CN104815566A - 一种抗菌除尘膜的制备方法 - Google Patents

一种抗菌除尘膜的制备方法 Download PDF

Info

Publication number
CN104815566A
CN104815566A CN201510210127.0A CN201510210127A CN104815566A CN 104815566 A CN104815566 A CN 104815566A CN 201510210127 A CN201510210127 A CN 201510210127A CN 104815566 A CN104815566 A CN 104815566A
Authority
CN
China
Prior art keywords
membrane
perforated membrane
growth
antibacterial
anodised aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510210127.0A
Other languages
English (en)
Other versions
CN104815566B (zh
Inventor
仲兆祥
吴锡波
姚忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201510210127.0A priority Critical patent/CN104815566B/zh
Priority to PCT/CN2015/084475 priority patent/WO2016173126A1/zh
Priority to US15/028,854 priority patent/US9815029B2/en
Publication of CN104815566A publication Critical patent/CN104815566A/zh
Application granted granted Critical
Publication of CN104815566B publication Critical patent/CN104815566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0076Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/14Filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/28Pore treatments
    • B01D2323/286Closing of pores, e.g. for membrane sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/028Microfluidic pore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma & Fusion (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Catalysts (AREA)
  • Filtering Materials (AREA)

Abstract

本发明公开了一种抗菌除尘膜的制备方法,将紧贴在玻璃衬底上的阳极氧化铝多孔膜浸渍在石蜡溶液中加热震荡一段时间,然后取出冷却至室温,用热铁片以及等离子刻蚀法去除膜表面附着的石蜡固体。再使用原子层沉积仪在浸渍后的膜表面沉积一层纳米氧化锌薄膜层作为晶种。将原子沉积后的膜垂直浸置在装有晶体生长溶液的水热釜中,加热一段时间后,将膜取出冷却至室温并从衬底上取下。最后将此膜放置在烘箱中加热并用氮气吹洗,完全去除膜孔道内的石蜡,得到膜表面生长了氧化锌阵列的多孔膜。本发明可以生产出一种仅在膜孔口生长纳米氧化锌阵列、而孔道内部通畅的多孔膜,从而提高除尘效率与透气速率,同时有效抑制细菌在膜表面的滋生。

Description

一种抗菌除尘膜的制备方法
技术领域
本发明属于膜的制备与改性领域,特别涉及一种仅在多孔膜表面生长晶体并保持孔道内干净的膜改性方法。
背景技术
空气污染是人类现在面临的环境问题之一,已经对人们生活和工农业生产造成了很大的危害。对空气污染的治理已经提到了一个新的高度。无论工业还是民用领域,都急需开发新的空气净化方法,减少有害气体的排放。
目前空气净化主要通过臭氧和光催化的化学分解、活性炭吸附、过滤等方法进行。臭氧发生器产生大量高浓度臭氧,在杀灭一些病毒细菌的同时也可能杀灭人体白细胞,有导致癌变的可能;光触媒必须依靠紫外光的照射才能产生作用,对人体、塑料有伤害;活性炭吸附一般一个月后就达到饱和状态需更换,达到饱和后不但不能杀菌而且容易成为细菌的繁衍体。
无机膜分离净化技术是近年来发展迅速的新技术,可过滤液体,气体中的细菌,悬浮微粒等污染物。阳极氧化铝(Anodic Aluminum Oxide, AAO)膜是一种具有高度规则孔道的纳米过滤无机膜,可以实现几个纳米到几百纳米孔径的过滤,是一种较为理想的气体过滤材料。但是,过滤过程中截留的细菌等污染物会附着在膜表面甚至膜孔内,浓度远大于水体,气体中的浓度,更容易滋生繁殖,这些膜表面和孔道内的细菌的繁殖,将堵塞膜孔通道,使膜过滤的阻力增加,过滤通量迅速下降,是膜污染和堵塞的重要原因之一。
纳米氧化锌具有良好的抗菌,抑菌作用,其杀菌机理是利用纳米氧化锌产生的活性氧种造成微生物损伤而实现抗菌,与其光催化机理相似。如果在无菌膜表面附着一层氧化锌膜,将能有效减少截留细菌在膜表面的附着和繁殖,有利于提高无机膜的使用寿命,减少膜的污染和堵塞。
发明内容
本发明的目的在于提供一种抗菌除尘膜的制备方法,将阳极氧化铝膜与纳米氧化锌相结合,比单一的阳极氧化铝膜具有更好的除菌杀菌能力,并且膜本身的硬度提高,便于实际应用。
本发明通过以下技术方案实现。
一种抗菌除尘膜的制备方法,包括如下步骤:
(1)预处理:将阳极氧化铝多孔膜用乙醇溶液冲洗干净,将石蜡融化备用;
(2)堵孔处理:把预处理过后的阳极氧化铝多孔膜的一面紧密贴合在衬底上,使用卡槽将阳极氧化铝多孔膜卡在玻片上,并一同放置在石蜡溶液中浸渍并震荡,放置一段时间后取出,将阳极氧化铝多孔膜接触石蜡的一面向上冷却至室温,利用刮去多孔膜表面的大部分石蜡,然后利用等离子刻蚀法去除阳极氧化铝多孔膜表面剩余的石蜡固体;
(3)种晶:阳极氧化铝薄膜经丙酮、乙醇、去离子水超声清洗后放入原子层沉积仪的反应腔,将二乙基锌、去离子水作为前驱体源,分别提供ZnO生长所需的Zn源和O源,高纯度氮气作为携带气体和吹扫气体,真空度达到15~20Pa时开始沉积,晶种生长数个周期;
(4)晶体生长:按比例配制一定浓度的六次甲基四胺与硝酸锌的混合溶液作为生长溶液,倒入水热釜中,并将种晶后的阳极氧化铝多孔膜片连同衬底垂直放入水热釜中,把水热釜置于烘箱中处理一段时间后,自然降温,再将膜片取出用去离子水冲洗、烘干得到表面生长了纳米氧化锌阵列的多孔膜;
(5)清理孔道:将步骤(4)得到的多孔膜从衬底上取下,未接触衬底的一面水平放入烘箱加热一段时间,并用氮气吹洗膜片,冷却后得到表面生长纳米氧化锌阵列、孔道均匀通畅的多孔膜。
步骤(1)中所述阳极氧化铝多孔膜的孔径为0.1-10μm;所述乙醇溶液质量浓度为80~95%。
步骤(2)中所述的浸渍温度在60~90℃,浸渍时间在3~5个小时,所述热铁片的温度在60~70℃,所述的等离子体刻蚀采用CH4、H2、Ar的混合气,其摩尔比为1:7:5,所用气体流量在26~78sccm,偏压功率为80~90W,射频功率为250~300W,刻蚀速率为10~25nm/min,刻蚀时间为1~2个小时。
步骤(3)中所述的二乙基锌脉冲时间0.1~0.2s,清洗时间3~4s;去离子水脉冲时间0.1~0.2s,清洗时间4~5s;二乙基锌的携带气体流量为100~150sccm,去离子水的携带气体流量为150~200sccm,衬底温度200~280℃,生长次数为100~200个生长周期。
步骤(4)中所述混合溶液的六次甲基四胺的浓度为0.003~0.1mol/L,硝酸锌的浓度为0.003~0.1 mol/L;溶液中两种物质摩尔比例为1:1;混合溶液加入量在100~500ml;所述烘箱的温度为80~100℃,处理时间为2~4小时。
步骤(5)中所述烘箱的温度在60~90℃,氮气流速0.4~0.5m/s,压力0.5~0.6MPa。
本发明的有益效果
1.本发明制备的过滤膜气体通量较大,并且具有较好的机械强度,便于实际应用;
2.本发明用种晶加溶液生长的方法可以定向生长氧化锌薄膜,比之于传统的方法低能耗,高产量,仪器设备简单,易于操作,能实现大面积生产;
3.此方法能使得纳米氧化锌阵列紧密的结合在多孔膜的表面,不易脱落,具有良好的使用寿命;
 4.本发明可以在多孔膜的表面均匀的生长厚度相同的纳米氧化锌,厚度易于控制;
    5.通过气体抗菌实验,该膜的抗菌性能达到99.99%,而且该膜是表层过滤,不影响其透气量,相比于其他气体过滤材料,该膜具有稳定,易清洗,使用时间长的优点。
附图说明
图1为本发明制备抗菌除尘膜的工艺流程图。
图2、图3、图4为不同制备条件下的抗菌除尘膜经扫描电镜S-4800测得电镜扫描图。
具体实施方式
下面结合实施例对本发明做更进一步地解释,下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。
实施例1
(1)预处理:将0.1μm阳极氧化铝多孔膜用质量浓度为80%的乙醇溶液冲洗干净,将石蜡融化备用;
(2)堵孔处理:把预处理过后的阳极氧化铝多孔膜的一面紧密贴合在玻片衬底上,使用卡槽将阳极氧化铝多孔膜卡在玻片上,并一同放置在石蜡溶液中浸渍并震荡,在 70℃条件下浸渍3h后取出,将阳极氧化铝多孔膜接触石蜡的一面向上冷却至室温,然后使用60℃的热铁片除去多孔膜表面大部分石蜡固体,再采用CH4:H2:Ar的摩尔比为1:7:5的混合气体作为刻蚀气体,利用等离子刻蚀法去除多孔膜表面剩余的石蜡固体,所用气体流量在26sccm,偏压功率为80W,射频功率为250W,在这种条件下刻蚀速率为10nm/min,刻蚀时间选择120min;
    (3)种晶:阳极氧化铝薄膜经丙酮、乙醇、去离子水超声清洗后放入原子层沉积仪的反应腔,将二乙基锌、去离子水作为前驱体源分别提供ZnO生长所需的Zn源和O源,高纯度氮气作为携带气体和吹扫气体,二乙基锌脉冲时间0.1s,清洗时间3s;去离子水脉冲时间0.1s,清洗时间4s。二乙基锌的携带气体流量为100sccm,去离子水的携带气体流量为150sccm,衬底温度200℃,真空度为20Pa时开始沉积,晶种生长100个周期;
(4)晶体生长:配制六次甲基四胺的浓度为0.003mol/L和硝酸锌的浓度为0.003 mol/L的混合溶液作为生长溶液,溶液中两种物质摩尔比例为1:1;混合溶液加入量在100ml,倒入水热釜中,并将种晶后的阳极氧化铝多孔膜片连同衬底垂直放入水热釜中,把水热釜置于80℃烘箱中处理4h后,自然降温,再将膜片取出用去离子水冲洗、烘干;
(5)清理孔道:将步骤(4)得到的多孔膜从衬底上取下,未接触衬底的一面水平放入60℃烘箱加热,并用氮气吹洗膜片,氮气流速0.4m/s,压力0.5MPa,冷却后得到表面生长纳米氧化锌阵列孔道均匀通畅的多孔膜。
本实施例所制得的气体净化膜采用扫描电镜S-4800测得,如图2所示。阳极氧化铝膜表面有锥形颗粒状氧化锌晶体,该气体净化膜厚度为0.2mm,孔径范围0.2~0.3um。通过抗菌实验[J. Membr. Sci. 2011, 369, 499]测得,其抗菌能力在96.49%,对阳性菌和无芽孢菌效果最为明显。
实施例2
(1)预处理:将1μm阳极氧化铝多孔膜用质量浓度为90%的乙醇溶液冲洗干净,将石蜡融化备用;
(2)堵孔处理:把预处理过后的阳极氧化铝多孔膜的一面紧密贴合在玻片衬底上,使用卡槽将阳极氧化铝多孔膜卡在玻片上,并一同放置在石蜡溶液中浸渍并震荡,在 60℃条件下浸渍5h后取出,将阳极氧化铝多孔膜接触石蜡的一面向上冷却至室温,然后使用65℃的热铁片除去多孔膜表面大部分石蜡固体,再采用CH4:H2:Ar的摩尔比为1:7:5的混合气体作为刻蚀气体,利用等离子刻蚀法去除多孔膜表面剩余的石蜡固体,所用气体流量在39sccm,偏压功率为90W,射频功率为300W,在此种条件下刻蚀速率为18nm/min,刻蚀时间选择90min;
    (3)种晶:阳极氧化铝薄膜经丙酮、乙醇、去离子水超声清洗后放入原子层沉积仪的反应腔,将二乙基锌、去离子水作为前驱体源分别提供ZnO生长所需的Zn源和O源,高纯度氮气作为携带气体和吹扫气体,二乙基锌脉冲时间0.2s,清洗时间4s;去离子水脉冲时间0.2s,清洗时间5s。二乙基锌的携带气体流量为120sccm,去离子水的携带气体流量为170sccm,衬底温度240℃,真空度为15Pa时开始沉积,晶种生长150个周期;
    (4)晶体生长:配制六次甲基四胺的浓度为0.025mol/L和硝酸锌的浓度为0.025mol/L的混合溶液作为生长溶液,溶液中两种物质摩尔比例为1:1;混合溶液加入量在200ml,倒入水热釜中,并将种晶后的阳极氧化铝多孔膜片连同衬底垂直放入水热釜中,把水热釜置于90℃烘箱中处理3h后,自然降温,再将膜片取出用去离子水冲洗、烘干;
(5)清理孔道:将步骤(4)得到的多孔膜从衬底上取下,未接触衬底的一面水平放入70℃烘箱加热,并用氮气吹洗膜片,氮气流速0.5m/s,压力0.6MPa,冷却后得到表面生长纳米氧化锌阵列孔道均匀通畅的多孔膜。
本实施例所制得的气体净化膜采用扫描电镜S-4800测得,如图3所示。阳极氧化铝膜表面有线状氧化锌晶体,该气体净化膜厚度为0.4mm,孔径范围为0.3~0.4um。通过抗菌实验[J. Membr. Sci. 2011, 369, 499]测得,其抗菌能力在95.8%,对阳性菌和无芽孢菌效果最为明显,阴性菌种和芽孢菌种也能很好的抑制。
实施例3
(1)预处理:将10μm阳极氧化铝多孔膜用质量浓度为95%的乙醇溶液冲洗干净,将石蜡融化备用;
(2)堵孔处理:把预处理过后的阳极氧化铝多孔膜的一面紧密贴合在玻片衬底上,使用卡槽将阳极氧化铝多孔膜卡在玻片上,并一同放置在石蜡溶液中浸渍并震荡,在 90℃条件下浸渍5h后取出,将阳极氧化铝多孔膜接触石蜡的一面向上冷却至室温,先用70℃热铁片去除多孔膜表面的大部分石蜡固体,然后用等离子体刻蚀法去除表面剩余的石蜡,所用气体流量为78sccm,偏压功率为90W,射频功率为300W,在此条件下刻蚀速率为25nm/min,刻蚀时间选择60min;
    (3)种晶:阳极氧化铝薄膜经丙酮、乙醇、去离子水超声清洗后放入原子沉积仪的反应腔,将二乙基锌、去离子水作为前驱体源分别提供ZnO生长所需的Zn源和O源,高纯度氮气作为携带气体和吹扫气体,二乙基锌脉冲时间0.2s,清洗时间4s;去离子水脉冲时间0.2s,清洗时间5s。二乙基锌的携带气体流量为150sccm,去离子水的携带气体流量为200sccm,衬底温度280℃,真空度为15Pa时开始沉积,晶种生长200个周期;
(4)晶体生长:配制六次甲基四胺的浓度为0.1mol/L和硝酸锌的浓度为0.1 mol/L的混合溶液作为生长溶液,溶液中两种物质摩尔比例为1:1;混合溶液加入量在500ml,倒入水热釜中,并将种晶后的阳极氧化铝多孔膜片连同衬底垂直放入水热釜中,把水热釜置于100℃烘箱中处理4h后,自然降温,再将膜片取出用去离子水冲洗、烘干;
(5)清理孔道:将步骤(4)得到的多孔膜从衬底上取下,未接触衬底的一面水平放入90℃烘箱加热,并用氮气吹洗膜片,氮气流速0.5m/s,压力0.6MPa,冷却后得到表面生长纳米氧化锌阵列孔道均匀通畅的多孔膜。
本实施例所制得的气体净化膜采用扫描电镜S-4800测得,如图4所示。阳极氧化铝膜表面有均匀的棒状氧化锌晶体,该气体净化膜厚度为1mm,孔径范围为0.1~0.25um。通过抗菌实验[J. Membr. Sci. 2011, 369, 499]测得,其抗菌能力在97.2%,能抑制各种菌种的生长和透过。

Claims (7)

1.一种抗菌除尘膜的制备方法,其特征在于,包括如下步骤:
(1)预处理:将阳极氧化铝多孔膜用乙醇溶液冲洗干净,将石蜡融化备用;
(2)堵孔处理:把预处理过后的阳极氧化铝多孔膜的一面紧密贴合在衬底上,使用卡槽将阳极氧化铝多孔膜卡在玻片上,并一同放置在石蜡溶液中浸渍并震荡,放置一段时间后取出,将阳极氧化铝多孔膜接触石蜡的一面向上冷却至室温,利用刮去多孔膜表面的大部分石蜡,然后利用等离子刻蚀法去除阳极氧化铝多孔膜表面剩余的石蜡固体;
(3)种晶:阳极氧化铝薄膜经丙酮、乙醇、去离子水超声清洗后放入原子层沉积仪的反应腔,将二乙基锌、去离子水作为前驱体源,分别提供ZnO生长所需的Zn源和O源,高纯度氮气作为携带气体和吹扫气体,真空度达到15~20Pa时开始沉积,晶种生长数个周期;
(4)晶体生长:按比例配制一定浓度的六次甲基四胺与硝酸锌的混合溶液作为生长溶液,倒入水热釜中,并将种晶后的阳极氧化铝多孔膜片连同衬底垂直放入水热釜中,把水热釜置于烘箱中处理一段时间后,自然降温,再将膜片取出用去离子水冲洗、烘干得到表面生长了纳米氧化锌阵列的多孔膜;
(5)清理孔道:将步骤(4)得到的多孔膜从衬底上取下,未接触衬底的一面水平放入烘箱加热一段时间,并用氮气吹洗膜片,冷却后得到表面生长纳米氧化锌阵列、孔道均匀通畅的多孔膜。
2.根据权利要求1所述的抗菌除尘膜的制备方法,其特征在于,步骤(1)中所述阳极氧化铝多孔膜的孔径为0.1-10μm;所述乙醇溶液质量浓度为80~95%。
3.根据权利要求1所述的抗菌除尘膜的制备方法,其特征在于,步骤(2)中所述的浸渍温度在60~90℃,浸渍时间在3~5个小时,所述热铁片的温度在60~70℃,所述的等离子体刻蚀采用CH4、H2、Ar的混合气,其摩尔比为1:7:5,所用气体流量在26~78sccm,偏压功率为80~90W,射频功率为250~300W,刻蚀速率为10~25nm/min,刻蚀时间为1~2个小时。
4.根据权利要求1所述的抗菌除尘膜的制备方法,其特征在于,步骤(3)中所述的二乙基锌脉冲时间0.1~0.2s,清洗时间3~4s;去离子水脉冲时间0.1~0.2s,清洗时间4~5s;二乙基锌的携带气体流量为100~150sccm,去离子水的携带气体流量为150~200sccm,衬底温度200~280℃,生长次数为100~200个生长周期。
5.根据权利要求1所述的抗菌除尘膜的制备方法,其特征在于,步骤(4)中所述混合溶液的六次甲基四胺的浓度为0.003~0.1mol/L,硝酸锌的浓度为0.003~0.1 mol/L;溶液中两种物质摩尔比例为1:1;混合溶液加入量在100~500ml。
6.根据权利要求1所述的抗菌除尘膜的制备方法,其特征在于,步骤(4)中所述烘箱的温度为80~100℃,处理时间为2~4小时。
7.根据权利要求1所述的抗菌除尘膜的制备方法,其特征在于,步骤(5)中所述烘箱的温度在60~90℃,氮气流速0.4~0.5m/s,压力0.5~0.6MPa。
CN201510210127.0A 2015-04-28 2015-04-28 一种抗菌除尘膜的制备方法 Active CN104815566B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510210127.0A CN104815566B (zh) 2015-04-28 2015-04-28 一种抗菌除尘膜的制备方法
PCT/CN2015/084475 WO2016173126A1 (zh) 2015-04-28 2015-07-20 一种抗菌除尘膜的制备方法
US15/028,854 US9815029B2 (en) 2015-04-28 2015-07-20 Method for preparing antibacterial and dust-removal membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510210127.0A CN104815566B (zh) 2015-04-28 2015-04-28 一种抗菌除尘膜的制备方法

Publications (2)

Publication Number Publication Date
CN104815566A true CN104815566A (zh) 2015-08-05
CN104815566B CN104815566B (zh) 2017-03-08

Family

ID=53726189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510210127.0A Active CN104815566B (zh) 2015-04-28 2015-04-28 一种抗菌除尘膜的制备方法

Country Status (3)

Country Link
US (1) US9815029B2 (zh)
CN (1) CN104815566B (zh)
WO (1) WO2016173126A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220451A (zh) * 2015-10-16 2016-01-06 上海纳米技术及应用国家工程研究中心有限公司 具有抗菌及促矿化功能涂层的聚对苯二甲酸乙二醇酯编织材料的制备方法
CN108889104A (zh) * 2018-07-24 2018-11-27 南京工业大学 一种用于堆肥尾气脱臭的方法
CN115970511A (zh) * 2023-02-22 2023-04-18 泰州南潇新材料科技有限公司 一种高通量中空纤维tfc膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213402A (ja) * 1983-05-16 1984-12-03 Pilot Pen Co Ltd:The フイルタ−
JPS6171804A (ja) * 1984-09-17 1986-04-12 Toyo Soda Mfg Co Ltd 多孔性酸化アルミニウム膜
CN102251232A (zh) * 2011-07-18 2011-11-23 同济大学 一种在有序多孔氧化铝模板中制备银纳米线阵列的方法
CN103422155A (zh) * 2013-09-03 2013-12-04 南京工业大学 一种多孔模板中制备致密单晶ZnO纳米线的方法
CN103537197A (zh) * 2013-11-08 2014-01-29 南京工业大学 一种具有抗菌功能的气体净化膜的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741498B4 (de) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
CA2299472A1 (en) 1998-06-03 1999-12-09 Creavis Gesellschaft Fur Technologie Und Innovation Mbh Hydrophobic permeable composite, method for producing said composite and use of the same
FR2786710B1 (fr) * 1998-12-04 2001-11-16 Ceramiques Tech Soc D Membrane comprenant un support poreux et une couche d'un tamis modeculaire et son procede de preparation
CN101265123B (zh) * 2008-04-18 2010-12-01 南京工业大学 一种小孔径陶瓷膜的制备方法
CN101342467B (zh) * 2008-08-25 2011-11-16 陕西师范大学 除水用分子筛膜的制备方法
KR20160091315A (ko) * 2013-11-28 2016-08-02 큐피가부시키가이샤 다제내성 그램 양성균 항균제 및 외용제
MA39720A (fr) * 2014-03-07 2017-01-11 Univ Tufts Conservation de produits périssables au moyen de biopolymères

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213402A (ja) * 1983-05-16 1984-12-03 Pilot Pen Co Ltd:The フイルタ−
JPS6171804A (ja) * 1984-09-17 1986-04-12 Toyo Soda Mfg Co Ltd 多孔性酸化アルミニウム膜
CN102251232A (zh) * 2011-07-18 2011-11-23 同济大学 一种在有序多孔氧化铝模板中制备银纳米线阵列的方法
CN103422155A (zh) * 2013-09-03 2013-12-04 南京工业大学 一种多孔模板中制备致密单晶ZnO纳米线的方法
CN103537197A (zh) * 2013-11-08 2014-01-29 南京工业大学 一种具有抗菌功能的气体净化膜的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220451A (zh) * 2015-10-16 2016-01-06 上海纳米技术及应用国家工程研究中心有限公司 具有抗菌及促矿化功能涂层的聚对苯二甲酸乙二醇酯编织材料的制备方法
CN105220451B (zh) * 2015-10-16 2017-08-15 上海纳米技术及应用国家工程研究中心有限公司 具有抗菌及促矿化功能涂层的聚对苯二甲酸乙二醇酯编织材料的制备方法
CN108889104A (zh) * 2018-07-24 2018-11-27 南京工业大学 一种用于堆肥尾气脱臭的方法
CN115970511A (zh) * 2023-02-22 2023-04-18 泰州南潇新材料科技有限公司 一种高通量中空纤维tfc膜
CN115970511B (zh) * 2023-02-22 2023-09-19 泰州南潇新材料科技有限公司 一种高通量中空纤维tfc膜

Also Published As

Publication number Publication date
CN104815566B (zh) 2017-03-08
US9815029B2 (en) 2017-11-14
US20170259213A1 (en) 2017-09-14
WO2016173126A1 (zh) 2016-11-03

Similar Documents

Publication Publication Date Title
CN106563176B (zh) 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法
CN104815566B (zh) 一种抗菌除尘膜的制备方法
CN108905646B (zh) 石墨烯pvdf复合导电超滤膜及制备和污染物去除方法
CN100453167C (zh) 以植物皮、膜为模板制备介孔二氧化钛光催化剂的方法
CN107126848A (zh) 一种超薄g‑C3N4/MOF杂化膜及其制备方法
CN106390766B (zh) 一种具有自清洁功能的仿鼻腔纤毛结构过滤材料
CN107774285A (zh) 一种高活性非整比BiOBr光催化材料的制备方法及其应用
CN103537197B (zh) 一种具有抗菌功能的气体净化膜的制备方法
JP2006110470A (ja) 水質浄化剤
CN113149115B (zh) 一种光热海水淡化用的多级异质结构膜及制备方法
CN109675636B (zh) 负载于钴片的ZnO纳米针与ZIF-67复合的光催化材料及其制备与应用
CN115193469B (zh) 光催化陶瓷膜的制备方法、应用及水处理方法
CN109967078B (zh) 一种形貌可控的碳纳米管基气体催化膜的制备方法
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN111215044A (zh) 一种基于柔性衬底的Ga2O3纳米柱光催化材料及制备方法
CN113828769A (zh) 一种Au-CeO2光催化-光热复合材料及其制备方法和应用
CN114643057B (zh) 一种泡沫镍担载的镍铁双金属羟基氧化物复合催化剂及其制备方法和应用
CN109126802B (zh) 一种二维多孔Co3O4-ZnO复合纳米片的制备方法
CN102191540A (zh) 在非极性蓝宝石衬底上生长水平排列氧化锌纳米线的方法
CN111910344B (zh) 一种载银活性炭抗菌纤维膜的制备方法
CN113546523B (zh) 复合Ag@BiOBr光催化材料的PVDF超滤膜及其制备方法和应用
CN113355649A (zh) 一种基于纳米球模板无光刻制备周期性垂直定向多壁碳纳米管阵列的方法
CN114106609A (zh) 一种具有抗菌协同防细菌黏附功能的智能表面结构及应用
CN100582320C (zh) 制备不同微观形貌氧化锌薄膜的方法
CN104028258B (zh) 一种具有核壳纳米结构的高效光催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant