CN104821186B - 一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法 - Google Patents

一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法 Download PDF

Info

Publication number
CN104821186B
CN104821186B CN201510106184.4A CN201510106184A CN104821186B CN 104821186 B CN104821186 B CN 104821186B CN 201510106184 A CN201510106184 A CN 201510106184A CN 104821186 B CN104821186 B CN 104821186B
Authority
CN
China
Prior art keywords
mgo
mixed solution
preparation
solution
burnable poison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510106184.4A
Other languages
English (en)
Other versions
CN104821186A (zh
Inventor
王辉
潘小强
黄华伟
解怀英
尹昌耕
邱绍宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Power Institute of China
Original Assignee
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Power Institute of China filed Critical Nuclear Power Institute of China
Priority to CN201510106184.4A priority Critical patent/CN104821186B/zh
Publication of CN104821186A publication Critical patent/CN104821186A/zh
Application granted granted Critical
Publication of CN104821186B publication Critical patent/CN104821186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/02Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect
    • G21C7/04Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect of burnable poisons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/18Manufacture of control elements covered by group G21C7/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法。所述一种MgO掺杂UO2‑10wt%Gd2O3,由以下重量百分比的组分组成:MgO 0‑0.7wt%;Gd2O3 10wt%;余量为UO2。本发明还提供一种用于制备上述可燃毒物的方法,该方法工艺简单,成本低且制得的可燃毒物具有优良的晶粒尺寸、烧结密度及热导率。本发明通过在UO2‑10wt%Gd2O3可燃毒物中掺杂MgO,使得提高氧化钆浓度的可燃毒物仍具有优良的烧结密度、晶粒尺寸和热导率。

Description

一种MgO掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法
技术领域
本发明属于核工业燃料领域,具体地,涉及一种MgO掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法。
背景技术
国内外核动力堆中,特别是压水堆核电站堆芯中广泛采用UO2-Gd2O3可燃毒物燃料来控制反应堆初始反应性,实现展平堆芯功率分布,提高燃耗、延长换料周期,从而降低核电运行成本,提高运行的安全性和可靠性。目前核电厂用的 UO2-Gd2O3可燃毒物的制备方法虽然和商用UO2芯块的制造工艺差不多,但是 UO2-Gd2O3可燃毒物制备难度却远高于UO2芯块。在相同的烧结工艺条件下,氧化钆(Gd2O3)的加入不仅减小了UO2芯块的晶粒尺寸、降低了UO2芯块的致密度,同时还存在降低UO2热导率的问题,导致其在核反应堆运行期间释放更多的裂变气体发生辐照肿胀等为题,从而将会影响核反应堆运行的安全性和经济性。
UO2-Gd2O3可燃毒物中氧化钆的浓度范围一般为2-6wt%,主要原因有:1、因为目前核电站的燃料循环长度以及设计燃耗的限制,通过反应堆物理计算,得出Gd2O3的含量在2-6wt%之间;2、UO2-Gd2O3燃料的制备有技术难度,一般是 Gd2O3含量越高,燃料芯块制备难度越大,在商用可燃毒物芯块制造上,也要求 Gd2O3的含量不超过6wt%。
然而随着燃料循环长度的增加,UO2-Gd2O3可燃毒物中就需要更高浓度的氧化钆。但是,随着氧化钆浓度的提高将会进一步降低UO2-Gd2O3可燃毒物的烧结密度、晶粒尺寸和热导率。
发明内容
本发明所要解决的技术问题是提供一种高氧化钆浓度的UO2-Gd2O3可燃毒物,且该可燃毒物具有优良的烧结密度、晶粒尺寸和热导率。
本发明解决上述问题所采用的技术方案是:
一种MgO掺杂UO2-10wt%Gd2O3,由以下重量百分比的组分组成:
MgO 0-0.7wt%;Gd2O3 10wt%;余量为UO2
本发明人在UO2-10wt%Gd2O3可燃毒物中掺杂MgO,一方面,掺杂MgO的可燃毒物中的氧化钆浓度提高,能够加深核反应堆燃料燃耗、增加燃料循环长度,提高核反应堆运行的安全性和可靠性,另一方面,该可燃毒物中掺杂MgO,能够明显改善由于提高氧化钆浓度而带来的烧结密度、晶粒尺寸和热导率降低的现象。
而随着氧化钆浓度的提高,高于10wt%后,在制造上非常困难,同时给反应堆运行带来负面的中子经济性的影响。而本发明人发现在氧化钆浓度为10wt%时,掺杂MgO的可燃毒物的各项性能参数均较好,而且较易于制造。
本发明人通过实验发现UO2-10wt%Gd2O3可燃毒物的晶粒尺寸约为6.5μm、烧结密度约为10.42g/cm3、热导率约为0.047W/(cm.℃);而掺杂MgO后的UO2-10wt%Gd2O3可燃毒物的晶粒尺寸能达到16.5μm、烧结密度能达到10.60 g/cm3、热导率能达到0.059W/(cm.℃);可以看出:掺杂MgO的可燃毒物的晶粒尺寸约为未掺杂的2倍以上,且烧结密度及热导率均较未掺杂的有显著性差异(p <0.05)。这是由于在UO2-10wt%Gd2O3可燃毒物中掺杂的MgO属于活性助烧剂,利于烧结,降低活化能。减少晶界的钉扎作用,从而使得晶粒尺寸适当增加。掺杂的物质可以在可燃毒物芯块中形成稳定、相互连接的高热导相,从而利于热导率提高。
其中,本发明人实验发现:当MgO掺杂超过0.7wt%时,MgO游离相的析出随着MgO的掺杂量增加而愈加明显,从而影响可燃毒物的力学及化学性能,而当掺杂的MgO含量为0.3wt%时,可燃毒物烧结密度增加至10.52g/cm3,较未掺杂的可燃毒物具有显著性差异(p<0.05),因此,所述MgO含量优选 0.3-0.7wt%;而当MgO掺杂量上升至0.5-0.7wt%时,可燃毒物的烧结密度达到 10.6g/cm3左右,较未掺杂的可燃毒物具有极显著性差异(p<0.01),因此,MgO 掺杂量进一步优选0.5-0.7wt%;最佳优选MgO掺杂量为0.5wt%,此时,可燃毒物的烧结密度最佳。
本申请所述的MgO掺杂UO2-10wt%Gd2O3可采用传统成熟的粉末冶金工艺来制备,这种方法虽然看上去经济性或许会好一些,但是制备的产物内部均匀性难以控制、致密化困难、内部气孔及缺陷较多,并且在制备过程中产生大量粉尘,污染环境,损伤人员的身体健康。
现有技术中还有使用溶胶-凝胶工艺制备性能较好的可燃毒物,但是使用溶胶-凝胶工艺制备的工序复杂,对物质纯净度以及环境温度要求很严格,对原料的组成配比、温度、压力等工艺参数都具有严格的要求才能形成溶胶-凝胶,不仅如此,溶胶-凝胶法制备产品的成本很高,从实验室研究到商业生产的距离很大,经济性存在很大劣势。
因此,本发明提供一种能够有效克服上述缺点的MgO掺杂UO2-10wt%Gd2O3可燃毒物的制备方法,该方法制备工序简单,制备过程中的工艺参数限定少,对环境温度具有更好的相容性,并且成本低,容易扩大制备工艺,经济性优良,其主要包括以下步骤:
1)UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液的制备:
将U3O8、Gd2O3的进行预烘干后,
按比例称取所述预烘干后的U3O8和Gd2O3,经混合、溶解、过滤后得到的滤液即为UO2(NO3)2和Gd(NO3)3的混合溶液,
按MgO所占的比例称取适量的氢氧化镁,加水搅拌,用适量的浓硝酸溶解得到稳定的硝酸镁(Mg(NO3)2)溶液,
将制得的硝酸镁溶液溶入上述UO2(NO3)2和Gd(NO3)3的混合溶液中形成 UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液;
2)饱和(NH4)2CO3溶液的配制:
称取适量的碳酸铵,加水搅拌,配制成饱和(NH4)2CO3溶液;
3)沉淀反应:
取UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液,搅拌,加热至反应温度 45-50℃,然后边加入饱和(NH4)2CO3溶液边搅拌,调节溶液的pH值保持在 6.5-7.5,加料结束后再加入无水乙醇至混合溶液沉淀反应完全;
4)干燥煅烧:
将上述沉淀反应后得到的沉淀物进行过滤得到滤饼,滤饼洗涤后在70-75℃下烘干14-17h得到前躯体粉末,将前躯体粉末于600-650℃保温3.0-4.0h,冷却、研磨得到UO2-Gd2O3-MgO粉体;
5)真空烧结:
将上述干燥煅烧后的粉体经压制成型后,真空烧结得到MgO掺杂 UO2-10wt%Gd2O3可燃毒物。
采用本申请所述方法制备得到的MgO掺杂UO2-10wt%Gd2O3可燃毒物具有内部均匀性、纯度及晶体结构良好、烧结温度低、力学性能优良等优点。
其中,所述1)UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液的制备工序步骤如下:
将U3O8在350℃下烘干2.5h,将Gd2O3粉末在550℃下烘干2h,
按比例称取所述预烘干后的U3O8和Gd2O3,放入溶解槽中,加入适量的去离子水,搅拌过程中,加入适量的浓硝酸溶解,溶解25-30min,过滤后得到的滤液即为UO2(NO3)2和Gd(NO3)3的混合溶液,
按MgO所占的比例称取适量的氢氧化镁,加入适量去离子水,搅拌过程中,加入适量的浓硝酸溶解后得到稳定的硝酸镁溶液,
将配制的硝酸镁溶液边搅拌边加入到UO2(NO3)2和Gd(NO3)3的混合溶液中,搅拌30-40min,形成均匀的UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液。
其中,所述3)沉淀反应的工序步骤如下:
将UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液加入到沉淀槽中,搅拌,加热至反应温度45-50℃,然后将饱和(NH4)2CO3溶液以8-9ml/min的速度滴加到沉淀槽中,调节混合溶液的pH值,使其保持在6.5-7.5,边滴加边搅拌,使反应充分,加料结束后再加入适量的无水乙醇至混合溶液沉淀反应完全,失去流动性。
其中,所述4)干燥煅烧的工序步骤如下:
将上述沉淀反应后得到的沉淀物进行过滤得到滤饼,滤饼用无水乙醇洗涤 3-4次后,在70-75℃下烘干14-17h得到前躯体粉末,将前躯体粉末于600-650℃保温3.0-4.0h,冷却、研磨得到UO2-Gd2O3-MgO粉体。
其中,所述5)真空烧结的工艺条件为:烧结温度为1600℃-1700℃、保温时间为4.0-5.0h、升温速率为26-28℃/min、真空度为10-2-10-3Pa、烧结气氛为 H2
其中,所述干燥煅烧后的粉体压制成型为直径8mm、高度10mm的圆柱形粉末压块,成型压强为3.8ton/cm2
其中,所述沉淀反应步骤中,加入的无水乙醇起稳定和洗涤作用,其与混合溶液体系更加稳定,不发生反应,且无水乙醇本身比较容易挥发,分子量小,在后续的干燥工序容易去除。
综上,本发明的有益效果是:本申请通过在UO2-Gd2O3可燃毒物中掺杂 MgO,可提高氧化钆的浓度至10wt%,且还能保持该可燃毒物具有良好的烧结密度、晶粒尺寸和热导率。
附图说明
图1为掺杂不同MgO含量的UO2-10wt%Gd2O3可燃毒物的XRD衍射图谱,其中,A为不掺杂MgO的UO2-10wt%Gd2O3可燃毒物,B为掺杂0.5wt%MgO 的UO2-10wt%Gd2O3可燃毒物,C为掺杂0.7wt%MgO的UO2-10wt%Gd2O3可燃毒物,D为掺杂0.8wt%MgO的UO2-10wt%Gd2O3可燃毒物;
图2为掺杂不同MgO含量的UO2-10wt%Gd2O3可燃毒物的烧结密度曲线图。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例1
第一步,将核级纯U3O8在350℃下烘干2.5h,将纯度为99.9%的Gd2O3粉末在550℃下烘干2h。按UO2-10wt%Gd2O3可燃毒物中Gd2O3所占的质量分数,分别取89.9g UO2粉末(89.9wt%)、10g Gd2O3粉末(10wt%)放入溶解槽中,往其加入一定量的去离子水,在快速搅拌条件下,加入适量的浓硝酸溶解,溶解 25min后,滤出不溶物后,形成UO2(NO3)2和Gd(NO3)3的均匀混合溶液。
以MgO占所制备的可燃毒物的质量比例为0.1wt%计算,称取0.17g氢氧化镁放入烧杯中,往其加入一定量的去离子水,在快速搅拌条件下,加入适量的浓硝酸溶解后得到稳定的硝酸镁溶液。在快速搅拌的条件下将配制好的硝酸镁溶液缓慢滴入到UO2(NO3)2和Gd(NO3)3的混合溶液中,并不断搅拌30min,形成均匀的UO2(NO3)2、Gd(NO3)3和Mg(NO3)2混合溶液。
称取90g的分析纯固体碳酸铵放入烧杯中,往其加入去离子水并不断快速搅拌,配成饱和(NH4)2CO3溶液。
第二步:将UO2(NO3)2、Gd(NO3)3和Mg(NO3)2混合溶液加入到沉淀槽中,启动搅拌,加热到反应温度45℃,然后将饱和(NH4)2CO3溶液以8ml/min的速度滴加到沉淀槽中,调节混合溶液的pH值,使其保持在7左右,边滴边强力搅拌,使其充分反应,加料结束后再加入35ml的无水乙醇,一段时间后混合溶液沉淀反应完全,失去流动性。然后对沉淀物进行过滤得到滤饼,滤饼用无水乙醇洗涤 3次后,在70℃下烘干14h得到前躯体粉末。
第三步,将干燥后的前躯体粉末于箱式炉中600℃保温3h,空冷后取出并研磨得到UO2-Gd2O3-MgO粉体。最后将干燥煅烧的粉体经压制成型后(成型压强为3.8ton/cm2,试样尺寸为:直径约为8mm、高度约为10mm的圆柱形压块)在真空度为3.5×10-3Pa、烧结温度为:1600℃、保温时间为4.5h、升温速率为 26℃/min、烧结气氛为H2的条件下真空烧结得到致密的MgO掺杂 UO2-10wt%Gd2O3可燃毒物。
上述制得的可燃毒物的理论密度不低于96%T.D,晶粒尺寸为13.6μm,热导率为0.049W/(cm.℃)。
实施例2
采用与实施例1相同的方法制备MgO掺杂UO2-10wt%Gd2O3可燃毒物,其与实施例1的区别在于:MgO占所述可燃毒物的含量为0.3wt%,对应称取氢氧化镁的量为0.5g,UO2粉末为89.7g(89.7wt%)。
上述制得的可燃毒物的理论密度不低于96%T.D,晶粒尺寸为14.7μm,热导率为0.052W/(cm.℃)。
实施例3
采用与实施例1相同的方法制备MgO掺杂UO2-10wt%Gd2O3可燃毒物,其与实施例1的区别在于:MgO占所述可燃毒物的含量为0.5wt%,对应称取氢氧化镁的量为0.85g,UO2粉末为89.5g(89.5wt%)。
上述制得的可燃毒物的理论密度不低于96%T.D,晶粒尺寸为16.5μm,热导率为0.059W/(cm.℃)。
实施例4
采用与实施例1相同的方法制备MgO掺杂UO2-10wt%Gd2O3可燃毒物,其与实施例1的区别在于:MgO占所述可燃毒物的含量为0.7wt%,对应称取氢氧化镁的量为1.2g,UO2粉末为89.3g(89.3wt%)。
上述制得的可燃毒物的理论密度不低于96%T.D,晶粒尺寸为16.3μm,热导率为0.057W/(cm.℃)。
实施例5
采用与实施例1相同的方法制备UO2-10wt%Gd2O3可燃毒物,其与实施例1 的区别在于:所述可燃毒物中不含有MgO。
实施例6
采用与实施例1相同的方法制备MgO掺杂UO2-10wt%Gd2O3可燃毒物,其与实施例1的区别在于:MgO占所述可燃毒物的含量为0.8wt%,对应称取氢氧化镁的量为1.4g,UO2粉末为89.2g(89.2wt%)。
上述制得的可燃毒物的理论密度不低于96%T.D,晶粒尺寸为15.9μm,热导率为0.053W/(cm.℃)。
对制备得到的可燃毒物进行测试得到图1-2,分别为掺杂不同MgO含量的 UO2-10wt%Gd2O3可燃毒物的XRD衍射图谱以及烧结密度图。从图1可以看出, MgO掺杂为0.7wt%时已经有微量MgO游离相析出,而MgO掺杂超过0.7wt%时,MgO游离相的析出随着MgO的掺杂量增加而愈加明显,因此,本申请选择掺杂MgO含量为不超过0.7wt%。
参阅图2,可以看出,当掺杂的MgO含量为0.3wt%时,可燃毒物的烧结密度相对于未掺杂的可燃毒物的烧结密度有明显增加,从10.42增加至10.52g/cm3,具有显著性差异(p<0.05)。因此,掺杂的MgO含量优选0.3-0.7wt%,MgO 含量继续增加至0.5wt%时,可燃毒物的烧结密度达到最优,而后随着MgO含量的增加,可燃毒物的烧结密度呈下降趋势。因此,掺杂的MgO含量优选 0.5-0.7wt%,此时可燃毒物的烧结密度为10.6g/cm3左右,相较于未掺杂的具有极显著性差异(p<0.01)。
综上所述,本发明提供一种高氧化钆浓度的UO2-Gd2O3可燃毒物,且在该 UO2-Gd2O3可燃毒物中掺杂适量的MgO,使得高氧化钆浓度的UO2-Gd2O3可燃毒物仍能保持优良的烧结密度、晶粒尺寸和热导率。
上所述,可较好的实现本发明。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (5)

1.一种MgO掺杂UO2-10wt%Gd2O3的制备方法,其特征在于,包括以下步骤:
1)UO2(NO3)2、Gd(NO3)3和Mg(NO3 )2 的混合溶液的制备:
将U3O8、Gd2O3的进行预烘干后,
按比例称取所述预烘干后的U3O8和Gd2O3,经混合、溶解、过滤后得到的滤液即为UO2(NO3)2和Gd(NO3)3的混合溶液,
按MgO所占的比例称取适量的氢氧化镁,加水搅拌,用适量的浓硝酸溶解得到稳定的硝酸镁溶液,
将制得的硝酸镁溶液溶入上述UO2(NO3)2和Gd(NO3)3的混合溶液中形成UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液;
2)饱和(NH4)2CO3溶液的配制:
称取适量的碳酸铵,加水搅拌,配制成饱和(NH4)2CO3溶液;
3)沉淀反应:
取UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液,搅拌,加热至反应温度45-50℃,然后边加入饱和(NH4)2CO3溶液边搅拌,调节溶液的pH值保持在6.5-7.5,加料结束后再加入无水乙醇至混合溶液沉淀反应完全;
4)干燥煅烧:
将上述沉淀反应后得到的沉淀物进行过滤得到滤饼,滤饼洗涤后在70-75℃下烘干14-17h得到前躯体粉末,将前躯体粉末于600-650℃保温3.0-4.0h,冷却、研磨得到UO2-Gd2O3-MgO粉体;
5)真空烧结:
将上述干燥煅烧后的粉体经压制成型后,真空烧结得到MgO掺杂UO2-10wt%Gd2O3可燃毒物;
所制备的MgO掺杂UO2-10wt%Gd2O3,由以下重量百分比的组分组成:
MgO 0.1-0.7wt%;Gd2O3 10wt%;余量为UO2
2.根据权利要求1所述的MgO掺杂UO2-10wt%Gd2O3的制备方法,其特征在于,所述1)UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液的制备工序步骤如下:
将U3O8在350℃下烘干2.5h,将Gd2O3粉末在550℃下烘干2h,
按比例称取所述预烘干后的U3O8和Gd2O3,放入溶解槽中,加入适量的去离子水,搅拌过程中,加入适量的浓硝酸溶解,溶解25-30min,过滤后得到的滤液即为UO2(NO3)2和Gd(NO3)3的混合溶液,
按MgO所占的比例称取适量的氢氧化镁,加入适量去离子水,搅拌过程中,加入适量的浓硝酸溶解后得到稳定的硝酸镁溶液,
将配制的硝酸镁溶液边搅拌边加入到UO2(NO3)2和Gd(NO3)3的混合溶液中,搅拌30-40min,形成均匀的UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液。
3.根据权利要求1所述的MgO掺杂UO2-10wt%Gd2O3的制备方法,其特征在于,所述3)沉淀反应的工序步骤如下:
将UO2(NO3)2、Gd(NO3)3和Mg(NO3)2的混合溶液加入到沉淀槽中,搅拌,加热至反应温度45-50℃,然后将饱和(NH4)2CO3溶液以8-9ml/min的速度滴加到沉淀槽中,调节混合溶液的pH值,使其保持在6.5-7.5,边滴加边搅拌,使反应充分,加料结束后再加入适量的无水乙醇至混合溶液沉淀反应完全。
4.根据权利要求1所述的MgO掺杂UO2-10wt%Gd2O3的制备方法,其特征在于,所述4)干燥煅烧的工序步骤如下:
将上述沉淀反应后得到的沉淀物进行过滤得到滤饼,滤饼用无水乙醇洗涤3-4次后,在70-75℃下烘干14-17h得到前躯体粉末,将前躯体粉末于600-650℃保温3.0-4.0h,冷却、研磨得到UO2-Gd2O3-MgO粉体。
5.根据权利要求1所述的MgO掺杂UO2-10wt%Gd2O3的制备方法,其特征在于,所述5)真空烧结的工艺条件为:烧结温度为1600℃-1700℃、保温时间为4.0-5.0h、升温速率为26-28℃/min、真空度为10-2-10-3Pa、烧结气氛为H2
CN201510106184.4A 2015-03-11 2015-03-11 一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法 Active CN104821186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510106184.4A CN104821186B (zh) 2015-03-11 2015-03-11 一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510106184.4A CN104821186B (zh) 2015-03-11 2015-03-11 一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法

Publications (2)

Publication Number Publication Date
CN104821186A CN104821186A (zh) 2015-08-05
CN104821186B true CN104821186B (zh) 2017-10-24

Family

ID=53731453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510106184.4A Active CN104821186B (zh) 2015-03-11 2015-03-11 一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法

Country Status (1)

Country Link
CN (1) CN104821186B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882552A (en) * 1997-06-27 1999-03-16 Korea Atomic Energy Research Institute Method for recycling fuel scrap into manufacture of nuclear fuel pellets
CN102672178A (zh) * 2012-05-18 2012-09-19 中国核动力研究设计院 碳化硼-铝硅合金可燃毒物芯块的制备方法
CN103058666A (zh) * 2012-12-29 2013-04-24 中国核动力研究设计院 一种制备ZrO2-Gd2O3可燃毒物材料的方法
CN104751903A (zh) * 2015-03-11 2015-07-01 中国核动力研究设计院 一种TiO2掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法
CN104795112A (zh) * 2015-03-11 2015-07-22 中国核动力研究设计院 一种CaO2掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100331483B1 (ko) * 1999-06-02 2002-04-03 장인순 중성자 흡수물질을 함유한 산화물 핵연료 소결체의 제조방법
CN102129889B (zh) * 2010-12-24 2013-10-09 中国核动力研究设计院 一种含B和Gd的整体型复合可燃毒物燃料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882552A (en) * 1997-06-27 1999-03-16 Korea Atomic Energy Research Institute Method for recycling fuel scrap into manufacture of nuclear fuel pellets
CN102672178A (zh) * 2012-05-18 2012-09-19 中国核动力研究设计院 碳化硼-铝硅合金可燃毒物芯块的制备方法
CN103058666A (zh) * 2012-12-29 2013-04-24 中国核动力研究设计院 一种制备ZrO2-Gd2O3可燃毒物材料的方法
CN104751903A (zh) * 2015-03-11 2015-07-01 中国核动力研究设计院 一种TiO2掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法
CN104795112A (zh) * 2015-03-11 2015-07-22 中国核动力研究设计院 一种CaO2掺杂UO2-10wt%Gd2O3可燃毒物及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Effects of additives on uranium dioxide fuel behavior;Ali R.Massih;《available at www.stralsakerhetsmyndigheten.se》;20140131;摘要,正文第3页表1 *
Gd2O3-UO2芯块烧结密度影响因素研究;朱树明 等;《中国核科技报告》;19960630;第1-8页,尤其是第1.2节 *
U02-Gd203 solid solution formation from wet and dry processes;H.G.Riella et al.;《Journal of Nuclear Materials》;19911231(第178期);第204-211页 *
复合助烧剂对Gd2O3-UO2芯块微观结构的影响;周荣生,邹从沛;《核动力工程》;20031231;第24卷(第6期);第545-550页 *

Also Published As

Publication number Publication date
CN104821186A (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN109326781A (zh) 一种高电压钴酸锂正极材料的制备方法
CN101113010A (zh) 微波辅助制备氧化铈纳米粒子的方法
Riella et al. UO2-Gd2O3 solid solution formation from wet and dry processes
CN101169983A (zh) 溶胶凝胶法制备Gd2O3-UO2微球的工艺
CN107857300B (zh) 一种β型氧化铋的制备方法
CN111477948A (zh) 一种石榴石型固体电解质的制备方法及产品
CN105720242A (zh) 锂离子电池正极材料nca的改性方法
CN106848277A (zh) 一种镁铁氧/碳复合材料及其制备方法
CN107591541A (zh) 一种镱掺杂铈酸锶‑碱金属盐共熔体复合物及其制备方法
CN108807967A (zh) 一种镍钴铝三元正极材料的制备方法
CN101891236B (zh) 合成单分散性钐掺杂稀土氧化铈纳米晶的方法
CN102617147A (zh) 钙钛矿型结构铝酸盐基混合导电陶瓷及其制备方法
CN103936082B (zh) 一种钴酸钐纳米粉体的合成方法
CN101767997B (zh) 一种NiTiO3纳米粉体的溶胶-凝胶制备方法
CN104751903B (zh) 一种TiO2掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法
CN107473737B (zh) 用于固体氧化物燃料电池的复合氧化锆粉及其制备方法
CN104795112B (zh) 一种CaO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法
CN104821187B (zh) 一种Al2O3掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法
CN104821186B (zh) 一种MgO掺杂UO2‑10wt%Gd2O3可燃毒物及其制备方法
CN105562003A (zh) 一种合成气甲烷化催化剂及制备方法和应用
CN102637887A (zh) 氧磷灰石结构锗酸镧电解质材料粉体的低温制备方法
CN105126852A (zh) 一种动态铁酸盐储氧材料及其应用
CN110218092B (zh) 一种添加微量元素的UO2-ZrO2陶瓷材料及其制备方法
CN103449811B (zh) 一种核电用ZrO2/Gd2O3复合陶瓷材料的共沉淀制备方法
CN102642844A (zh) 氯化锂熔盐法制备氧磷灰石结构硅酸镧电解质材料粉体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant