CN104797911B - 便携式分光计 - Google Patents

便携式分光计 Download PDF

Info

Publication number
CN104797911B
CN104797911B CN201380059342.4A CN201380059342A CN104797911B CN 104797911 B CN104797911 B CN 104797911B CN 201380059342 A CN201380059342 A CN 201380059342A CN 104797911 B CN104797911 B CN 104797911B
Authority
CN
China
Prior art keywords
light
lvf
tlp
portable spectrometer
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380059342.4A
Other languages
English (en)
Other versions
CN104797911A (zh
Inventor
柯蒂斯·R.·鲁斯卡
查理斯·A.·赫尔斯
布雷特·J.·布莱亚斯
冈坦恩 马克·K.·冯
克里斯多夫·G.·佩德森
纳达·A.·奥布赖恩
杰里·辛巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Only Yahweh Communication Technology Co Ltd
Original Assignee
Viavi Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viavi Solutions Inc filed Critical Viavi Solutions Inc
Priority to CN201710159833.6A priority Critical patent/CN107345835B/zh
Publication of CN104797911A publication Critical patent/CN104797911A/zh
Application granted granted Critical
Publication of CN104797911B publication Critical patent/CN104797911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • G01J2003/1234Continuously variable IF [CVIF]; Wedge type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种便携式分光计设备包括照射光源以及锥形光管(TLP);该照射光源用于将光引向样本,锥形光管(TLP)用于采集以第一焦比与样本相互作用的光、并用于以低于第一焦比的第二焦比传送光。线性可变滤光片(LVF)将所采集的光分离成成分波长信号的光谱;以及检测器阵列,该检测器阵列包括多个像素,所述多个像素中的每一个像素均被设置成接收多个成分波长信号中的至少一部分,提供每一成分波长的功率读数。优选地,该TLP在其一端设有透镜,并被设置在有阶梯形内壁的防护罩的内部。该TLP与LVF之间的间隙被减小到最低限度,以进一步提高分辨率和牢固性。

Description

便携式分光计
技术领域
本发明涉及一种便携式分光计,具体而言涉及一种所需功率和尺寸最小的牢固的、高性能的便携式分光计。
发明背景
在过去的十年中,近红外光谱技术(NIR)已经日益发展成为一种在制药工业中进行生产和质量控制的不可缺少的分析工具。定性NIR检查经常被应用于对原材料进料进行识别控制,而最终产品的定量分析是制药工艺链条中的一个重要步骤。然而,大部分药学分析仍然通过从生产场所取样、再将其运送至远程质量控制实验室的方式进行。取样与得出结果之间的这种延迟会限制分析的频度和生产线的优化。由此,可以考虑采用能够对工艺进行快速在线或线上分析的新的便携式现场仪器,作为推动制药工业效益提高的一个关键工具。
较早型式的紧凑型分光计,例如2012年7月26日公布的、Ocean Optics,Inc公司的公开号为2012/0188541的美国专利申请和2005年1月13日公布的、Wilks Enterprise,Inc.公司的公开号为2005/0007596的美国专利申请中所述的紧凑型分光计,它们试图通过设置一系列光路折叠反射镜的方式来最大限度减小其占用空间。然而,折叠反射镜在生产中需要大量的校准步骤,且无法提供一种用于现场应用设备的非常牢固的结构,由此造成性能较低或性能无法预期。
在历史上,曾采用光导管、光管或光传输导管进行光束整形或光重定向。实例包括用于显示器或正面投影电视的显示引擎技术,例如7,252,399和7,033,056号美国专利以及2006/0044833号美国专利申请中所披露的技术。2002年7月16日授予Wilks等人的6,420,708号美国专利披露了一种光谱分析仪,其包括用于向样本传输光、但并不用于对送至滤光片的反射光进行整形的矩形光管或晶体。
6,473,165、7,006,204和7,184,133号美国专利涉及自动化验证系统,在这些系统中,会对从一个光学干涉防伪特征上反射的在两个不同入射角的两个独立光束的反射进行测量和比较。披露了一种用于收集和会聚光的会聚式锥形光管。
本发明的一个目的是,通过提供一种包括有宽带光源和检测器阵列、用于现场取样测试装置的高性能的、牢固的、便携的、低功率的分光计,从而克服现有技术的缺点。
发明概述
相应地,本发明涉及一种便携式分光计设备,包括:
照射光源,用于将光引向样本;
锥形光管(TLP),用于采集以第一焦比与所述样本相互作用的光,并用于以低于第一焦比的第二焦比传送光;
线性可变滤光片(LVF),用于将所采集的光分离成成分波长信号的光谱;以及
检测器阵列,包括多个像素,所述多个像素中的每一个像素均被设置成接收多个成分波长信号之一的至少一部分,提供每一成分波长的功率读数;
其中TLP包括用于设置在样本附近的较小的第一端,与LVF相邻的较宽和较高的第二端,以及从第一端向第二端发散的用于将光进行混合并将其跨越LVF传播的侧壁。
附图简要说明
下文将参照代表本发明优选实施例的附图,对本发明进行更为详细的介绍,其中:
图1a为根据本发明的分光计系统的示意图;
图1b为位于用户手中的图1a中的分光计的透视图;
图1c为图1a中的分光计系统的透视图;
图2a和2b为图1a的便携式分光计的两种不同实施例的侧视图;
图3为图1a中的便携式分光计的其中一个光源的顶视图;
图4为图1a中的便携式分光计的外壳的顶视图;
图5a、5b和5c分别为图1a中的分光计的锥形光管的等距视图、侧视图和顶视图;
图6为具有和不具有TLP的分光计的透射率与波长的关系图;
图7a和7b所示分别为标准型TLP的入射和出射射线束以及带透镜TLP的入射和出射射线束;
图8为具有和不具有带透镜TLP的分光计的透射率与波长的关系图;
图9为图1a中的便携式分光计的TLP防护罩的等距视图;
图10a和10b分别为根据本发明的具有和不具有TLP防护罩的分光计的响应与波长的关系图;
图11为图1a中的便携式分光计的LVF的侧视图;
图12为图1a中的便携式分光计的LVF和检测器阵列的示意图;
图13a和13b分别为在本发明的LVF与检测器阵列之间有750μm间隙和200μm间隙的分光计的响应与波长的关系图;
图14为根据本发明的LVF和检测器阵列结构的侧视图;
图15为根据本发明的无线分光计系统的示意图;
图16为根据本发明的一种可替换的无线分光计系统的示意图。
详细说明
参见图1a、1b、1c、2a和2b,根据本发明的紧凑型分光计1是一种非常小的低成本手持式分光计,例如其不带电池的重量小于5磅,优选为小于2磅,更优选为小于0.5磅,理想情况为小于100g,体积紧凑,例如小于6英寸×6英寸×2英寸,优选为小于6英寸×3英寸×1英寸,更优选为小于4英寸×2英寸×0.5英寸,分光计围绕滤光片2构建,滤光片2安装在宽带检测器阵列3上,宽带检测器阵列3的宽度例如超过500nm,优选为超过600nm,最优选情况为超过700nm,例如一种铟镓砷化物(InGaAs)。滤光片可以是任何形式的分光计,例如基于衍射的,相位全息式的,基于受抑全反射(FTR)或基于线性可变滤光片(LVF)的,任何形式的需要特定的入射锥角度才可起作用的仪器,但优选采用LVF。
LVF是采用本领域所熟知的用以生产稳定且可靠的光学部件的电学工艺所沉积而成的电介质薄膜法布里-珀罗(Fabry-Perot)带通滤光片。LVF内的滤光片涂层在一个方向上被有意制成楔形。由于带通滤光片的中心波长是涂层厚度的函数,峰值透射波长会沿楔形的方向连续变化。LVF通常由SiO2和Ta2O5等无机材料制成,采用离子辅助物理气相沉积技术生产,形成具有高可靠性和稳定性的致密涂层。
理想情况下,分光计1完全由USB供电,即分光计所用功率为2.5W或更低,但具有无线连接的电池电源的分光计也属于本发明的范围,下文将会详述。控制系统4由处理器和适用的非易失性存储器组成,且包括适用的USB连接器,用于接纳USB线6,以实现控制系统4与主机控制设备7(例如笔记本电脑、平板电脑或PDA等)之间的数据传输,理想情况下主机控制设备7置于保护罩8内。采用一个或多个由开关10启动的独立式光源12将光引导到样本15上,以使漫反射、透射或交互式辐射能够被锥形光管(TLP)11等光收集光学器件所采集,以传送至滤光片,例如LVF 2。
为最大限度降低分光计1的尺寸和运行功耗,同时保持牢固性和高性能,需要解决许多问题,包括:1)使光路的效率尽可能高;2)在光路中使用TLP 11,而非光纤;3) 将LVF 2置于靠近检测器3之处,以使所需光学器件降至最少;4)使检测器阵列3无需冷却,以避免TE冷却器的功率要求;以及5)提供功耗尽可能低的、但仍可在诸如红外(IR)区内提供宽带光照的光源12。
根据本发明的分光计1在工作时的功耗低于2.5W,即使光源12包括两个或更多灯时亦如此。对于近红外光,光源12优选由一个或两个板载白炽灯(例如真空钨丝灯)组成,其在仪器的整个有效范围(例如对于近红外光,在900nm至1700nm范围或900nm至2150nm范围)内提供宽带光照,带宽例如超过500nm,优选超过700nm,最优选为超过1000nm。一个灯12即足够;然而,两个灯12可以为样本交互增加更多的光,由此使集成时间更短。实际使用中存在限制;然而,空间条件和USB或电池功率也会有所局限。
参见图2a和2b,光源12通常有两种配置。在一种配置中,样本15被来自一个、两个或多个光源12的相对准直光以与样本15的法向成一锐角(例如与TLP 11的纵轴LA成45°角)的方向照射,且TLP 11的一端以相等距离被置于每个灯之间。TLP 11的纵轴LA垂直于LVF 2和检测器阵列3的基底。在另一种布置中,样本15被以泛光照射。在两种布置中,TLP 11的接收端被设置为接收来自样本15的基本沿法向(即沿纵轴LA方向)入射的光。光源12被设置为排除来自样本15的镜面反射。45°照射会使反射率或透射反射率测量产生漫射。每个光源12在理想情况下包含一个端部带透镜的真空钨丝灯,用于在样本15上形成5mm、优选为3mm或更小的光斑。参见图4,光源12和TLP 11的端部在理想情况下被设置在从设备1的主体向外延伸的外壳20的内部。外壳20上有一个开口,开口被一个透明的、例如为宝石蓝的保护窗21覆盖,光通过保护窗21被投射到样本15上,所反射的光被TLP 11采集。外壳20可保护光源12免于损坏,并防止来自外部光源的杂散光进入TLP 11的端部。样本15置于光源12与TLP 11之间的反射模式和透射模式均是可行的,分别如图2a和2b所示。
紧凑型便携式本体的概念还能包括但不限于位于背面的用于查看光谱的小屏幕、简单的傻瓜式界面、电池、用于存储光谱的存储卡、计算机接口、闪光灯或板载照射光源,以及用于构建、加载和使用板载“应用”对数据进行后期处理的框架体系。
光源12的第一种实施例采用两个端部带透镜的真空钨丝灯来对样本15提供强烈的近红外光照射。理想情况下,灯被定位成使光以与样本的法向成一锐角(例如45°)的方向照射到样本15上,而镜面反射光将反射到相对侧的灯内。理想情况下,在样本15上形成一个直径3mm的光斑。在正常情况下,不会有直接的镜面反射进入TLP 11的 入口孔径。这仍是一种可行的光照状况,但其有一个缺点,即两个投射光束会在“测量景深”约为500μm的一个位置处重合。即使不是大多数,也有许多近红外测量会对来自表面以及样本内的光进行测量,即在某些情况下,穿透深度可以达到10mm。这种照明尽管控制镜面反射的效果非常好,但是会产生透射反射率(transflectance)结果的变化。如果样本15仅在其表面上接受测量,则这是一种可行的照明布置。
可替代实施例中的光源12采用非定向灯产生的泛光照明。泛光照明使用非准直光照射样本15,这样可以减轻“测量景深”问题,即对于透射反射率测量景深最大为10mm,而非仅仅是表面测量。泛光照明还能够为待测样本15提供更大的近红外光通量。额外自由度的实现代价是,需要控制来自分光计1的前方保护窗21的寄生镜面反射光。这将通过使用有台阶的防护罩(terraced boot)25来实现(见图9),防护罩25可严格限制TLP 11的入口孔径所能看到的视场。减少来自灯12的无益光进入TLP 11是通过以下方式实现的:调整灯12与防护罩25的入口孔径的相对位置、调整防护罩25与窗21的后表面的接近距离、调整窗21的厚度,以及施用到窗21上旨在最大限度减少镜面反射的涂层等等。
TLP 11提供有光收集光学器件,其被设计为将任何所需波长的光谱光能(即从样本15的朗勃散射表面或透射的半透明表面反射的光)送至LVF 2的入射表面,以传输到检测器阵列3处。为使滤光片/检测器阵列组件2/3高效率地工作,进入LVF 2的光的最大接受NA需要为0.2或更小。为实现可接受的NA,从被测样本15收集的输出辐射模式需要一个透镜或锥形光管。锥形光管11可以为实心(例如Schott N-BK7玻璃)或为中空结构,具体取决于光谱引擎或分光计的工作参数。TLP 11的锥角可以根据反射或透射式取样和/或光路长度进行优化。TLP 11可以有针对中空或实心式设计而施加的反射涂层,也可以没有涂层。锥形和非锥形光管可以有或没有旨在增强来自样本的信号的光循环性质。分光计或光谱传感将控制所针对的波长区域,并最终支配光管设计。
锥形光管(TLP)11的一个具体示例在图5a、5b和5c中示出,其在较小的第一端采集来自朗勃光源的光,即灯12发出的经高散射表面(例如固体或液体样本15)以第一焦比(例如f/1)和例如20°至40°之间,但通常为30°左右的锥角反射的光,并将所反射的光进行混合、分散和整形,使之具有使分光计1内的LVF 2更好地工作所需的较小的焦比f/3,即约10°或更小的锥角。锥形光管11充当色散器(disperser)和光整形器件,其具有发散的侧壁(例如有4个),将光散开,并使电磁波能够从较大的第二端(例如较高和较宽端)穿过来自朗勃光照表面的LVF 2。相应地,TLP 11使分光计1能够从 一个相对大的区域进行光采样,收集来自任何朗勃散射表面的光,这一点不同于其他竞争技术,其他竞争技术通常使用光纤对发自一个较小的局部区域的光进行收集。此外,TLP 11对光进行混合和分散,以适应LVF 2的尺寸和像素阵列3中的像素。由此LVF 2可以被优化,以接受偏离法向(即涂层表面和/或LVF基底的法向)不超过10°的光,由此大大提高分辨率和性能。
焦比是望远镜的焦距与其孔径之比,由焦距除以孔径得出。例如,焦距为2032mm、孔径为8英寸(203.2mm)的望远镜的焦比为10(2032/203.2=10)或称f/10。
TLP 11为光束转向/整形器件,其采用复合角将光锥从(快速的)第一焦比(例如f/1)减慢为较低(较慢)的第二焦比(例如f/3),并使LVF 2能够在光谱上达到性能要求。这通过控制TLP 11的入口孔径和出口孔径的纵横比来实现。TLP 11的长度需要足够长,以实现光的足够混合,并在出口孔径上获得合适(较慢)的焦比。图6示出了具有和不具有TLP 11的分光计在透射率和波长方面的差异(即透射率小得多,波长宽得多)。
最接近灯12的TLP 11的入口孔径有一个1.5mm至2.5mm(优选为2mm+/-0.1mm)×0.4mm至0.6mm(优选为0.5mm+/-0.1mm)的较小的开口。接近LVF 2的出口孔径则有一个6mm至7mm(优选为6.6mm±0.1mm)宽、0.75mm至1.25mm(优选为1.0mm±0.1mm)长的较大的开口。TLP 11的长度为15mm至25mm(优选为20mm±0.3mm),在高度和宽度上均向入口端逐渐变细。相应地,在宽度方面,相对纵轴每一侧的锥角在6°至7°之间,总共为12°至13°,在高度方面,相对纵轴每一侧的锥角在0.5°至1°之间,总共为1°至2°。
不利的是,由于有TLP 11,射出TLP 11的光束不再垂直于LVF 2,即它们在检测器阵列3的任何一端最多倾斜到6°(见图7a)。结果是会出现两种不利的影响,其在检测器阵列3的端部更为加剧:1)中心波长发生下移;2)存在带宽(分辨率)的加宽。图8中较短较宽的图线示出了采用平面TLP 11的分光计的性能。
理想情况下,在TLP 11内加入带透镜元件以使倾斜的光束变直,可采用对TLP 11加装带透镜表面23的形式实现;然而,也可采用对LVF 2加装单独的透镜和/或带透镜的入口的方式。通过柱面透镜23,例如采用典型光学材料制成的、在6.4mm有效区域上的下垂为0.5mm的透镜,位于检测器阵列3的边缘的倾斜光可以被变直,这应能恢复微型NIR(MicroNIR)的最佳性能,例如线性波长间隔和最佳分辨率。参见图8中较高且较窄的图线。
参见图9,设置有TLP防护罩25,用于支承TLP 11,并可确保从样本15反射的光被以由第一焦比(例如f/1)及约30°的锥角限定的合适的接受角传送至TLP 11的入口孔径,并确保TLP 11的视场被以所需的第二焦比(例如f/3)以及约10°的锥角传送至LVF 2。防护罩25包括一个支承部分26,其至少支承TLP 11的末端,理想情况下会支承整个TLP 11而不引入任何应变,由此保护TLP 11免受冲击和振动影响。防护罩25还包括一个间隔部分27,其通过将TLP 11容纳在其内部并将TLP 11的入口端与保护窗21分开,减少了灯12发出的光经保护窗21镜面反射后到达TLP 11的入口孔径的量。间隔部分27与TLP 11的入口孔径直接接触,并包括多个阶梯状的内表面28,其有多个平面矩形台阶29,表面围绕开口延伸,且垂直于TLP 11的纵轴LA,用以减少近红外光能在任何其他位置(例如从入射窗反射)进入TLP 11。间隔部分27的侧壁在从其开口处至设置在防护罩25内的TLP 11的开口方向上,在长度和宽度上以阶梯方式会聚。如果光从其他地方进入,则结果将是系统的光谱性能变差。台阶29与老式干板照相机的变焦波纹管类似,可非常有效地阻挡和捕捉不需要的散射光,使其不进入TLP 11内。对于分光计1,这样除了可以更好地利用检测器动态范围之外,还可以在透射反射率测量方面实现更高的光密度(OD)测量值。
如果在入口孔径处有更高的角光通量进入TLP 11,则结果将是:光谱曲线上的光谱通带、第二光谱峰、肩和底会展宽。图10a和10b中的图线示出了常规防护罩(图10a)与本发明的防护罩25(图10b)在激光谱线光谱图上的差异,本发明的防护罩25提供的分辨率要高得多。
参见图11和12,本发明的LVF 2从TLP 11接收被收集的光,并传输单个的波长带,波长带横跨LVF 2的长度方向以升序或降序线性变化。在所示的实施例中,如本领域所熟知的,LVF 2包含多层堆叠,在基底33上的第一与第二反射层31和32之间有一个间隔层30。第一和第二反射层31和32以横截面上的厚度渐变(会聚或发散)的方式沉积,由此,滤光片越厚,透射波长越长。所示的透射率(%)与波长的关系图包括从400至700的波长;然而,任何波长范围均有可能。
中心波长沿LVF 2的长度连续变化,由此照射在检测器像素上的光是该像素可以“看到”的从LVF 2上的每个点发出的带宽的叠加(由光的F/#设定)。中心透射波长在LVF 2的整个长度上线性变化。在示例中,LVF 2的最左端仅透射蓝光波长(较短的波长)的窄的范围。在向右移动的过程中,LVF 2的厚度增加,会透射较长的波长。最终在最右端,只有红光(较长的波长)的窄带被透射。
LVF 2被设计为在每一位置处透射一个波长带。这些波长带被设计为与预期总波长范围除以像素数的值大体相当,但通常是稍小一些。例如,在现有的128像素的分光计1中,LVF 2被设计为透射约占中心波长1%的波长带(中心波长为1000nm时透射的波长带为10nm)。LVF技术的一项优势是波长带未被分离;换言之,照射到LVF 2上的每个波长的光都将在检测器平面上的某个地方“被看到”。
取代了高功耗且笨重的制冷系统的是,在紧邻检测器阵列3的地方理想情况下安装了一个温度反馈器件41,例如热敏电阻。温度反馈器件41可以是电阻随温度变化的热敏电阻,也可以是输出一个已知的与温度相关的电压的高精度集成电路(IC)。温度反馈器件的模拟输出由控制系统4CPU读取。控制系统4此时可执行一个温度调节过程,通过访问存储在非易失性存储器内的一个查询表或公式,其根据来自温度反馈器件的温度对初始测量值进行校正,来确定经过温度调整的读数。
检测器阵列3的暗电流和响应率均与温度相关。只要温度稳定,即可获得可重复的结果;然而,传统观点认为,LVF 2和检测器阵列3的温度应尽可能低。
在所有应用场合中,LVF 2与检测器阵列3之间的间隙被设置为使从LVF 2发出的任何波长的光束的发散降至最低;例如将光束的发散优化到在检测器阵列3上少于3个像素。另一种替代实施例是,将间隙分开,以确保光束的尺寸在LVF 2与检测器阵列3之间不会加倍。
图12示出了LVF 2与检测器阵列3之间的小间隙d的重要性。假定由TLP 11提供的光的锥度相同,在光照射LVF 2、即f/3或9.59°时,发散度S变为d×tan9.59°。对于150μm的间隙d,发散度变为25μm。相应地,LVF 2上的一条单线将在检测器阵列3上形成一条一个像素宽度的线。
对于150μm的间隙,从LVF发出的每一条光“线”都会以±9.59°发散,在检测器平面上形成一条±25μm宽的线。这对应于像素节距(50μm)。由此,LVF 2上每一条线的波长敏感响应在两个像素间按权重比例分开。相应地,采用一个小于500μm、优选为小于200μm、更优选为在5μm至80μm间的间隙,这是最大幅度减少所需光学器件、使设备能够以紧凑型封装提供的优选方式。
图13a和13b示出了间隙为750μm(图10a)和200μm(图10b)的光谱性能差异,其中较小的200μm间隙可最大限度减小像素串扰、光谱加宽和平台底(pedestals)。
理想情况下,LVF 2尽可能接近检测器阵列3,以减轻检测器元件之间的光谱串扰,如图14所示。最佳状况是,使用透光粘合剂51将LVF 2直接粘合到检测器阵列3的像 素52上;然而,粘合剂51还需要具备以下条件:不导电或具备介电性质;通过在检测器阵列3受到诱发应变或破坏作用力时,获得良好的粘合强度,由此对机械条件呈现中性;在光学方面能够透射所需的光谱成分;消除在空气与玻璃界面上发生的反射;并具备合理的热膨胀系数性质,以便在固化和热循环中使检测器像素52的应力降至最低。相应地,LVF 2会使检测器阵列3的每个像素52对不同的波长有理想的响应。
例如,诸如InGaAs线性二极管阵列等检测器阵列3的内部电子部件和导线53对于任何导电材料均非常敏感,这会造成短路、破坏或损毁检测器像素或CMOS处理芯片54。在本例中,用以减轻此问题的粘合材料51为Epo-Tek 353NDTM,其具有可以热固化但不能用紫外线固化的性质。在本例中,热固化可以接受,因为直接粘附于检测器阵列3的像素52上的LVF2上的涂层不会透射紫外线能。此外,EP 353ND(无色或黑色)在固化过程之前和之后均具有出色的介电性质。理想情况下,在约5至15微米的厚度上,EP 353ND无色型可以用作LVF 2与检测器阵列3之间的粘合剂51。
在LVF 2上设置有一个“玻璃盖”55,即LVF 2的基底,覆盖住检测器阵列3中的大部分像素52,但其并不设置在带传感器芯片54的对环境敏感的部分53上。不过,粘合剂EP353ND也可以采用不透明形式,例如为黑色,可作为整个内部封装的涂布剂56。不透明粘合剂56可用作光隔离剂或光吸收密封剂或隔片,围绕住LVF 2并覆盖住封装内的检测器阵列3的敏感电子部件,以最大限度减少杂散光问题。粘合涂布剂56还可作为封装内的电子线路53的环境保护剂,而不再需要当前所需要的盖窗。使用相同的材料作为透明粘合剂51和黑色涂布材料56,在热学、光学和加工方面均具备优势。
由此,有三个因素影响着每一像素所看到的分辨率(波长范围):第一,像素宽度在几何上对应于LVF 2上的中心波长范围,例如,在LVF为900-1700nm范围内的情况下,一个50μm像素看见6.3nm的波长。第二,LVF 2具有由设计和入射光锥角的组合所确定的固有带宽(例如,1%宽,或9nm至17nm,取决于位置)。第三,间隙和锥角会形成混杂或加权效应(例如,1个像素宽,或者额外增加6.3nm,作为加权平均值)。这些因素的叠加形成了仪器的整体分辨率,例如,在我们当前的仪器中,为1.1%。
便携式分光计1可能的应用场合包括现场威胁检测;药品、管制物质和食品的识别和确认;法庭辩论;食品工业中的过程监测(例如,针对谷物中的水分含量);以及用于回收和污染物检测的产品的识别。任何具有近红外信号(结构)的物体均可被测量和确定。
在图15所示的一种替代实施例中,手持式紧凑型分光计1包括耦合到电池组59的光学封装和蓝牙或WiFi芯片60,蓝牙或WiFi芯片用于与设置在远程位置的控制设备7(例如控制硬件和软件)进行通信。
用户将使用连接至一个Android、Windows或基于苹果iOS的设备(即控制设备7)的紧凑型分光计1进行实时预测。理想情况下,控制设备7和紧凑型分光计1通过USB电缆6或独立式蓝牙或WiFi连接(即,它们只是此局域网上的两个设备)进行通信。没有云接口;用户将使用硬编码方法将方法文件62或app上传至控制设备7的非易失性存储器,控制设备7预计将控制紧凑型分光计1,并执行所保存的方法文件62。方法文件62是指预处理和从光谱库得出的光谱模型的组合,其将发出对紧凑型分光计1最终用户的预测。如果应用场合需要多个结果,方法文件62可能包含不止一个模型。方法文件62还可能规定所需的紧凑型分光计的配置,例如曝光时间、有待用来进行平均处理的扫描的次数,或者将这些设置留作有待于被限定的设置以作为仪器设置规程的一部分。
预处理是数学数据处理或加工技术,以在一组测得的光谱中去除各种影响(例如基线偏置或样本光散射)。这些技术包括求导、杂散和基线校正。对预处理的具体选择进行选择,旨在提高辨识度,即最大限度减小相同材料的多个光谱之间的差异,并使不同材料的光谱之间的差异最大化。
光谱库是存储在控制设备7的非易失性存储器内或与之相连的服务器64内的对已知“基准”材料的一系列光谱测量值,这些“基准”材料可以是多种不同的物质,也可以是同一材料类型的多种变体。实例可以是不同白色粉末样本的一系列近红外(NIR)、红外(IR)或拉曼光谱。光谱库将被用于生成“光谱模型”。
“光谱模型”是指从特定的一组光谱中得出的数学方程。模型通常为回归矢量,从光谱库中以统计学方式得出,对一未知光谱与库内光谱的相似性加以量化。例如,一个“光谱模型”可以包括对应于一种给定材料的波长、幅值和光谱峰宽度。这些波长、幅值和宽度会与已测得的经过预处理的光谱的波长、幅值和宽度进行比较。这种比较的结果可以被预测引擎63进行定性的解释,用于身份标识(ID)或“通过/不通过”类应用,也可对其进行定量解释,用于确定纯度或浓度。
预测引擎由存储在控制设备7上的非易失性存储器内的计算机硬件和/或软件组成。所确定的参数或结果被称为“预测”。由预测引擎63提供的预测可以被传送至紧凑型分光计1上供用户观察,或者在控制设备7上的适用的图形用户界面上进行简便的观察。 另可替代方式是,预测可以被保存在控制设备7上的非易失性存储器内或远程服务器64上,以供日后查阅。
预测引擎63可以通过两种方式之一进行预测:第一,可在分光计提供商的软件内直接执行采用已知模型和预处理的简单方法。第二,复杂或第三方专有的方法可以以第三方格式上载,控制设备7将与第三方预测“引擎”进行通信,以进行实时预测。第三方引擎将需要驻留在控制设备7上。数据还原或投影技术可包括偏最小二乘法、主成分分析、主成分回归、偏最小二乘判别分析,以及簇类独立软模式法。
有些用户可能希望保留扫描和预测的历史记录。为此,控制设备7将具备在本地保存光谱和预测并在联网(例如,通过USB、WiFi、蓝牙或4G网络)时将其同步到服务器64上的能力。控制设备7还将具备在进行同步时从服务器64接收更新方法的能力。在本情境中可能需要采用条形码阅读器来选择合适的方法。
方法软件62将能够通过服务器64向工程设计发送未知的光谱,以进行进一步的评价或校准更新。
除保存和执行方法之外,控制设备7上的应用方法62将能够对分光计1进行设置并检查其健康状况,例如进行基准测量。紧凑型分光计1的“诊断”能力将包括依照外部波长精度标准(NIST 2036或等效标准)进行的测量,并确认仪器精度完好无损。还需要进行光度噪声和线性度计算。诊断扫描可以在初始启动时进行或应用户要求进行。
在图16所示的另一种替代配置中,紧凑型分光计1和控制设备7相互连接,并通过无线网络72连接至用户的服务器71。此类系统的一个实例是位于制药公司的接收坞。方法文件62和预测引擎63被保存在服务器71上,而不是在控制设备7上。在基础设施模式中,用户将能够(甚至会被要求必须)扫描待分析样本15的条形码73。保存在非易失性存储器内、并在控制设备7上执行的软件将对由控制设备7上的相机拍摄的照片使用条形码识别算法,使用条形码73从服务器71选择合适的方法,并对所记录的光谱和结果进行适当的标记,以供显示和存储。随后用户将通过按压紧凑型分光计1的集成化扫描按钮,对材料进行扫描。用户可能还希望从控制设备7对扫描进行控制。当扫描完成时,用户将查看控制设备7上的预测结果,并基于该方法对结果加以确认。如果条形码集成在用户现场未生效,用户应能够在使用紧凑型分光计1进行光谱采集之前,从保存在服务器71上的列表中选择合适的方法文件。
在处于基础设施模式内的一个特定案例中,操作人员可以配置紧凑型分光计1,包括选择一个方法,然后在单一一次通过/不通过的评价中,仅携带分光计1来扫描样本。 在此模式中,分光计1将与控制设备7通信,并由集成化扫描按钮经WLAN 72触发,根据通过/不通过的结果,提供听觉、视觉或触觉(振动)反馈。
方法、光谱和结果将全部保存/存储在用户数据库服务器71上,而不是在控制设备7上。此外,方法还可在本地云、即服务器71上执行,结果再传回控制设备7,这些对于用户为透明。具备合适权限的用户应能够查看来自多个紧凑型分光计1的结果,并通过与本地云的交互,提供对多个用户的权限管理,例如生成或仅使用方法的能力。在此情况下,需要使用符合21CFR第11部分的软件;每一用户应有不同的“管理”权限,以使经过培训的操作人员能够仅在其被许可时使用紧凑型分光计1。21CFR第11部分还提供了一种数据验证机制,在这种机制中,在没有合适授权的情况下,不能删除和更改任何数据。本地服务器71可望成为21CFR第11部分合规的一个整体组成部分。
在另一种高度针对紧凑型分光计1应用的配置中,基于云计算的核心架构至关重要。核心架构和测量过程与图16所示类似。
此配置的用户为初学者,不一定具有近红外技术或分光计1的经验。用户仅需依靠分光计1来提供基于一个非常具体的取样和测试步骤的答案。典型的术语是“标准操作规程”,即SOP。执法人员、危险物品技术人员或军事人员是较好的实例。
控制设备7上的完善的app将引导用户进行紧凑型分光计1的初始化和配置。该app将根据需要,从置于一个远程且安全的位置的分光计提供商的服务器71上下载更新和方法,例如通过一个或多个网络,如因特网进行下载,并将诊断信息报告到分光计提供商服务器71上。在此配置中,提供了这样的选择:对仪器的完全表征和按照基线和零进行的定期验证将不再一定需要在现场进行,且设置可完全自动化地进行。
在“云操作模式”中,分光计提供商的人员将负责管理方法软件62,并监测系统健康状况和性能。方法软件62将由分光计1提供商拥有并管理。由此,对方法软件62的任何更新均需要被“推送”至本地订户库。
类似地,分光计1产生的结果和数据将被转回到分光计提供商(或其合作者)的服务器71,并被存档以供日后可能的应用。从最终用户样本15返回到分光计提供商服务器71处的数据将被筛选,以实现统计简便性或唯一性,筛选依据为来自现场的结果和由在分光计提供商服务器71处应用的方法所上载的光谱的进一步分析。如果在与分光计提供商的库进行比较时,样本被认为是唯一,该光谱将被标记为对未来方法更新的一个可能的增补(且用户将被通知及被要求提供更多信息)。实质上,这是收集独一无二的样本以供未来加入到模型中,以应对现有方法目前未能考虑到的任何变动性。

Claims (21)

1.一种便携式分光计设备,包括:
照射光源,用于将光引向样本;
锥形光管TLP,用于采集以第一焦比与所述样本相互作用的光,并用于以低于所述第一焦比的第二焦比传送光;
线性可变滤光片LVF,用于将所采集的光分离成成分波长信号的光谱;以及
检测器阵列,其包括多个像素,用于提供每一个成分波长的功率读数;
其中所述多个像素中的每一个像素均被设置成接收所述成分波长信号之一的至少一部分,
所述锥形光管TLP包括用于设置在所述样本附近的较小的第一端,与所述线性可变滤光片LVF相邻的较宽和较高的第二端,以及从较小的所述第一端向较宽和较高的所述第二端发散的用于将光进行混合并将其跨越所述线性可变滤光片LVF传播的侧壁,和
所述线性可变滤光片LVF和所述检测器阵列被间隙分开,所述间隙包括光学透明粘合剂。
2.如权利要求1所述的便携式分光计设备,其中,所述锥形光管TLP接受第一焦比为f/1以及锥角在20°至40°之间的光,并将经反射的光以慢于f/3的第二焦比以及小于10°的锥角传送至所述线性可变滤光片LVF。
3.如权利要求1所述的便携式分光计设备,其中,所述锥形光管TLP包括带透镜的出口面,用于使倾斜的光束变直,以传送至所述线性可变滤光片LVF。
4.如权利要求1所述的便携式分光计设备,其中,所述间隙小于200μm,以提高光谱分辨率。
5.如权利要求1所述的便携式分光计设备,其中,所述间隙确保所述线性可变滤光片LVF上的单个线在所述检测器阵列上形成一条像素宽度的线。
6.如权利要求1所述的便携式分光计设备,其中所述线性可变滤光片LVF被直接粘合到所述检测器阵列上;且所述光学透明粘合剂的厚度为5微米至15微米。
7.如权利要求1所述的便携式分光计设备,还包括锥形光管防护罩,其包括用于支承所述锥形光管TLP的支承部分和用于将所述锥形光管TLP与所述样本隔开的间隔部分,从而确保来自所述样本的光以由所述第一焦比f/1和约30°的锥角限定的所需接受角传送至所述锥形光管TLP。
8.如权利要求7所述的便携式分光计设备,其中所述间隔部分包括阶梯式内壁,以减少到达所述锥形光管TLP的镜面反射光。
9.如权利要求1所述的便携式分光计设备,还包括外壳和位于所述外壳内的控制系统,所述控制系统包括处理器、合适的非易失性存储器以及USB连接器,所述USB连接器用于容纳USB线,以实现所述处理器与主计算机之间的数据传输。
10.如权利要求1所述的便携式分光计设备,还包括蓝牙或WIFI芯片,用于与发送测试步骤并接收测试结果的控制设备进行通信。
11.如权利要求1所述的便携式分光计设备,还包括电池或USB电缆连接器,用于向所述便携式分光计设备提供小于2.5W的功率。
12.如权利要求1所述的便携式分光计设备,还包括用于封装所述照射光源、所述锥形光管TLP、所述线性可变滤光片LVF和所述检测器阵列的外壳,其中所述外壳的尺寸小于2英寸×2英寸。
13.如权利要求12所述的便携式分光计设备,其中所述外壳、所述照射光源、所述锥形光管TLP、所述线性可变滤光片LVF和所述检测器阵列的重量小于0.5磅。
14.如权利要求1所述的便携式分光计设备,其中所述照射光源包括至少一个被设置为与所述线性可变滤光片LVF的纵轴成锐角的光源,用于在所述样本上产生光斑,由此光从所述样本沿所述纵轴反射到所述线性可变滤光片LVF中。
15.如权利要求14所述的便携式分光计设备,其中所述至少一个被设置为与所述线性可变滤光片LVF的纵轴成锐角的光源中的每个光源包括端部带透镜的真空钨丝灯,用于在所述样本上形成小于5mm的光斑。
16.如权利要求1所述的便携式分光计设备,其中所述照射光源包括两个光源;且所述锥形光管TLP的一端被置于两个所述光源之间。
17.如权利要求1所述的便携式分光计设备,还包括温度反馈系统,用于基于环境温度调整所述每一个成分波长信号的功率读数。
18.一种分光计系统,包括:
如权利要求1所述的便携式分光计设备;
控制设备,其可操作地与所述便携式分光计设备耦合,用于控制所述便携式分光计设备;以及
服务器,其可操作地与所述便携式分光计设备和所述控制设备通过无线数据网络耦合,用于存储光谱。
19.如权利要求18所述的分光计系统,其中,所述控制设备被配置以从所述便携式分光计设备接收所述光谱;将所述光谱与光谱库进行比较;并将比较的结果输出。
20.如权利要求18所述的分光计系统,其中所述服务器被配置以从所述便携式分光计设备接收所述光谱;将所述光谱与光谱模型库进行比较;并将比较的结果输出。
21.如权利要求20所述的分光计系统,其中所述服务器包括扫描特征和光谱模型的库;
所述控制设备包括条形码阅读器,其中在运行中,所述条形码阅读器读取对应于所述样本的条形码,所述控制设备将与所述条形码相关联的信息传达给所述服务器,所述服务器根据所述条形码选择包括在所述扫描特征和光谱模型的库中的扫描特征和光谱模型,以进行比较。
CN201380059342.4A 2012-11-13 2013-11-13 便携式分光计 Active CN104797911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710159833.6A CN107345835B (zh) 2012-11-13 2013-11-13 便携式分光计

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261725923P 2012-11-13 2012-11-13
US61/725,923 2012-11-13
US201361784811P 2013-03-14 2013-03-14
US61/784,811 2013-03-14
PCT/US2013/069910 WO2014078426A1 (en) 2012-11-13 2013-11-13 Portable spectrometer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710159833.6A Division CN107345835B (zh) 2012-11-13 2013-11-13 便携式分光计

Publications (2)

Publication Number Publication Date
CN104797911A CN104797911A (zh) 2015-07-22
CN104797911B true CN104797911B (zh) 2017-04-12

Family

ID=50680791

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380059342.4A Active CN104797911B (zh) 2012-11-13 2013-11-13 便携式分光计
CN201710159833.6A Active CN107345835B (zh) 2012-11-13 2013-11-13 便携式分光计

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710159833.6A Active CN107345835B (zh) 2012-11-13 2013-11-13 便携式分光计

Country Status (8)

Country Link
US (3) US9234839B2 (zh)
EP (2) EP2920562B1 (zh)
JP (2) JP6371774B2 (zh)
KR (3) KR101988697B1 (zh)
CN (2) CN104797911B (zh)
HK (1) HK1211340A1 (zh)
TW (3) TWI593950B (zh)
WO (1) WO2014078426A1 (zh)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458845B2 (en) 2012-06-14 2019-10-29 Medibotics Llc Mobile device for food identification an quantification using spectroscopy and imaging
US9885655B2 (en) 2012-11-13 2018-02-06 Viavi Solutions Inc. Spectrometer with a relay lightpipe
EP2920562B1 (en) 2012-11-13 2020-09-30 Viavi Solutions Inc. Portable spectrometer
JP6257148B2 (ja) * 2013-02-20 2018-01-10 キヤノン株式会社 画像形成装置
US9665689B2 (en) 2013-05-17 2017-05-30 Viavi Solutions Inc. Medication assurance system and method
TWM475700U (en) * 2013-08-02 2014-04-01 Asensetek Inc A miniature light sensing assembly
WO2016012818A1 (en) 2014-07-25 2016-01-28 Institut Za Fiziku Optical spectrometer
US20160209330A1 (en) * 2015-01-21 2016-07-21 Protrustech Co., Ltd Integrated raman spectrometer and modularized laser module
CN107427266B (zh) 2015-01-21 2021-12-03 国立研究开发法人量子科学技术研究开发机构 血中物质浓度测定装置以及血中物质浓度测定方法
US11313720B2 (en) 2015-01-23 2022-04-26 Rigaku Raman Technologies, Inc. System and method to minimize nonrandom fixed pattern noise in spectrometers
US9706927B2 (en) * 2015-04-13 2017-07-18 Atoptix, Llc Mobile reflectance optical spectroscopy device and process of using and assembling mobile reflectance optical spectroscopy device
CN105136742A (zh) * 2015-08-21 2015-12-09 董海萍 基于云端光谱数据库的微型光谱仪及光谱检测方法
US10117002B2 (en) 2015-09-14 2018-10-30 Cooper Technologies Company Controlled signals using signal guides for sensor devices
US10466099B2 (en) 2015-09-14 2019-11-05 Eaton Intelligent Power Limited Signal guides for sensor devices
DE112016004854B4 (de) * 2015-10-22 2023-06-29 Ngk Insulators, Ltd. Verfahren zur Herstellung eines Lichtwellenleitersubstrats
CN105259148B (zh) * 2015-11-02 2019-05-14 深圳市锦瑞生物科技有限公司 一种荧光免疫定量分析仪
US9917955B2 (en) 2016-02-03 2018-03-13 Onyx Graphics, Inc. Spectral transmissive measurement of media
CN105806796A (zh) * 2016-03-24 2016-07-27 电子科技大学 分子传感器
US10690590B2 (en) * 2016-04-05 2020-06-23 Viavi Solutions Inc. Light pipe for spectroscopy
EP3293502A1 (en) * 2016-09-09 2018-03-14 Cooper Technologies Company Controlled signals using signal guides for sensor devices
DE102016220290A1 (de) * 2016-10-18 2018-04-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen eines direkten Lichtreflexionsstrahls von einem Objekt auf einen Lichtsensor
CN106404680A (zh) * 2016-11-10 2017-02-15 赣州市检验检疫科学技术研究院 用于柑橘黄龙病田间快速现场检测的装置和方法
US10215703B2 (en) * 2016-11-11 2019-02-26 B&W Tek Llc Apparatus and method for performing spectroscopic analysis of a subject using a frustum shaped reflective cavity
RU2649048C1 (ru) 2016-11-25 2018-03-29 Самсунг Электроникс Ко., Лтд. Система компактного спектрометра, предназначенного для неинвазивного измерения спектров поглощения и пропускания образцов биологической ткани
JP6466496B2 (ja) * 2017-04-05 2019-02-06 Ckd株式会社 検査装置、ptp包装機及びptpシートの製造方法
US11112304B2 (en) * 2017-05-03 2021-09-07 Heptagon Micro Optics Pte. Ltd. Spectrometer calibration
CN107144359B (zh) * 2017-05-16 2019-03-19 中国电子科技集团公司第四十一研究所 红外光谱辐射计光谱分辨增强方法、红外光谱辐射计
RU194712U1 (ru) * 2017-06-30 2019-12-19 Илья Николаевич Карькин Портативный лазерный искровой эмиссионный спектрометр
CN109211783A (zh) * 2017-07-04 2019-01-15 上海光音照明技术有限公司 一种光谱获取方法
CN107367885A (zh) * 2017-07-13 2017-11-21 复旦大学 一种基于线性滤光片的超光谱摄像机
KR102289043B1 (ko) 2017-07-25 2021-08-10 삼성전자주식회사 스펙트럼 측정 장치 및 방법
KR102491854B1 (ko) 2017-09-29 2023-01-26 삼성전자주식회사 분광기
US11175222B2 (en) * 2017-11-15 2021-11-16 The Board Of Trustees Of The University Of Illinois Integrated spectroscopic analysis system with low vertical height for measuring liquid or solid assays
KR102498122B1 (ko) 2017-11-21 2023-02-09 삼성전자주식회사 분광 장치와, 분광 방법, 및 생체신호 측정장치
US11162843B2 (en) 2017-12-13 2021-11-02 Trinamix Gmbh Spectrometer device and system
EP3724620B1 (en) 2017-12-13 2024-02-28 trinamiX GmbH Spectrometer device and system
CN111465827B (zh) * 2017-12-13 2023-06-23 特里纳米克斯股份有限公司 光谱仪设备及系统
NL2020636B1 (en) * 2017-12-28 2019-07-08 Illumina Inc Light energy fluorescence excitation
CN108458785A (zh) * 2018-01-31 2018-08-28 云谷(固安)科技有限公司 光谱检测组件及其制备方法、光谱仪
US10763144B2 (en) * 2018-03-01 2020-09-01 Verity Instruments, Inc. Adaptable-modular optical sensor based process control system, and method of operation thereof
FR3078620A1 (fr) * 2018-03-09 2019-09-13 Institut Georges Lopez Dispositif de quantification du taux de lipides et/ou de proteines dans le tissu hepatique
EP3561486A1 (en) * 2018-04-27 2019-10-30 CERAGOS Electronics et Nature Portative optical system for detection of chemical substances at trace levels in foods and liquids
TWI751350B (zh) * 2018-06-29 2022-01-01 台灣超微光學股份有限公司 轉接元件、光學前端結合裝置以及光譜儀
CN110132889A (zh) * 2019-04-16 2019-08-16 北京凯元盛世科技发展有限责任公司 一种透反射测量附件和固液测量转换方法
WO2020211929A1 (en) * 2019-04-16 2020-10-22 Huawei Technologies Co., Ltd. Signal collection spectrometer
WO2020216907A1 (en) 2019-04-25 2020-10-29 Trinamix Gmbh Disposable cap for handheld spectrometer
WO2020216913A1 (en) 2019-04-25 2020-10-29 Trinamix Gmbh Container lid allowing spectroscopy
EP3977072A1 (en) 2019-05-27 2022-04-06 trinamiX GmbH Spectrometer device for optical analysis of at least one sample
US11287317B2 (en) * 2019-08-27 2022-03-29 Viavi Solutions Inc. Optical measurement device including internal spectral reference
CN114502930A (zh) 2019-10-01 2022-05-13 特里纳米克斯股份有限公司 探测器阵列和光谱仪系统
WO2021064064A1 (en) 2019-10-02 2021-04-08 Trinamix Gmbh Modulation device for periodically modulating light
US11536650B2 (en) * 2019-10-18 2022-12-27 Viavi Solutions Inc. Image sensor system
CN113099078B (zh) * 2020-01-08 2023-06-27 华为技术有限公司 摄像头模组、成像方法和成像装置
EP4090944A1 (en) * 2020-01-16 2022-11-23 Eppos S.r.l. Apparatus for detecting optical properties of an object
EP3936842A1 (en) * 2020-07-06 2022-01-12 Imec VZW Light transmission system for delivering light to a raman spectrometer
WO2022018252A1 (en) 2020-07-24 2022-01-27 Trinamix Gmbh Spectrometer device and method for measuring optical radiation
KR20230112641A (ko) 2020-12-02 2023-07-27 트리나미엑스 게엠베하 스펙트럼 감지 디바이스 및 광학 방사선을 측정하기 위한 방법
WO2022256408A1 (en) * 2021-06-01 2022-12-08 Si-Ware Systems Large spot size spectrometer
US20220390277A1 (en) * 2021-06-01 2022-12-08 Si-Ware Systems Large spot size spectrometer
US20230047120A1 (en) * 2021-08-13 2023-02-16 Eurofins QTA, Inc. System, Method and Device for On-Site Rapid, Direct, and Nondestructive Analysis of a Material Sample Using a Portable High Performance Near-Infrared Spectrometer
CN113503964B (zh) * 2021-08-17 2024-03-26 广州瞬达科技有限公司 一种多用途便携式光谱检测装置
EP4399497A1 (en) 2021-09-06 2024-07-17 trinamiX GmbH Spectral sensing device and method for measuring optical radiation
US20230175956A1 (en) * 2021-12-02 2023-06-08 The Boeing Company System, apparatus and method for rapid evaluation of light transmission through opaque coatings and films
KR102700859B1 (ko) * 2021-12-20 2024-08-30 한국세라믹기술원 단결정 성장용 분말의 순도 측정 방법 및 그 방법으로 순도 측정이 가능한 고순도 단결정 성장용 분말
CN115728236A (zh) * 2022-11-21 2023-03-03 山东大学 一种高光谱图像采集与处理系统及其工作方法
WO2024175709A1 (en) * 2023-02-23 2024-08-29 Trinamix Gmbh Factory or in-field calibration of thermo-electric and thermo-optical properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382656A (en) * 1980-11-12 1983-05-10 The Foxboro Company Non-imaging optical energy transfer system

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439157A (en) 1966-02-11 1969-04-15 Singer General Precision Point light source
US4054389A (en) * 1976-09-23 1977-10-18 International Business Machines Corporation Spectrophotometer with photodiode array
US4127773A (en) * 1977-03-31 1978-11-28 Applied Photophysics Limited Characterizing and identifying materials
JPS53146112U (zh) 1977-04-23 1978-11-17
US4195932A (en) * 1978-07-03 1980-04-01 Abbott Laboratories Absorption spectrophotometer
JPS5563502U (zh) * 1978-10-23 1980-04-30
JPS57190431U (zh) * 1981-05-29 1982-12-02
JPH02302633A (ja) * 1989-05-17 1990-12-14 Murakami Shikisai Gijutsu Kenkyusho:Kk 半透過性シート固有の分光立体角反射率のオンライン測定方法
DE69023875T2 (de) 1989-09-29 1996-05-15 Waters Investments Ltd Vorrichtung zum Messen der Lichtabsorption oder Fluoreszenz in flüssigen Proben.
US5065025A (en) 1990-03-02 1991-11-12 Axiom Analytical, Inc. Gas sample analysis provided by light pipe radiation structure
US5166755A (en) 1990-05-23 1992-11-24 Nahum Gat Spectrometer apparatus
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5347475A (en) * 1991-09-20 1994-09-13 Amoco Corporation Method for transferring spectral information among spectrometers
US5585626A (en) * 1992-07-28 1996-12-17 Patchen, Inc. Apparatus and method for determining a distance to an object in a field for the controlled release of chemicals on plants, weeds, trees or soil and/or guidance of farm vehicles
US5418366A (en) * 1994-05-05 1995-05-23 Santa Barbara Research Center IR-based nitric oxide sensor having water vapor compensation
JPH0915048A (ja) * 1995-06-28 1997-01-17 Shimadzu Corp 分光光度計
KR100241235B1 (ko) * 1995-12-28 2000-03-02 이구택 다파장 복사온도 측정방법 및 그 장치
US5675411A (en) 1996-05-10 1997-10-07 General Atomics Broad-band spectrometer with high resolution
US5851181A (en) * 1996-08-30 1998-12-22 Esc Medical Systems Ltd. Apparatus for simultaneously viewing and spectrally analyzing a portion of skin
US6324418B1 (en) 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
US6332573B1 (en) 1998-11-10 2001-12-25 Ncr Corporation Produce data collector and produce recognition system
EP1067369B1 (de) * 1999-07-06 2009-12-09 X-Rite Europe GmbH Lichtmessvorrichtung
US6473165B1 (en) 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
US6420708B2 (en) 2000-03-10 2002-07-16 Wilks Enterprise, Inc. Spectroscopy analyzer using a detector array
US6785002B2 (en) * 2001-03-16 2004-08-31 Optical Coating Laboratory, Inc. Variable filter-based optical spectrometer
JP2004530123A (ja) 2001-03-27 2004-09-30 ユーロ−セルティーク,エス.エイ. Atrクリスタル装置
US20030071998A1 (en) * 2001-10-04 2003-04-17 Krupka F. Jeffrey Color measurement device
WO2003037178A2 (en) * 2001-10-29 2003-05-08 Optiscan Biomedical Corporation Window assembly for thermal gradient spectrometer
US6903813B2 (en) 2002-02-21 2005-06-07 Jjl Technologies Llc Miniaturized system and method for measuring optical characteristics
US7033056B2 (en) 2002-05-03 2006-04-25 Projectiondesign As Multi-lamp arrangement for optical systems
DE10392852T5 (de) 2002-06-21 2013-10-02 Wavien, Inc. Beleuchtungssystem mit mehreren Lampen
JP3887592B2 (ja) * 2002-09-30 2007-02-28 シチズンセイミツ株式会社 液晶表示装置
US7218395B2 (en) 2003-04-16 2007-05-15 Optopo Inc. Rapid pharmaceutical identification and verification system
US7113265B1 (en) 2003-05-20 2006-09-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Powder handling device for analytical instruments
US20050007596A1 (en) 2003-07-11 2005-01-13 Wilks Enterprise, Inc. Apparatus and method for increasing the sensitivity of in-line infrared sensors
US7459713B2 (en) 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
US7252399B2 (en) 2003-08-14 2007-08-07 Jds Uniphase Corporation Folding converging light into a lightpipe
JP4304483B2 (ja) * 2004-03-24 2009-07-29 住友金属鉱山株式会社 分光素子
EP1789762A2 (en) * 2004-08-30 2007-05-30 Ahura Corporation Use of free-space coupling between laser assembly, optical probe head assembly, spectrometer assembly and/or other optical elements for portable optical applications such as raman instruments
US7420663B2 (en) 2005-05-24 2008-09-02 Bwt Property Inc. Spectroscopic sensor on mobile phone
KR20070015872A (ko) * 2005-08-01 2007-02-06 아바고 테크놀로지스 제너럴 아이피 (싱가포르) 피티이 리미티드 표면 조명의 방법 및 장치
US7295293B2 (en) * 2005-10-21 2007-11-13 Hewlett-Packard Development Company, L.P. Apparatus and method for testing a reflector coating
WO2007061435A1 (en) 2005-11-28 2007-05-31 University Of South Carolina Method of high-speed monitoring based on the use of multivariate optical elements
US7671985B1 (en) 2006-03-13 2010-03-02 Milan Milosevic Device for small spot analysis using fiber optic interfaced spectrometers
US8368034B2 (en) * 2006-06-29 2013-02-05 Cdex, Inc. Substance detection, inspection and classification system using enhanced photoemission spectroscopy
US8360771B2 (en) 2006-12-28 2013-01-29 Therametric Technologies, Inc. Handpiece for detection of dental demineralization
WO2009012352A1 (en) 2007-07-18 2009-01-22 Bruker Biosciences Corporation Handheld spectrometer including wireless capabilities
KR101502304B1 (ko) * 2007-08-01 2015-03-13 어플라이드 머티어리얼스, 인코포레이티드 기판 상의 박막들을 식별하기 위한 방법들 및 장치
US7839504B1 (en) * 2007-08-09 2010-11-23 Ball Aerospace & Technologies Corp. Multiple order common path spectrometer
FI20075622A0 (fi) * 2007-09-07 2007-09-07 Valtion Teknillinen Spektrometri ja menetelmä liikkuvan näytteen mittaukseen
US8203769B2 (en) * 2008-10-10 2012-06-19 Xerox Corporation In-line linear variable filter based spectrophotometer
US8242462B2 (en) 2009-01-23 2012-08-14 Lumencor, Inc. Lighting design of high quality biomedical devices
EP2417435A4 (en) * 2009-04-07 2014-09-10 Rare Light Inc DEVICES, SYSTEMS AND METHODS FOR PERI-CRITICAL REFLECTION SPECTROSCOPY
US20120184827A1 (en) 2009-06-16 2012-07-19 Shoulamit Cohen Shwartz Miniature disease optical spectroscopy diagnostic system
EP2388581A1 (de) * 2010-05-17 2011-11-23 Airsense Analytics GmbH Vorrichtung und Verfahren zur Detektion von Gefahrstoffen mit wenigstens zwei an eine Auswerteeinheit verbundenen austauschbaren Sensorelementen
JP5736672B2 (ja) * 2010-06-03 2015-06-17 株式会社ニコン 光学部品及び分光測光装置
US20110312851A1 (en) * 2010-06-17 2011-12-22 Geneasys Pty Ltd Device for high density spotting of oligonucleotides
US20140247442A1 (en) 2010-07-27 2014-09-04 Microptix Technologies, Llc Spectroradiometer device and applications of same
TWM400587U (en) * 2010-09-03 2011-03-21 Xin-Yue Song Miniature spectroscope
DE102010063412B4 (de) * 2010-12-17 2013-06-06 Laser Zentrum Hannover E.V. Technik zur tomographischen Bilderfassung
US8455827B1 (en) 2010-12-21 2013-06-04 Edc Biosystems, Inc. Method and apparatus for determining the water content of organic solvent solutions
JP2012141442A (ja) * 2010-12-28 2012-07-26 Sony Corp レンズ保護装置、レンズユニット及び撮像装置
US8797529B2 (en) 2011-01-25 2014-08-05 Ocean Optics, Inc. Spectrometer design for aberration correction, simplified manufacture, and compact footprint
TWI453380B (zh) * 2011-11-18 2014-09-21 Wang Sheng Method of manufacturing spectrometer
EP2883039A1 (en) * 2012-08-10 2015-06-17 Streck Inc. Real-time optical system for polymerase chain reaction
US9885655B2 (en) 2012-11-13 2018-02-06 Viavi Solutions Inc. Spectrometer with a relay lightpipe
EP2920562B1 (en) 2012-11-13 2020-09-30 Viavi Solutions Inc. Portable spectrometer
WO2014165331A1 (en) * 2013-03-21 2014-10-09 Jds Uniphase Corporation Spectroscopic characterization of seafood

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382656A (en) * 1980-11-12 1983-05-10 The Foxboro Company Non-imaging optical energy transfer system

Also Published As

Publication number Publication date
TW201804135A (zh) 2018-02-01
US9234839B2 (en) 2016-01-12
WO2014078426A1 (en) 2014-05-22
US20140131578A1 (en) 2014-05-15
CN107345835A (zh) 2017-11-14
KR101988697B1 (ko) 2019-06-12
US20170336319A1 (en) 2017-11-23
JP6371774B2 (ja) 2018-08-15
KR20150081337A (ko) 2015-07-13
EP2920562A4 (en) 2016-07-20
CN107345835B (zh) 2019-11-08
JP2016502076A (ja) 2016-01-21
TWI593950B (zh) 2017-08-01
KR20200039754A (ko) 2020-04-16
EP2920562A1 (en) 2015-09-23
US10222325B2 (en) 2019-03-05
TW201730531A (zh) 2017-09-01
US9671330B2 (en) 2017-06-06
HK1211340A1 (zh) 2016-05-20
JP6605074B2 (ja) 2019-11-13
TWI659198B (zh) 2019-05-11
TW201428260A (zh) 2014-07-16
KR102089734B1 (ko) 2020-03-16
EP3722758B1 (en) 2023-11-01
TWI609172B (zh) 2017-12-21
EP2920562B1 (en) 2020-09-30
KR20190064682A (ko) 2019-06-10
KR102171418B1 (ko) 2020-10-29
US20160116399A1 (en) 2016-04-28
EP3722758A1 (en) 2020-10-14
CN104797911A (zh) 2015-07-22
JP2018169401A (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
CN104797911B (zh) 便携式分光计
US10060849B2 (en) Optical analyzer for identification of materials using transmission spectroscopy
US8859969B2 (en) Optical analyzer for identification of materials using reflectance spectroscopy
US6630999B2 (en) Color measuring sensor assembly for spectrometer devices
CN104040309A (zh) 用于最终使用者食品分析的低成本光谱测定系统
JP2017120248A (ja) 光学検出装置
CN108333123A (zh) 一种基于mim波导技术的cmos光谱仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1211340

Country of ref document: HK

CB02 Change of applicant information

Address after: No. 430 California Milpitas Boulevard Mccarthy

Applicant after: VIAVI TECHNOLOGY CO., LTD

Address before: No. 430 California Milpitas Boulevard Mccarthy

Applicant before: Flex Products Inc. A. JDS Unipha

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1211340

Country of ref document: HK

CP01 Change in the name or title of a patent holder

Address after: No. 430 California Milpitas Boulevard Mccarthy

Patentee after: Only Yahweh Communication Technology Co Ltd

Address before: No. 430 California Milpitas Boulevard Mccarthy

Patentee before: VIAVI SOLUTIONS INC.

CP01 Change in the name or title of a patent holder