结合部的表达进行分析:取不同温度条件下光照培养箱水培生长30天的幼苗的根茎结合部组织,以液氮研磨或粉碎仪将材料研磨至粉末,通过TRIZOL(Invitrogen)法抽提总RNA。总RNA先用RQ1 RNase-free DNase I(Promega)进行处理,以去掉污染的基因组DNA。cDNA反转录使用ReverTraAceα(Toyobo)进行。反应结束后加入nuclease-free ddH2O 80μL混匀保存于-20℃。每次取1-2μL作为PCR反应或者Real-time PCR的模板。设计下列所示Real-time PCR引物。对引物做标准曲线,在满引物足ΔΔCt法分析要求后,利用SYBRPremix Ex TaqTM II(TAKARA)试剂盒,对样品做Real-timePCR分析。在ABI 7300 Real-time PCR仪上用两步法完成反应和数据分析。反应程序:95℃ 30s,95℃ 5s,60℃ 31s,40个循环后做溶解曲线分析。以actin为内参基因,使用ΔΔCt法对数据进行分析。
结果表明病程相关基因PRs的表达都被显著上调即被激活,见图2f-h,可见与NIL(ad1)相比,NIL(AD1)的根茎结合部积累更多的抗病相关激素水杨酸和茉莉酸。
实施例7 AD1、AD2的NIL的抗病性鉴定
白叶枯病菌的准备:将接种菌株移植到PSA(蛋白胨10克,蔗糖10克,谷氨酸钠0.5克,琼脂15克,1000毫升蒸馏水,pH6.8)平板上,活化2次后,接种在PSA培养基上,在28℃下培养48小时后,用无菌水洗下菌苔,以麦兰氏分度计比浊法,将细菌悬浮液稀释至108cfu/ml,用于接种。
剪叶接种:用沾有菌液的剪刀剪剑叶进行接种,苗期(温室土培种植30d的幼苗)接种在最上面一片完全展开叶,NIL(ad1)和NIL(AD1)各接种30株;分蘖盛期和孕穗期:各接种10丛稻株,约30张最上完全展开叶(分蘖盛期)或剑叶(孕穗期)。利用株间的自然湿度使病菌迅速繁殖、侵染为害。
病斑测量:接种2周后,从被接种的水稻叶片中选取外观完整的叶片(20片)进行病斑长度测量。
结果可见图2i-j,由图可见,NIL(AD1)在不同生育期对白叶枯病原菌不同生理小种的抗性,均极显著高于NIL(ad1)(图2i,j)。因此,NIL(AD1)(同时携带有AD1、AD2基因)比NIL(ad1)(不带AD1,只带有AD2基因)具有明显的抗白叶枯病。
结论:上述证据表明,杂种劣势发生的分子基础在于自身免疫应答的组成性激活,AD1和AD2参与介导这种免疫自应答的发生。同时表明AD1和AD2基因本身可能参与水稻的免疫应答。
讨论:AD1和AD2在不同水稻中的分布及诱导杂种劣势发生的遗传和生化模型
本发明人经过序列分析发现海南野生稻AD1座位包含的25L1和25L2在粳稻品种日本晴和籼稻特青中完全缺失。在特青的AD2编码区,只有1592位单碱基突变改变了编码氨基酸残基(A1592T,H531L)。并且从AD2起始密码子上游1200bp到终止密码子下游500bp的范围内,只有1592位的点突变与AD2完全相关联,表明1592位的序列差异是一个功能性单碱基多态(SNP)(图5)。对不同水稻种质中AD1和AD2的分布分析,发现AD1在普通野生稻中广发分布,栽培稻中几乎都不携带AD1。AD2只在少部分(约12%)籼稻品种中存在,粳稻和野生稻都为ad2基因型(图6)。
本项目利用籼稻品种特青和普通野生稻构建的染色体片段替换系(CSSL)及其衍生群体,精细定位了受高温诱导的、控制水稻种间杂种劣势发生2个基因座位ADou1(AD1)和AD2。通过图位克隆技术,克隆了AD2基因以及AD1座位下的2个基因25L1和25L2。遗传分析和互补实验证明这3个基因对杂种劣势的发生是缺一不可的。25L1和25L2均编码定位于细胞质膜上的、具有富含亮氨酸重复序列的类蛋白激酶(LRR-RLK),AD2编码一个分泌至细胞外的、预测为类subtilisin蛋白酶的蛋白。基因芯片分析和Real-time PC分析表明杂种劣势植株和正常植株相比,很多抗病通路和细胞程序化死亡通路的基因表达被激活。生理分析和接菌实验进一步证明了杂种劣势植株根茎结合部水杨酸和茉莉酸含量升高,细胞程序化死亡被激活,植株在不同发育阶段对不同叶枯病生理小种Zhe-173和Ks6-6的抗性均显著高于正常植株。这些证据表明AD1和AD2通过参与激活抗病通路,诱导杂种劣势的发生。因此AD1和AD2在抗病育种中具有应用潜力。AD1(25L1和25L2)以及AD2主要在根茎结合部表达,并且表达受高温诱导,因此能够利用其温度诱导型的启动子用于基础研究和基因工程改造。此外,我们对AD1和AD2在世界范围内不同水稻品种中的分布也进行了分析(图6),这对指导我们在杂交育种中尽量避免劣势配组,具有直接的实践意义。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (16)

1.一种多肽集合,其特征在于,所述的多肽集合包括SEQ ID NO.:3所示的突变蛋白,和选自下组的多肽序列:
(i)SEQ ID NO.:1-2所示的多肽;
(ii)将如SEQ ID NO.:1-2所示的多肽序列经过一个或几个氨基酸残基的保守性取代、缺失或添加而形成的由(a)衍生的衍生多肽;或
(c)氨基酸序列与SEQ ID NO.:1-2所示氨基酸序列的同源性≥90%(较佳地≥95%,更佳地98%)由(a)衍生的衍生多肽。
2.一种基因集合,其特征在于,所述的基因集合中的基因分别编码权利要求1所述的多肽集合中的突变蛋白或多肽。
3.一种表达载体,其特征在于,所述表达载体包含权利要求2所述基因集合中的1个、2个或3个基因或其互补序列。
4.一种转基因禾本植物细胞,其特征在于,所述禾本植物细胞包含权利要求3所述的表达载体,或者所述禾本植物细胞的染色体中整合有权利要求2所述基因集合中的1个、2个或3个基因或其互补序列。
5.1个、2个或3个选自权利要求1所述多肽集合的多肽或其编码基因的用途,其特征在于,(i)用于预测禾本植物育种过程中产生的杂种劣势现象;(ii)用于转基因禾本植物中的选择标记;或(iii)用于筛选禾本植物育种杂种劣势现象的抑制剂。
6.1个、2个或3个选自权利要求1所述多肽集合的多肽或其编码基因的抑制剂的用途,其特征在于,用于消除禾本植物育种杂种劣势现象。
7.如权利要求6所述的用途,其特征在于,所述的抑制剂包括所述多肽的抗体、核酸抑制剂、小分子化合物。
8.一种消除禾本植物杂种劣势的方法,其特征在于,所述方法通过降低禾本植株中1个、2个或3个选自权利要求1所述多肽集合的多肽或其编码序列的表达量和/或活性,从而消除禾本杂种劣势。
9.一种筛选禾本植物杂种劣势抑制剂的方法,其特征在于,包括步骤:
(a)测定禾本植物中1个、2个或3个选自权利要求1所述多肽集合的多肽或其编码序列的表达量和/或活性,并待测物质的存在或不存在的情况下,培育所述表达量和/或活性高的禾本植物;
(b)测定培育的所述禾本植物中1个、2个或3个选自权利要求1所述多肽集合的多肽或其编码序列的表达量和/或活性;
如果与不存在所述待测物质的禾本植物相比,存在所述待测物质的禾本植物中所述1个、2个或3个选自权利要求1所述多肽集合的多肽或其编码序列的表达量和/或活性降低,则说明该待测物质能够作为禾本植物杂种劣势的抑制剂。
10.一种制备转基因禾本植物的方法,其特征在于,所述方法包括以下步骤:
(a)获得权利要求4所述的禾本植物细胞;和
(b)将步骤(a)所得的转基因禾本植物细胞培育成独立的植株。
11.一种禾本植物愈伤组织或禾本植物体细胞胚胎,所述禾本植物愈伤组织或禾本植物体细胞胚胎包含下述禾本植物细胞或由下述禾本植物细胞构成:所述禾本植物细胞含有权利要求3所述的表达载体、或其染色体整合有权利要求2所述的基因集合中的基因。
12.一种分离的多肽,其特征在于,所述的多肽选自下组:
(a)SEQ ID NO.:1-2任一所示的多肽;
(b)将如SEQ ID NO.:1-2所示的多肽序列经过一个或几个氨基酸残基的保守性取代、缺失或添加而形成的由(a)衍生的多肽;或
(c)氨基酸序列与SEQ ID NO.:1-2所示氨基酸序列的同源性≥90%(较佳地≥95%,更佳地98%)由(a)衍生的多肽。
13.一种分离的多核苷酸,其特征在于,所述的多核苷酸编码权利要求1所述的多肽。
14.一种突变的枯草杆菌蛋白酶,其特征在于,所述突变的枯草杆菌蛋白酶在对应于野生型枯草杆菌蛋白酶的第531位氨基酸由组氨酸(His)突变为亮氨酸(Leu)。
15.一种分离的多核苷酸,其特征在于,所述的多核苷酸编码如权利要求14所述的突变枯草杆菌蛋白酶。
16.权利要求2所述基因集合或其编码蛋白、或权利要求15所述的多核苷酸或其编码蛋白的用途,用于调控禾本植物的抗病性。
CN201410052285.3A 2014-02-14 2014-02-14 新的水稻杂种劣势基因及其应用 Active CN104844700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410052285.3A CN104844700B (zh) 2014-02-14 2014-02-14 新的水稻杂种劣势基因及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410052285.3A CN104844700B (zh) 2014-02-14 2014-02-14 新的水稻杂种劣势基因及其应用

Publications (2)

Publication Number Publication Date
CN104844700A true CN104844700A (zh) 2015-08-19
CN104844700B CN104844700B (zh) 2018-08-14

Family

ID=53844725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410052285.3A Active CN104844700B (zh) 2014-02-14 2014-02-14 新的水稻杂种劣势基因及其应用

Country Status (1)

Country Link
CN (1) CN104844700B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112836621A (zh) * 2021-01-29 2021-05-25 华东理工大学青岛创新研究院 一种植物细胞表型检测方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283105A (zh) * 2005-07-29 2008-10-08 杂交生物科学私人有限公司 促进杂种优势或杂种劣势的基因及其产物的鉴定及其用途
KR20090121918A (ko) * 2008-05-23 2009-11-26 재단법인서울대학교산학협력재단 벼의 잡종퇴화에 관여하는 상보적인 열성 유전자 및스크리닝 마커
JP2011055806A (ja) * 2009-09-14 2011-03-24 Ibaraki Univ イネ雑種弱勢原因遺伝子hwc1、hwc2を利用した雑種弱勢の人為的誘導

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101283105A (zh) * 2005-07-29 2008-10-08 杂交生物科学私人有限公司 促进杂种优势或杂种劣势的基因及其产物的鉴定及其用途
KR20090121918A (ko) * 2008-05-23 2009-11-26 재단법인서울대학교산학협력재단 벼의 잡종퇴화에 관여하는 상보적인 열성 유전자 및스크리닝 마커
JP2011055806A (ja) * 2009-09-14 2011-03-24 Ibaraki Univ イネ雑種弱勢原因遺伝子hwc1、hwc2を利用した雑種弱勢の人為的誘導

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN 等: "Genetic and Physiological Analysis of a Novel Type of Interspecific Hybrid Weakness in Rice", 《MOLECULAR PLANT》 *
张慧 等: "粳稻杂种劣势的遗传及表型特性分析", 《分子植物育种》 *
赵彦艳 主编: "《医学生物学实验教程》", 31 March 2010 *
陈忱 等: "《2010全国生物植物学研讨会》", 18 July 2010 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112836621A (zh) * 2021-01-29 2021-05-25 华东理工大学青岛创新研究院 一种植物细胞表型检测方法及系统
CN112836621B (zh) * 2021-01-29 2022-11-08 华东理工大学青岛创新研究院 一种植物细胞表型检测方法及系统

Also Published As

Publication number Publication date
CN104844700B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN101985623B (zh) 一个控制番茄茸毛发生的关键基因Wo的克隆及应用
CN105112441A (zh) 具有增强的产量相关性状的植物和用于产生该植物的方法
CN112226455B (zh) 一种水稻籽粒粒长和粒重相关蛋白及其编码基因与应用
ES2750530T3 (es) Medios y procedimientos para producir rendimiento en plantas
EP4012028A1 (en) Nucleic acid sequence for detecting soybean plant dbn8002 and detection method therefor
CN111574605B (zh) 水稻基因OsLAT5在调节敌草快的吸收积累中的应用
CN102432679A (zh) 水稻类伸展蛋白OsPEX1及其应用
CN109609527A (zh) Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用
DE60133422T2 (de) Verfahren zur transformation von agaricus bisporus
CN107325162B (zh) Spl基因及其在增强植物耐热性能中的应用
CN103172715B (zh) 植物表皮毛调控基因及其用途
CN110938122B (zh) 雄性不育基因OsNIN5及其应用和育性恢复的方法
CN103288943B (zh) bHLH13蛋白及其编码基因和其应用
CN103172716B (zh) 植物抗热基因及其应用
CN111826364B (zh) 一种抗病虫害相关基因及其应用
CN104388448A (zh) 一种玉米磷脂酶A2基因ZmsPLA2-1及其应用
CN102174523B (zh) 调控种子大小的基因及其编码的蛋白质和应用
CN102168083B (zh) 一种培育蜡质减少的转基因植物的方法
EP3368677A1 (en) Inhibition of bolting and flowering of a beta vulgaris plant
CN104073512B (zh) 一种调控植物内源乙烯含量的方法
CN102154337A (zh) 一种棉花促丝裂原活化蛋白激酶基因GhMAPK6及其应用
CN101186919B (zh) 调控温光敏核不育的蛋白编码序列
CN108034662A (zh) 小麦条锈菌pstg_06025基因在条锈病防治中的应用和抗条锈菌小麦的培育方法
CN104844700B (zh) 新的水稻杂种劣势基因及其应用
CN102675437B (zh) 调节植物器官大小和花器官内部非对称性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200507

Address after: 200031 building 4, No. 300 Fenglin Road, Xuhui District, Shanghai

Patentee after: Center for excellence and innovation in molecular plant science, Chinese Academy of Sciences

Address before: 200031 Yueyang Road, Shanghai, No. 319, No.

Patentee before: SHANGHAI INSTITUTES FOR BIOLOGICAL SCIENCES, CHINESE ACADEMY OF SCIENCES