CN104794303B - 平面双材料圆环界面应力奇异性特征值的分析方法 - Google Patents

平面双材料圆环界面应力奇异性特征值的分析方法 Download PDF

Info

Publication number
CN104794303B
CN104794303B CN201510222024.6A CN201510222024A CN104794303B CN 104794303 B CN104794303 B CN 104794303B CN 201510222024 A CN201510222024 A CN 201510222024A CN 104794303 B CN104794303 B CN 104794303B
Authority
CN
China
Prior art keywords
mrow
msub
stress
double
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510222024.6A
Other languages
English (en)
Other versions
CN104794303A (zh
Inventor
翟华
郝予琛
解胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201510222024.6A priority Critical patent/CN104794303B/zh
Publication of CN104794303A publication Critical patent/CN104794303A/zh
Application granted granted Critical
Publication of CN104794303B publication Critical patent/CN104794303B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种平面双材料圆环界面应力奇异性特征值的分析方法,其特征是首先判定近似奇异点,利用选定的可行方向和计算间隔选取测算点,记录测算点的正应力分量及各测算点到近似奇异点的距离,获得测算点各正应力分量和距离的双对数分布图,根据双对数分布图判断应力奇异性特征值为单解或为双解,在应力奇异性特征值为双解时继续选取测算点的切应力分量,并按相应的方法分析获得应力奇异性特征值。本发明方法能够方便地计算得到双材料圆环界面的应力奇异性特征值。

Description

平面双材料圆环界面应力奇异性特征值的分析方法
技术领域
本发明涉及应力奇异性分析方法,更具体地说是一种平面双材料圆环界面应力奇异性特征值的分析方法。
背景技术
双材料圆环结构作为一种新型复合材料结构,已被广泛地应用于海底石油输送管道等领域。由于两侧材料性能差异性,存在应力奇异场,承受载荷时容易在界面附近形成严重的应力不均,是引起界面裂纹及其脱粘的主要原因。
很多学者基于二维弹性理论,针对平面双材料正交楔形体角点附近应力场的奇异性问题,通过Airy函数得出双材料界面端具有应力奇异性。借助界面端奇异性Dundurs参数,采用Mellin变换可以推导任意接合角组合条件下界面端附近应力奇异性特征方程,确定双材料的材料特性、界面端的几何形状和界面端应力场强度三者之间的相互关系。用界面端特征值λ表征界面端应力场强度,λ最多有6个解,1-λ为应力奇异性次数。应用Goursat复变应力函数,可以推导具有任意几何结合形状的界面端的应力和位移场解析解。已有研究对开式界面应力奇异性次数进行了研究,但对于圆环状的闭式界面并未给出相关的结论。
发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种平面双材料圆环界面应力奇异性特征值的分析方法,以期能够方便地计算得到双材料圆环界面的应力奇异性特征值,为评价平面双材料圆环状闭式界面结构的力学性能提供依据。
本发明为解决技术问题采用如下技术方案:
本发明平面双材料圆环界面应力奇异性特征值的分析方法的特点是按如下步骤进行:
步骤1、在平面双材料圆环界面的应力分布图中取应力集中部分的中心为近似奇异点A;自近似奇异点A起向某一选定方向取一段线段AB作为计算间隔,在所述线段AB中平均选取Z个测算点,设定θ为所述选定方向的极角,设定k为1到Z之间的整数、k=1,2,3......Z,分别记录各测算点到所述近似奇异点A的距离rk以及各测算点的正应力分量σθk,对于所述极角θ以及线段AB的设定,要求所述正应力分量σθk和距离rk满足线性关系,令所述选定方向为可行方向;
步骤2、利用式(1)获得正应力分量σθk和距离rk的双对数分布图P1:
logσθk=C0-(1-λ)logrk (1)
式(1)中:C0为常数,λ为平面双材料圆环界面的应力奇异性特征值;
若所述双对数分布图P1呈直线性,则是只有一个λ值,即为具有单一应力奇异性,求取所述双对数分布图P1的斜率即为特征值λ;反之则是λ为双解,即为具有二重应力奇异性,对于λ为双解继续如下步骤3;
步骤3、对于λ为双解:在线段AB中选取所述Z个测算点的切应力分量τrθk,并要求所述切应力分量τrθk与距离rk同样具有线性关系,否则返回步骤1,选定不同的可行方向和计算间隔重新操作,直至切应力分量τrθk与距离rk具有线性关系,则有:
式(2)中:B1和B2为常数,λ1和λ2为平面双材料圆环界面的两个应力奇异性特征值,系数A1和A2的值由步骤4确定;
步骤4、在Z个测算点中选取距离rk成等比数列的三个点,分别为M点、N点和O点,令M点、N点和O点与近似奇异点A的距离分别为r0,ρr0,ρ2r0,其中ρ为比例系数;令M点的正应力分量和切应力分量分别为σθM和τrθM;N点的正应力分量和切应力分量分别为σθN和τrθN;O点的正应力分量和切应力分量分别为σθO和τrθO,则将式(2)转换为式(3):
式(3)中:b=σθMτrθOθOτrθM-2σθNτrθN当b2=4ac时,A1和A2为重根;当b2>4ac时,A1和A2为两个实根;当b2<4ac时,A1和A2为一对共轭复根;
至少取10组不同的r0与ρ值,分别计算各组A1和A2,要求求得的各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05,否则返回步骤1,选定不同的可行方向和计算间隔重新操作,直至各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05;取各组A1的平均数为终值取各组A2的平均数为终值
步骤5、所述终值具有如下三种不同的形式
形式一:为重根,表明近似奇异点A仅具有单一应力奇异性,即为步骤2中具有单一应力奇异性的情形;
形式二:为两个实根,则有式(4):
利用式(4)获得测算点各组合应力分量n=1,2和距离rk的双对数分布图P2;若是所述双对数分布图P2中两个图像均呈直线性,求取所述双对数分布图P2中两个图像的斜率即分别为实数特征值λ1和λ2,同时表明该圆环界面具有二重实应力奇异性;
形式三:为一对共轭复根,特征值λ1和λ2也为一对共轭复数;令:
λ1=λRMi,λ2=λRMi;其中AR的实部,AM的虚部;λR为λ1和λ2的实部,λM为λ1和λ2的虚部;i为虚数单位;则有:
式(5)中:e为自然常数,D1和D2为常数;
利用式(5)分别获得测算点各组合应力分量σ0和距离rk以及ψ0和距离rk的双对数分布图P3;若是所述双对数分布图P3中两个图像均呈直线性,求解所述双对数分布图P3中两个图像的斜率分别为λR和λM,最终得到两个共轭复数特征值λ1和λ2,同时表明该圆环界面具有二重振荡应力奇异性。
与已有技术相比,本发明有益效果体现在:
1、本发明能够方便地计算得到双材料圆环界面的应力奇异性特征值,为评价平面双材料圆环状闭式界面结构的力学性能提供了依据,也可以为双材料圆环结构材料组合的选择和设计提供依据。
2、本发明方法中采用数值分析方法,引入了测算点,其过程简单、易于操作;采用近似奇异点代替奇异点,显著简化了计算过程。
3、本发明方法对于可行方向以及对应的计算间隔的选取进行了多重限定,提高精确性。
4、本发明方法中选取测算点中多组成等比数列的三个点分别进行A1值和A2值的计算,并检验各组A1值和A2值之间的差值,通过求取平均数的方法得到终值,避免了偶然性,进一步提高了精确性。
5、本发明方法中采用图像法,利用双对数分布图判断并计算应力奇异性特征值,直观可视,进一步简化了计算过程。
附图说明
图1为本发明方法中涉及的平面双材料圆环结构的应力分布图;
图2为本发明方法中平面双材料圆环结构的应力集中图;
图3为本发明方法中单一应力分量的双对数分布图P1;
图4为本发明方法中组合应力分量的双对数分布图P2;
表1为本发明方法中等比数列点组及其相对应的A1值和A2值。
具体实施方式
本实施例中平面双材料圆环界面应力奇异性特征值的分析方法是按如下过程进行:
步骤1:在平面双材料圆环界面的应力分布图中取应力集中部分的中心为近似奇异点A,圆环界面的应力奇异点很难精确地确定,可以确定的是应力奇异点一定在应力集中部分中心的附近,因此本实施例中用近似奇异点代替奇异点,以此显著简化计算过程,并且对计算结果不产生影响;自近似奇异点A起向某一选定方向取一段线段AB作为计算间隔,在线段AB中平均选取Z个测算点,设定θ为选定方向的极角,设定k为1到Z之间的整数、k=1,2,3......Z,分别记录各测算点到近似奇异点A的距离rk以及各测算点的正应力分量σθk,对于极角θ以及线段AB的设定,要求正应力分量σθk和距离rk满足线性关系,令选定方向为可行方向;若是正应力分量σθk和距离rk不满足线性关系,则表明取定的可行方向和计算间隔远离应力奇异性所影响的区域,此时选定的测算点不能用来计算应力奇异性特征值,故必须重新选定可行方向和计算间隔;测算点、各测算点到近似奇异点A的距离rk以及各测算点的正应力分量σθk的选取可以借助于通用的有限元软件。
步骤2:利用式(1)获得正应力分量σθk和距离rk的双对数分布图P1:
logσθk=C0-(1-λ)logrk (1)
式(1)中:C0为常数,λ为平面双材料圆环界面的应力奇异性特征值;
经大量计算发现,平面圆环结构普遍只具有单解或双解;若是双对数分布图P1呈直线性,则是只有一个λ值,即为具有单一应力奇异性,求取双对数分布图P1的斜率即为特征值λ;反之则是λ为双解,即为具有二重应力奇异性;对于λ为双解继续如下步骤3;
步骤3:对于λ为双解:在线段AB中选取Z个测算点的切应力分量τrθk,并要求切应力分量τrθk与距离rk同样具有线性关系,否则返回步骤1,选定不同的可行方向和计算间隔重新操作,直至切应力分量τrθk与距离rk具有线性关系,这一方式是为了保证可行方向和计算间隔在应力奇异性所影响的区域内,从而进一步保证测算点的有效性,则有:
式(2)中:B1和B2为常数,λ1和λ2为平面双材料圆环界面的两个应力奇异性特征值,系数A1和A2的值由步骤4确定;
步骤4、在Z个测算点中选取距离rk成等比数列的三个点,分别为M点、N点和O点,令M点、N点和O点与近似奇异点A的距离分别为r0,ρr0,ρ2r0,其中ρ为比例系数;令M点的正应力分量和切应力分量分别为σθM和τrθM;N点的正应力分量和切应力分量分别为σθN和τrθN;O点的正应力分量和切应力分量分别为σθO和τrθO,则将式(2)转换为式(3):
式(3)中:b=σθMτrθOθOτrθM-2σθNτrθN
当b2=4ac时,A1和A2为重根;当b2>4ac时,A1和A2为两个实根;当b2<4ac时,A1和A2为一对共轭复根;
至少取10组不同的r0与ρ值,分别计算各组A1和A2,要求求得的各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05,否则返回步骤1,选定不同的可行方向和计算间隔重新操作,直至各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05;取多组不同的r0与ρ值,并要求各组A1和A2值的相关性,这样既可以避免计算中的偶然性,又可以减小通用有限元软件计算模拟的误差;一旦各组A1和A2值的相关性不满足要求,则同样表明取定的可行方向和计算间隔远离应力奇异性所影响的区域,此时选定的测算点不能用来计算应力奇异性特征值,故必须返回步骤1重新操作;取各组A1的平均数为终值取各组A2的平均数为终值
步骤5、终值具有如下三种不同的形式
形式一:为重根,表明近似奇异点A仅具有单一应力奇异性,即为步骤2中具有单一应力奇异性的情形;
形式二:为两个实根,则有式(4):
利用式(4)获得测算点各组合应力分量n=1,2和距离rk的双对数分布图P2;若是双对数分布图P2中两个图像均呈直线性,求取双对数分布图P2中两个图像的斜率即分别为实数特征值λ1和λ2,同时表明该圆环界面具有二重实应力奇异性;
形式三:为一对共轭复根,特征值λ1和λ2也为一对共轭复数;令:
λ1=λRMi,λ2=λRMi;其中AR的实部,AM的虚部;λR为λ1和λ2的实部,λM为λ1和λ2的虚部;i为虚数单位;则有:
式(5)中:e为自然常数,D1和D2为常数;
利用式(5)分别获得测算点各组合应力分量σ0和距离rk以及ψ0和距离rk的双对数分布图P3;若是双对数分布图P3中两个图像均呈直线性,求解双对数分布图P3中两个图像的斜率分别为λR和λM,最终得到两个共轭复数特征值λ1和λ2,同时表明该圆环界面具有二重振荡应力奇异性。
参见图1,本实施例中在内圆环1和外圆环2之间形成有平面双材料圆环界面3,其中内圆环1为6061-T651铝合金、外圆环2为AZ91D镁合金,材料参数分别为:镁合金剪切模量G1=16.67GPa,泊松比ν1=0.35;铝合金剪切模量G2=26.69GPa,泊松比ν2=0.3。如图1所示,圆环界面的应力奇异点具有对称性,故只计算圆环界面上的一个奇异点,即图1所示的第二象限中的奇异点,图2为其局部放大图,具体实施步骤如下:
第1步、在平面双材料圆环界面的应力分布图中取应力集中部分的中心为近似奇异点A;自近似奇异点A起向某一选定方向取一段线段AB作为计算间隔,线段AB长度取定为0.76mm;在线段AB中平均选取50个测算点,即Z取定为50,选定方向的极角θ取定为0.75π,设定k为1到50之间的整数、k=1,2,3......50,可行方向选定为由近似奇异点指向圆心;分别记录各测算点到近似奇异点A的距离rk以及各测算点的正应力分量σθk,经检验近似奇异点A的距离rk以及各测算点的正应力分量σθk满足线性关系;
第2步、利用式(1)获得正应力分量σθk和距离rk的双对数分布图P1;如图3所示,双对数分布图P1不呈直线性,则表明该圆环界面具有二重应力奇异性,即λ有双解;
第3步、在线段AB中选取50个测算点的切应力分量τrθk,经检验所述切应力分量τrθk与距离rk同样具有线性关系;
第4步、在50个测算点中选取距离rk成等比数列的三个点,分别为M点、N点和O点,令M点、N点和O点与近似奇异点A的距离分别为r0,ρr0,ρ2r0,其中ρ为比例系数;令M点的正应力分量和切应力分量分别为σθM和τrθM;N点的正应力分量和切应力分量分别为σθN和τrθN;O点的正应力分量和切应力分量分别为σθO和τrθO,本实施例选取其中11组成等比数列的测算点,并将各组M点、N点和O点的应力分量带入式(3),分别计算各组A1和A2值,具体r0和ρ的取值及相对应的计算所得的A1和A2值如表1所示。经检验求得各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05,取各组A1的平均数为终值取各组A2的平均数为终值分别为
第5步、由于求得的为两个实根,将其带入式(4),并利用式(4)获得测算点各组合应力分量n=1,2和距离rk的双对数分布图P2;如图4所示,双对数分布图P2呈直线性,求取双对数分布图P2中两个图像的斜率,分别得到实数特征值λ1=0.9332、λ2=0.9455;同时表明本例中该圆环界面具有二重实应力奇异性。
表1

Claims (1)

1.平面双材料圆环界面应力奇异性特征值的分析方法,其特征按如下步骤进行:
步骤1、在平面双材料圆环界面的应力分布图中取应力集中部分的中心为近似奇异点A;自近似奇异点A起向某一选定方向取一段线段AB作为计算间隔,在所述线段AB中平均选取Z个测算点,设定θ为所述选定方向的极角,设定k为1到Z之间的整数、k=1,2,3......Z,分别记录各测算点到所述近似奇异点A的距离rk以及各测算点的正应力分量σθk,对于所述极角θ以及线段AB的设定,要求所述正应力分量σθk和距离rk满足线性关系,令所述选定方向为可行方向;
步骤2、利用式(1)获得正应力分量σθk和距离rk的双对数分布图P1:
logθk=C0-(1-λ)logrk (1)
式(1)中:C0为常数,λ为平面双材料圆环界面的应力奇异性特征值;
若所述双对数分布图P1呈直线性,则是只有一个λ值,即为具有单一应力奇异性,求取所述双对数分布图P1的斜率即为特征值λ;反之则是λ为双解,即为具有二重应力奇异性,对于λ为双解继续如下步骤3;
步骤3、对于λ为双解:在线段AB中选取所述Z个测算点的切应力分量τrθk,并要求所述切应力分量τrθk与距离rk同样具有线性关系,否则返回步骤1,选定不同的可行方向和计算间隔重新操作,直至切应力分量τrθk与距离rk具有线性关系,则有:
<mrow> <mfenced open = "" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>2</mn> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>B</mi> <mn>1</mn> </msub> <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>B</mi> <mn>2</mn> </msub> <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
式(2)中:B1和B2为常数,λ1和λ2为平面双材料圆环界面的两个应力奇异性特征值,系数A1和A2的值由步骤4确定;
步骤4、在Z个测算点中选取距离rk成等比数列的三个点,分别为M点、N点和O点,令M点、N点和O点与近似奇异点A的距离分别为r0,ρr0,ρ2r0,其中ρ为比例系数;令M点的正应力分量和切应力分量分别为σθM和τrθM;N点的正应力分量和切应力分量分别为σθN和τrθN;O点的正应力分量和切应力分量分别为σθO和τrθO,则将式(2)转换为式(3):
<mrow> <msubsup> <mi>aA</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>bA</mi> <mi>n</mi> </msub> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
式(3)中:b=σθMτrθOθOτrθM-2σθNτrθN
当b2=4ac时,A1和A2为重根;当b2>4ac时,A1和A2为两个实根;当b2<4ac时,A1和A2为一对共轭复根;
至少取10组不同的r0与ρ值,分别计算各组A1和A2,要求求得的各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05,否则返回步骤1,选定不同的可行方向和计算间隔重新操作,直至各组A1值之间相差不超过0.05,并且各组A2值之间亦相差不超过0.05;取各组A1的平均数为终值取各组A2的平均数为终值
步骤5、所述终值具有如下三种不同的形式
形式一:为重根,表明近似奇异点A仅具有单一应力奇异性,即为步骤2中具有单一应力奇异性的情形;
形式二:为两个实根,则有式(4):
<mrow> <mfenced open = "" close = "}"> <mtable> <mtr> <mtd> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mover> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>logr</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> <mo>-</mo> <mover> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>&amp;tau;</mi> <mrow> <mi>r</mi> <mi>&amp;theta;</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>logr</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
利用式(4)获得测算点各组合应力分量n=1,2和距离rk的双对数分布图P2;若是所述双对数分布图P2中两个图像均呈直线性,求取所述双对数分布图P2中两个图像的斜率即分别为实数特征值λ1和λ2,同时表明该圆环界面具有二重实应力奇异性;
形式三:为一对共轭复根,特征值λ1和λ2也为一对共轭复数;令:
λ1=λRMi,λ2=λRMi;其中AR的实部,AM的虚部;λR为λ1和λ2的实部,λM为λ1和λ2的虚部;i为虚数单位;则有:
<mrow> <mfenced open = "" close = "}"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>log&amp;sigma;</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mi>R</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>logr</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mn>0</mn> </msub> <mi>log</mi> <mi>e</mi> <mo>=</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mi>M</mi> </msub> <msub> <mi>logr</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
式(5)中:e为自然常数,D1和D2为常数;
利用式(5)分别获得测算点各组合应力分量σ0和距离rk以及ψ0和距离rk的双对数分布图P3;若是所述双对数分布图P3中两个图像均呈直线性,求解所述双对数分布图P3中两个图像的斜率分别为λR和λM,最终得到两个共轭复数特征值λ1和λ2,同时表明该圆环界面具有二重振荡应力奇异性。
CN201510222024.6A 2015-04-30 2015-04-30 平面双材料圆环界面应力奇异性特征值的分析方法 Active CN104794303B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510222024.6A CN104794303B (zh) 2015-04-30 2015-04-30 平面双材料圆环界面应力奇异性特征值的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510222024.6A CN104794303B (zh) 2015-04-30 2015-04-30 平面双材料圆环界面应力奇异性特征值的分析方法

Publications (2)

Publication Number Publication Date
CN104794303A CN104794303A (zh) 2015-07-22
CN104794303B true CN104794303B (zh) 2017-10-03

Family

ID=53559094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510222024.6A Active CN104794303B (zh) 2015-04-30 2015-04-30 平面双材料圆环界面应力奇异性特征值的分析方法

Country Status (1)

Country Link
CN (1) CN104794303B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958126A (zh) * 2017-12-18 2018-04-24 河海大学 一种双材料v型切口应力强度因子的计算方法
CN115577223B (zh) * 2022-09-27 2023-08-01 上海索辰信息科技股份有限公司 一种基于声辐射效率计算的矩形平板统计能量分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003938A (zh) * 2010-10-11 2011-04-06 中国人民解放军信息工程大学 大型高温锻件热态在位检测方法
CN102692429A (zh) * 2011-03-24 2012-09-26 中国科学院沈阳自动化研究所 一种复合材料内部缺陷类型自动识别检测方法
CN103164619A (zh) * 2013-03-06 2013-06-19 陕西电力科学研究院 基于最佳鉴别准则的变电站接地网腐蚀率模式识别方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8612186B2 (en) * 2011-03-01 2013-12-17 Livermore Software Technology Corp. Numerical simulation of structural behaviors using a meshfree-enriched finite element method
NZ712230A (en) * 2013-02-28 2018-06-29 Neil M Day Method and apparatus for particle size determination

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003938A (zh) * 2010-10-11 2011-04-06 中国人民解放军信息工程大学 大型高温锻件热态在位检测方法
CN102692429A (zh) * 2011-03-24 2012-09-26 中国科学院沈阳自动化研究所 一种复合材料内部缺陷类型自动识别检测方法
CN103164619A (zh) * 2013-03-06 2013-06-19 陕西电力科学研究院 基于最佳鉴别准则的变电站接地网腐蚀率模式识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
特征值为二重根的压电材料异材界面端奇异性;王效贵等;《力学季刊》;20010331;第22卷(第1期);第55-61页 *
纤维增强复合材料轴对称界面端的奇异应力场;王效贵等;《复合材料学报》;20091231;第26卷(第6期);第194-200页 *

Also Published As

Publication number Publication date
CN104794303A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
CN105260536B (zh) 焊趾处热点应力的计算方法
CN106896133B (zh) 一种基于等温疲劳和蠕变疲劳的多轴热机械疲劳寿命预测方法
CN109870357B (zh) 一种确定高强铝合金板材成形极限的方法
CN104794303B (zh) 平面双材料圆环界面应力奇异性特征值的分析方法
CN107977516B (zh) 一种考虑多轴载荷非比例度的缺口件局部应力应变确定方法
CN104298808B (zh) 输电铁塔非线性柔性构件的应力计算方法
Dekker et al. A cohesive XFEM model for simulating fatigue crack growth under mixed‐mode loading and overloading
CN106777691B (zh) 用于结构动力学仿真的橡胶o形圈有限元建模方法
CN104648688B (zh) 一种桨叶应变片布置及解耦方法
Marimuthu et al. Design of asymmetric normal contact ratio spur gear drive through direct design to enhance the load carrying capacity
CN104268322A (zh) Weno差分方法的一种边界处理技术
WO2018014454A1 (zh) 一种多点吊装计算方法
CN111090907A (zh) 一种飞行试验转捩判断方法
CN108195672A (zh) 一种材料拉扭破坏应力及破坏面方向的预测方法
CN107063648B (zh) 一种智能光纤光栅法兰螺栓加载监测装置的加载监测方法
CN105606261A (zh) 用于测试混凝土内部三维应力状态的装置及其测试方法
CN104123458A (zh) 一种基于应变能理论的横断型斜裂纹转子变刚度特性计算方法
Smith Use of photoelasticity in fracture mechanics
CN107727350B (zh) 微纳卫星矢量振动试验方法
CN103399974B (zh) 量化比较随机振动仿真数据与实验数据的方法
Batsch et al. Cylindrical gears with increased contact area–proposal of application in watercrafts power transmission systems
CN105631178B (zh) 双台肩钻具接头的极限工作扭矩的确定方法
CN112507485A (zh) 基于切片耦合理论的斜齿轮时变啮合刚度分析方法
Kretzschmar et al. Tensor spines-a hyperstreamlines variant suitable for indefinite symmetric second-order tensors
CN111177848B (zh) 一种基于有限元模型的应变理论值的获取方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Di Hua

Inventor after: Hao Yuchen

Inventor after: Jie Sheng

Inventor before: Di Hua

Inventor before: Jie Sheng

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant