WO2018014454A1 - 一种多点吊装计算方法 - Google Patents

一种多点吊装计算方法 Download PDF

Info

Publication number
WO2018014454A1
WO2018014454A1 PCT/CN2016/102451 CN2016102451W WO2018014454A1 WO 2018014454 A1 WO2018014454 A1 WO 2018014454A1 CN 2016102451 W CN2016102451 W CN 2016102451W WO 2018014454 A1 WO2018014454 A1 WO 2018014454A1
Authority
WO
WIPO (PCT)
Prior art keywords
gravity
ratio
center
force
lifting
Prior art date
Application number
PCT/CN2016/102451
Other languages
English (en)
French (fr)
Inventor
柴松
郭志彬
袁辉
茅鑫花
董晓程
安文新
魏华清
沈建荣
陈其中
Original Assignee
惠生(南通)重工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠生(南通)重工有限公司 filed Critical 惠生(南通)重工有限公司
Publication of WO2018014454A1 publication Critical patent/WO2018014454A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the invention relates to a calculation method for a lifting point of a steel structure.
  • Multi-point lifting is a static problem. It is impossible to solve the force of each lifting point by solving the simple mechanical equation. Although the deflection equation can accurately solve the force of the lifting point, the solution is relatively complicated and the input conditions are more. Accurate input of structural dimensions and material properties of each section of the structure, as well as accurate weight distribution.
  • the calculation software can also solve the stress of the lifting point, but it is necessary to model the analysis object one by one, which significantly increases the calculation time and workload of the lifting, which is inconvenient to use in practice. Therefore, there is a need for a calculation method that satisfies both the accuracy requirements of the project and is easy to use.
  • the technical problem to be solved by the present invention is to provide a new calculation method for large-scale structure multi-point lifting to improve the accuracy and calculation efficiency of the calculation result.
  • a multi-point lifting calculation method of the present invention includes the following steps:
  • the analysis object is simplified to a one-dimensional beam model in the length direction;
  • the beam model is divided into several segments
  • the analysis object is simplified into a one-dimensional beam model in the width direction;
  • the input parameters required for the calculation in the above steps include only the size of the analysis object, the total weight, the position of the center of gravity, the arrangement of the suspension points, and the ratio of the weights of the segments.
  • the stop condition in the above step is that the difference between the estimated center of gravity and the actual value of the center of gravity reaches 0.0001.
  • the method of the invention can meet the precision requirements of the project and is easy to use.
  • Figure 1 is a flow chart of the present invention
  • FIG. 2 is a schematic diagram of an analysis object model having m and n lifting points respectively in a simplified two-dimensional length and width direction;
  • Figure 3 is a flow chart for calculating the length or width direction of the analysis object
  • FIG. 4 is a structural diagram of an analysis object according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a simplified two-dimensional model of the embodiment
  • Figure 6 is a schematic diagram of a simplified one-dimensional model of the embodiment.
  • ⁇ X g stopping condition e.g. 0.0001
  • each segment is distributed to the adjacent lifting point to obtain an approximate value of the force at the lifting point in the longitudinal direction.
  • the total weight of the structure G and the estimated ratio of the force at each lifting point can be estimated.
  • the difference ⁇ X g between the actual value and the actual value After using the revised
  • the above calculation process is repeated until ⁇ X g satisfies the stop condition (eg, 0.0001), and the calculation is stopped.
  • Figure 5 shows a simplified schematic of a two dimensional model of an embodiment.
  • Fig. 6 shows a simplified schematic diagram of a one-dimensional model of the first embodiment of the present invention.
  • R1 to R4 indicate the force at the lifting point
  • G1 to G3 indicate the actual weights of the members between the adjacent columns, which respectively satisfy the following relationship:
  • G represents the weight of the entire structure. Then, based on the actual situation (profile, component size, etc.), the ratio of G 1 , G 2 , and G 3 is estimated initially. Then there is
  • X 1 , X 2 , and X 3 represent the positions of the center of gravity corresponding to G 1 , G 2 , and G 3 , respectively, and X g * represents the position of the center of gravity of the estimated entire structure.
  • X g * is estimated, X g * ⁇ X g ; X g represents the actual center of gravity position of the entire structure.
  • R 1 G ⁇ kr 1 ;
  • R 2 G ⁇ kr 2 ;
  • R 3 G ⁇ kr 3 ;
  • R 4 G ⁇ kr 4
  • R 11 , R 21 , R can be calculated from R 1 , R 2 , R 3 , and R 4 , respectively. 12 , R 22 , R 13 , R 23 , R 14 , R 24 , that is, the force of all lifting points, as shown in Figure 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Complex Calculations (AREA)
  • Testing Of Balance (AREA)

Abstract

一种多点吊装计算方法,包括:模型简化,输入长度、宽度方向重量分布的估值,对输入的估值进行计算并求得重心估计值与真实值之差,利用重心的差值进行反复修正直到满足停止条件后,输出结果。该方法既能满足工程的精度要求,又易于使用。

Description

一种多点吊装计算方法 技术领域
本发明涉及一种针对钢结构吊点的计算方法。
背景技术
对于大型工程结构的吊装,通常需要设置4个以上的吊点,并且吊点的设置需要考虑吊装过程中的变形以及受力特点,符合结构的实际情况。因此,在对大型结构进行多点吊装之前,需要对吊点受力进行计算和分析。
多点吊装属于超静定问题,无法通过解简单力学方程求出各吊点的受力;增加挠度方程虽然可以准确解出吊点的受力,但解法相对较为复杂,输入条件较多,需要准确输入结构的各剖面的结构尺寸和材料属性,以及准确的重量分布。使用计算软件也可以解出吊点的受力,但需要事先对分析对象一一进行建模,显著增加了吊装计算时间和工作量,在实际中使用并不方便。因此,需要一种既能满足工程的精度要求,又易于使用的计算方法。
发明内容
本发明所要解决的技术问题是提供一种用于大型结构多点吊装的新计算方法,以提高计算结果的准确度和计算效率。
为了解决上述技术问题,本发明的一种多点吊装计算方法,包括以下步骤:
a.分析对象在长度方向上简化为一维梁模型;
b.根据吊点布置,将梁模型分成若干段;
c.输入各段重量之比的估值;
d.根据各段重量,估算重心位置;
e.根据重心估算值与真实值之差,修正各段重量之比,重复步骤d~e直至满足停止条件;
f.输出各段重量,估算吊点受力之比;
g.根据吊点受力,估算重心位置;
h.根据重心估算值与真实值之差,修正吊点受力之比,重复步骤g~h直至满足停止条件;
i.输出长度方向吊点受力之比;
j.分析对象在宽度方向上简化为一维梁模型;
k.重复步骤b~h;
l.输出宽度方向吊点受力之比;
m.根据长、宽方向上吊点受力之比及总重量进行计算,输出各吊点受力计算结果。
上述步骤中计算所需的输入参数仅包括分析对象的尺寸、总重量、重心位置、吊点布置及各段重量之比的估值。
上述步骤中停止条件为重心估计值与重心实际值之差达到0.0001。
本发明的方法既能满足工程的精度要求,又易于使用。
附图说明
图1为本发明的流程图;
图2为简化后的二维长度和宽度方向分别有m和n个吊点的分析对象模型示意图;
图3为分析对象长度或宽度方向计算流程图;
图4为本发明一种实施例的分析对象结构图;
图5为实施例简化后二维模型示意图;
图6为实施例简化后一维模型示意图。
具体实施方式
考虑到吊点受力计算的实际需求,对垂向的结构进行简化,可以将三维的结构实体转化为二维的平面模型,并不会对结果产生影响。吊点的布置需要考虑结构的实际特点,假设简化后的二维模型长度和宽度方向分别有m和n个吊点,则在长度和宽度方向上分别有(m-1)和(n-1)段,见图2。
下一步,需要对长度和宽度方向分别进行计算。
首先仅考虑长度方向,计算流程如图3。
将二维模型的重量分布到一维的情况下,可设(m-1)段的各段重量之间的比值满足 k=G1:G2:...:Gm-1,其中G=G1+G2+...+Gm-1为结构的总重量。接下来,根据结构的实际形状和设备管线布置特点,给出各段重量之比的估计值,即
Figure PCTCN2016102451-appb-000001
根据力矩平衡原理,可以通过结构总重量G、各段重量之比的估计值k*、各段的实际长度Xi(i=1,...,m-1),计算得到结构重心在长度方向上的近似值
Figure PCTCN2016102451-appb-000002
结构的实际重心Xg通常是已知的,因此可以利用重心近似值和实际值之间的差值ΔXg,修正各段重量比值k*。接着,利用修正后的k*重复上述计算过程,直到ΔXg满足停止条件(如0.0001)后,停止计算。
将各段重量分布到相邻的吊点上,得到长度方向上吊点受力的近似值
Figure PCTCN2016102451-appb-000003
同样根据力矩平衡原理,可以通过结构总重量G、各吊点受力之比的估计值
Figure PCTCN2016102451-appb-000004
各段的实际长度Xi(i=1,...,m-1),重新计算结构重心在长度方向上的近似值
Figure PCTCN2016102451-appb-000005
利用重心近似值
Figure PCTCN2016102451-appb-000006
和实际值之间的差值ΔXg,修正之前给出的各段重量比值
Figure PCTCN2016102451-appb-000007
之后,利用修正后的
Figure PCTCN2016102451-appb-000008
重复上述计算过程,直到ΔXg满足停止条件(如0.0001)后,停止计算。最终,得到长度方向上各吊点的受力ki=Ri1:Ri2:...:Rij(j=1,...,m-1)。
采用同样的方法来计算宽度方向上吊点的受力。首先对宽度方向上各段重量的比值进行估计并计算宽度方向上重心的估计值,然后利用重心估计值与真实值之间的差值来修正宽度方向上各段重量的比值,直至满足停止条件。将最终得到的各段重量分布到宽度方向上的各个吊点。再利用宽度方向上各吊点受力之比计算重心并进行迭代修正,最后得到宽度方向上各吊点受力之比kj=R1j:R2j:...:Rij(i=1,...,n-1)。
根据长、宽方向上各吊点受力的比值ki、kj,以及分析对象的总重量,计算出所有吊点的受力值Rij(i=1,...,n-1;j=1,...,m-1)。
以图4的结构作为本发明方法的实施例。
图5显示了实施例的简化后的二维模型示意图。图中,Rij(i=1,2;j=1,2,3,4)表示吊 点受力,a、b、c表示相邻吊点的间距。
图6显示了本发明的第一实施例的简化后的一维模型示意图。图中,R1~R4表示吊点受力,G1~G3表示相邻立柱间构件的实际重量,分别满足如下关系:
R1+R2+R3+R4=G1+G2+G3=G          (1)
式中,G表示整个结构的重量。然后,根据实际情况(型材、构件尺寸等)初步估计G1、G2、G3的比值,即令
Figure PCTCN2016102451-appb-000009
于是有
Figure PCTCN2016102451-appb-000010
接下来,根据力矩平衡原理可知
Figure PCTCN2016102451-appb-000011
式中,X1、X2、X3分别表示G1、G2、G3所对应的重心位置,Xg *表示估算得到的整个结构的重心位置。
由于Xg *是估算得到,因此Xg *≠Xg;Xg表示整个结构实际的重心位置。
若Xg *<Xg,令
Figure PCTCN2016102451-appb-000012
式中,ΔXg表示重心修正量;η是收敛系数。通过利用ΔXg可以重新计算
Figure PCTCN2016102451-appb-000013
Figure PCTCN2016102451-appb-000014
将得到的k1,k2,k3代入式(3)重复上述过程,直到满足下述条件时停止计算
Figure PCTCN2016102451-appb-000015
如果Xg *>Xg,同理仍利用式(4)计算ΔXg,然后代入下式重新计算
Figure PCTCN2016102451-appb-000016
Figure PCTCN2016102451-appb-000017
将得到的k1,k2,k3代入式(3)重复上述过程,直到满足停止条件。
当计算满足停止条件后,将最终得到的k1,k2,k3代入式(2)可以得到修正后的
Figure PCTCN2016102451-appb-000018
Figure PCTCN2016102451-appb-000019
下一步,将修正后的
Figure PCTCN2016102451-appb-000020
分配按照下述公式分配到相邻的吊点上,即
Figure PCTCN2016102451-appb-000021
式中,
Figure PCTCN2016102451-appb-000022
表示由各段重量分配得到的吊点受力,a、b、c表示相邻吊点的间距,λ是分配系数,本实施例中取λ=0.6。
根据力矩平衡原理可得
Figure PCTCN2016102451-appb-000023
式中,
Figure PCTCN2016102451-appb-000024
表示由吊点受力估算得出的重心位置,a、b、c表示相邻吊点的间距,
Figure PCTCN2016102451-appb-000025
同理,由于
Figure PCTCN2016102451-appb-000026
不是结构的实际重心,因此
Figure PCTCN2016102451-appb-000027
同样可以利用
Figure PCTCN2016102451-appb-000028
与Xg的差值来进行修正,以计算吊点受力R1、R2、R3、R4,具体步骤如下
如果
Figure PCTCN2016102451-appb-000029
Figure PCTCN2016102451-appb-000030
式中,ΔXg表示重心修正量;κ是收敛系数。然后利用ΔXg修正
Figure PCTCN2016102451-appb-000031
Figure PCTCN2016102451-appb-000032
将得到的kr1,kr2,kr3,kr4代入式(10)重复上述过程,直到满足下述条件时停止迭代
Figure PCTCN2016102451-appb-000033
如果Xrg *>Xg,同理仍利用式(11)计算ΔXg,然后代入下式修正
Figure PCTCN2016102451-appb-000034
Figure PCTCN2016102451-appb-000035
将得到的kr1,kr2,kr3,kr4代入式(10)重复上述过程,直到满足停止条件。
计算停止后,根据最终得到的kr1,kr2,kr3,kr4可以计算得到R1、R2、R3、R4,即
R1=G×kr1;R2=G×kr2;R3=G×kr3;R4=G×kr4
接下来,考虑宽度方向。由于本实施例的宽度方向上仅有两个吊点,因此可直接根据力矩平衡原理,得到其比值,即R1j/R2j=(1-s)/s(j=1,2,3,4),式中s表示宽度方向上,重心到R2j(j=1,2,3,4)的距离。
最后,根据R1j/R2j=(1-s)/s(j=1,2,3,4),可由R1、R2、R3、R4分别计算出R11、R21、R12、R22、R13、R23、R14、R24,即所有吊点的受力,如图5。

Claims (3)

  1. 一种多点吊装计算方法,其特征在于:包括以下步骤,
    a.分析对象在长度方向上简化为一维梁模型;
    b.根据吊点布置,将梁模型分成若干段;
    c.输入各段重量之比的估值;
    d.根据各段重量,估算重心位置;
    e.根据重心估算值与真实值之差,修正各段重量之比,重复步骤d~e直至满足停止条件;
    f.输出各段重量,估算吊点受力之比;
    g.根据吊点受力,估算重心位置;
    h.根据重心估算值与真实值之差,修正吊点受力之比,重复步骤g~h直至满足停止条件;
    i.输出长度方向吊点受力之比;
    j.分析对象在宽度方向上简化为一维梁模型;
    k.重复步骤b~h;
    l.输出宽度方向吊点受力之比;
    m.根据长、宽方向上吊点受力之比及总重量进行计算,输出各吊点受力计算结果。
  2. 如权利要求1所述的一种多点吊装计算方法,其特征在于:计算所需的输入参数仅包括分析对象的尺寸、总重量、重心位置、吊点布置及各段重量之比的估值。
  3. 如权利要求1或2所述的一种多点吊装计算方法,其特征在于:停止条件为重心估计值与重心实际值之差达到0.0001。
PCT/CN2016/102451 2016-07-22 2016-10-18 一种多点吊装计算方法 WO2018014454A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610582024.1 2016-07-22
CN201610582024.1A CN106202799A (zh) 2016-07-22 2016-07-22 一种多点吊装计算方法

Publications (1)

Publication Number Publication Date
WO2018014454A1 true WO2018014454A1 (zh) 2018-01-25

Family

ID=57491382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102451 WO2018014454A1 (zh) 2016-07-22 2016-10-18 一种多点吊装计算方法

Country Status (2)

Country Link
CN (1) CN106202799A (zh)
WO (1) WO2018014454A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117520A (zh) * 2018-07-21 2019-01-01 中铁十八局集团有限公司 一种基于bim的缆索吊装布置系统及设计方法
CN113268823A (zh) * 2021-04-13 2021-08-17 中广核工程有限公司 轻量化多点吊装分配器及制造方法
CN114476965A (zh) * 2021-12-31 2022-05-13 中国船舶集团青岛北海造船有限公司 一种超大型船舶总段吊装设计方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107215431A (zh) * 2017-06-29 2017-09-29 中船第九设计研究院工程有限公司 一种豪华邮轮总段吊装眼环布置方法
CN108425501B (zh) * 2017-08-12 2020-05-15 中民筑友科技投资有限公司 一种基于bim的构件吊钉位置确定方法及装置
CN114476943B (zh) * 2022-01-26 2023-03-28 扬州大学 一种风力发电大型构件吊点确定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029528A (ja) * 2007-07-24 2009-02-12 Hitachi Plant Technologies Ltd 多点吊り作業における目標荷重算出方法、およびアクチュエータ選定方法
CN101746672A (zh) * 2009-12-28 2010-06-23 林汉丁 吊点准确设置的恒抬吊力吊装法
CN102452603A (zh) * 2010-10-28 2012-05-16 金海重工股份有限公司 大型船舶上层建筑吊装方法
CN103699748A (zh) * 2013-12-23 2014-04-02 天津市振津工程设计咨询有限公司 撬装化工厂框架吊装点位置的确定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103010954B (zh) * 2012-12-07 2015-11-18 中国建筑第八工程局有限公司 异型预制构件多点吊装方法
CN104746883B (zh) * 2015-03-27 2017-03-08 浙江中南建设集团钢结构有限公司 一种弓型空间桁架用三机抬吊安装施工方法
CN105460774B (zh) * 2016-01-07 2017-10-03 惠生(南通)重工有限公司 一种陆地模块吊装用吊排

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029528A (ja) * 2007-07-24 2009-02-12 Hitachi Plant Technologies Ltd 多点吊り作業における目標荷重算出方法、およびアクチュエータ選定方法
CN101746672A (zh) * 2009-12-28 2010-06-23 林汉丁 吊点准确设置的恒抬吊力吊装法
CN102452603A (zh) * 2010-10-28 2012-05-16 金海重工股份有限公司 大型船舶上层建筑吊装方法
CN103699748A (zh) * 2013-12-23 2014-04-02 天津市振津工程设计咨询有限公司 撬装化工厂框架吊装点位置的确定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117520A (zh) * 2018-07-21 2019-01-01 中铁十八局集团有限公司 一种基于bim的缆索吊装布置系统及设计方法
CN113268823A (zh) * 2021-04-13 2021-08-17 中广核工程有限公司 轻量化多点吊装分配器及制造方法
CN114476965A (zh) * 2021-12-31 2022-05-13 中国船舶集团青岛北海造船有限公司 一种超大型船舶总段吊装设计方法

Also Published As

Publication number Publication date
CN106202799A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018014454A1 (zh) 一种多点吊装计算方法
US20190145803A1 (en) Method and device for acquiring canal flow rate, and computer-readable storage medium
Vizotto Computational generation of free-form shells in architectural design and civil engineering
CN106815424B (zh) 现浇钢筋混凝土管沟的设计方法与系统
CN108614913B (zh) 混凝土单元配筋率的计算方法及装置
JP4788564B2 (ja) 構造物の剛性解析システムおよびそのプログラム
CN107103170A (zh) 基于bim技术的管道支架设计方法
JP2013088365A (ja) 塑性に伴う体積変化に関係するパラメータを考慮した機械特性作成システム
CN112784359A (zh) 薄壁梁约束扭转极限承载力迭代计算方法
Firsanov et al. Energy-consistent theory of cylindrical shells
CN103994747A (zh) 梁形结构拉伸弯曲复合变形场的无基准分布式测量方法
Tian et al. Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes
JP6325865B2 (ja) 部品の破断判定方法、システム及びプログラム、並びに、理論成形限界線図の作成方法
JP6595100B2 (ja) 接続要素の製作寸法を決定する方法及びシステム
CN108532938B (zh) 建筑框架设计方法
JP2016212841A (ja) 熱的連成解析における使用のための方法及び装置
CN108229054B (zh) 一种基于群论的对称张拉整体结构找形方法
JP2017054203A (ja) 構造設計支援装置及び構造設計支援プログラム
CN206581390U (zh) 一种大跨度钢框架结构
Guo et al. Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation
JP2019207486A (ja) 設計支援装置、設計支援方法、設計支援プログラム及びコンクリート構造物の製造方法
JP2015056027A (ja) 2物体間の接触面圧計算方法および2物体間の接触面圧計算コンピュータプログラム
Al-Qasem et al. Comparison between Analytical Equation and Numerical Methods for Determining Shear Stress in a Cantilever Beam
Chen et al. Generalized multiquadrics with optimal shape parameter and exponent for deflection and stress of functionally graded plates
JP7415474B2 (ja) 算出方法、プログラム及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909381

Country of ref document: EP

Kind code of ref document: A1