CN106815424B - 现浇钢筋混凝土管沟的设计方法与系统 - Google Patents
现浇钢筋混凝土管沟的设计方法与系统 Download PDFInfo
- Publication number
- CN106815424B CN106815424B CN201710020927.5A CN201710020927A CN106815424B CN 106815424 B CN106815424 B CN 106815424B CN 201710020927 A CN201710020927 A CN 201710020927A CN 106815424 B CN106815424 B CN 106815424B
- Authority
- CN
- China
- Prior art keywords
- section
- reinforced concrete
- extracted
- concrete pipe
- dimensional model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/13—Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Sewage (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
本发明提供一种现浇钢筋混凝土管沟的设计方法与系统,获取钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,转换为钢筋混凝土管沟二维模型,进行有限元计算,提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力,计算提取截面等效柱截面的弯矩与轴力以及剪力值,对提取截面进行配筋计算,计算不同截面的配筋计算结果,获得现浇钢筋混凝土管沟的设计结果。整个过程中,基于有限元理论将三维模型转化为二维模型进行处理,并对二维模型进行有限元计算,获得提取截面等效柱截面的弯矩与轴力以及剪力值,再对提取截面进行配筋计算,能够实现现浇钢筋混凝土管沟的准确设计。
Description
技术领域
本发明涉及工程设计技术领域,特别是涉及现浇钢筋混凝土管沟的设计方法与系统。
背景技术
钢筋混凝土管沟已广泛应用于各类循环水、排水以及给水等系统中,给人们生产生活带来巨大便利。
以钢筋混凝土管沟应用于核电站循环水系统为例,核电厂循环水系统的钢筋混凝土箱涵有如下几个特点:1)外部荷载大,埋深十几米到二十几米很正常,内水压力最大的已经达到650千帕,尚需考虑机组甩负荷时排水的温度骤增;2)流量大,因而导致管沟直径一般较大,目前,采用的多在3.0m~4.5m之间;3)工程量大,投资高,根据不同厂区的布置和取排水需求,管线长度一般较长,从1公里多到几公里的都有,工程投资一般都在一亿上下,甚至几个亿;4)形式多样,有内圆外方、内方外方,多孔并排,多孔重叠等。
目前钢筋混凝土的埋地现浇箱涵的设计一般采用简化的杆件有限元进行设计,其杆件的长度取为侧壁中心线之间的距离,即为净空尺寸加上两侧壁厚的一半。对于壁厚与净空尺寸比值较大的管沟,由于模型简化的问题,设计结果与真实情况往往偏差较大。
发明内容
基于此,有必要针对一般现浇钢筋混凝土管沟的设计方案中混凝土管沟设计结果与真实情况偏差较大的问题,提供一种混凝土管沟设计准确的现浇钢筋混凝土管沟的设计方法与系统。
一种现浇钢筋混凝土管沟的设计方法,包括步骤:
获取钢筋混凝土管沟尺寸参数;
根据钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型;
对钢筋混凝土管沟二维模型进行有限元计算,有限元计算包括设计荷载及荷载工况组合确定、有限元网格的划分、材料参数的设定以及荷载施加与有限元静力分析;
提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力;
根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力,根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值;
根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算;
对钢筋混凝土管沟二维模型中提取的不同截面进行配筋计算,获得钢筋混凝土管沟二维模型中不同截面的配筋计算结果;
根据钢筋混凝土管沟二维模型中不同截面的配筋计算结果以及钢筋混凝土管沟尺寸参数,获得现浇钢筋混凝土管沟的设计结果。
一种现浇钢筋混凝土管沟的设计系统,包括:
参数获取模块,用于获取钢筋混凝土管沟尺寸参数;
模型转换模块,用于根据钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型;
有限元计算模块,用于对钢筋混凝土管沟二维模型进行有限元计算,有限元计算包括设计荷载及荷载工况组合确定、有限元网格的划分、材料参数的设定以及荷载施加与有限元静力分析;
第一计算模块,用于提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力;
第二计算模块,用于根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力,根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值;
第三计算模块,用于根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算;
迭代模块,用于控制第一计算模块、第二计算模块以及第三计算模块对钢筋混凝土管沟二维模型中提取的不同截面进行配筋计算,获得钢筋混凝土管沟二维模型中不同截面的配筋计算结果;
结果获取模块,用于根据钢筋混凝土管沟二维模型中不同截面的配筋计算结果以及钢筋混凝土管沟尺寸参数,获得现浇钢筋混凝土管沟的设计结果。
本发明现浇钢筋混凝土管沟的设计方法与系统,获取钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型,对钢筋混凝土管沟二维模型进行有限元计算,提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力,计算提取截面等效柱截面的弯矩与轴力以及剪力值,对提取截面进行配筋计算,计算不同截面的配筋计算结果,获得现浇钢筋混凝土管沟的设计结果。整个过程中,基于有限元理论将三维模型转化为二维模型进行处理,并对二维模型进行有限元计算,获得提取截面等效柱截面的弯矩与轴力以及剪力值,再对提取截面进行配筋计算,能够实现现浇钢筋混凝土管沟的准确设计。
附图说明
图1为本发明现浇钢筋混凝土管沟的设计方法其中一个实施例的流程示意图;
图2为长直管外形尺寸示意图;
图3为图2中长直管剖面示意图;
图4为图2中长直管二维简化模型示意图;
图5为在钢筋混凝土管沟二维模型拟提取截面位置示意图;
图6为提取图5中1-1截面的示意图
图7为图5中1-1截面的详细示意图;
图8为二维坐标轴表征节点应力与节点位置的关系曲线示意图;
图9为图5中1-1截面的配筋详细示意图;
图10为本发明现浇钢筋混凝土管沟的设计系统其中一个实施例的结构示意图。
具体实施方式
如图1所示,一种现浇钢筋混凝土管沟的设计方法,包括步骤:
S100:获取钢筋混凝土管沟尺寸参数。
钢筋混凝土管沟尺寸参数是基于当前应用场景的需求获取的参数,一般来说,包括管长度、管宽度(截面宽度)、管沟高度(截面高度)、管净空宽、管净空高以及管壁厚度等,另外针对钢筋混凝土管沟中不同管内空腔形状还有一些特殊的尺寸参数,例如常规多边形管内空腔还包括腋角宽度等参数,具体来说,如图2、图3所示的长直管为例,其内腔是多边形,其具体的尺寸参数包括管沟总长度L0米,截面总宽度B0(其中净空宽度B1,壁厚B2),截面总高度H0(其中净空高度H1,壁厚H2),腋角尺寸为宽度By。
S200:根据钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型。
根据有限元理论,管沟长度方向的尺寸与截面尺寸比值较大时,其计算结果基本是平面应变问题,即一般不会产生沿管沟长度方向的应变。继续以长直管为例,如图4所示,将长直管沟的计算模型简化为图4的二维平面应变模型,其中上部钢筋混凝土管沟,尺寸标注如图2与图3所示,下部为地基土层,根据有限元计算精度的要求,图中所示的地基宽度一般不小于管沟截面总宽度B0的1.5倍,图中所示的地基高度一般不小于管沟截面总高度H0的1.5倍。
S300:对钢筋混凝土管沟二维模型进行有限元计算,有限元计算包括设计荷载及荷载工况组合确定、有限元网格的划分、材料参数的设定以及荷载施加与有限元静力分析。
有限元计算主要内容包括:设计荷载及荷载工况组合确定、有限元网格的划分(一般采用四面体网格)、材料参数的设定(包括混凝土、地基的弹性模量和泊松比等)、荷载施加及常规的有限元静力分析。
S400:提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力。
如图5所示,提取钢筋混凝土管沟二维模型中任意截面,具体可以对某些关心或者控制截面进行结果的提取,如1-1、2-2,3-3、4-4……,其中1-1截面的具体位置如图6所示,提取出该截面上各节点的正应力σ和剪应力τ。更进一步的,可以针对获得的提取的截面上各节点的正应力进行进一步的处理,进一步处理过程如下:1、建立二维平面坐标系,在二维平面坐标系中,第一轴线方向表征节点正应力,第二轴线方向表征节点距离截面与管壁内边缘的交点的距离,更具体来说,第一轴线方向为Y轴方向,第二轴线方向为X轴方向;2、如图7所示,截面与管壁内边缘的交点为原点,截面向外的方向为X轴正向,节点(图中应力点)与原点的距离Xn,为点的X轴坐标,纵向坐标为该点的正应力σ,1-1截面简化为的柱截面模型,见图7的右侧所示,其柱截面高度为壁厚H2,柱截面的宽度B为单位宽度。
S500:根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力,根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值。
弯矩是受力构件截面上的内力矩的一种。建筑学中,与杆件轴线相重合的内力称为轴力。基于提取截面上各节点的正应力可以计算提取截面等效柱截面的弯矩与轴力,基于提取截面上各节点的剪应力可以计算提取截面等效柱截面的剪力值。
非必要的,提取截面等效柱截面的剪力值可以采用采用平均剪应力法计算,具体来说,在应用实例中,1-1柱截面的剪力计算过程如下:假定图中应力点数为N,其中,第n个点的剪应力值为τn,则采用平均剪应力法计算1-1截面柱的剪力值FQ如下:
非必要的,根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力的过程包括如下步骤:
步骤一:剔除提取截面上各节点的正应力中提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力。
步骤二:采用最小二乘法,将剔除后剩余的提取截面上各节点的正应力拟合为一条直线。
步骤三:根据拟合的直线,重新计算提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力。
步骤四:根据重新计算获得的提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力,计算提取截面等效柱截面的弯矩与轴力。
下面将采用具体实例,详细说明上述根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力的过程。1-1柱截面的轴力和弯矩计算过程如下:假定图中应力点数为N,其中,第n个点的正应力值为σn,在图7所示的直角坐标系中(截面与管壁内边缘的交点为原点,截面向外的方向为X轴正向)标定应力点,其中应力(图中应力点)与原点的距离Xn为改点的X坐标,其正应力值σn为点的纵坐标,最终的结果如图8所示。对误差偏大的应力点σ1和σn进行剔除,这两个点偏离实际较多,主要是由于有限元计算中,应力的获得过程中的差分误差引起的,仅发生在边界位置。根据剩余的应力点2……N-1,共N-2个点,可以采用最小二乘法将改点拟合为一条直线σ=a+b*X(该过程可以采用excell表格,matlab等成熟软件计算,也可以自行编辑程序完成)。获取该直线对应X=0点的竖轴σ轴的值,为σ1,对应X=H2点的竖轴σ轴的值,为σ2,则柱截面的弯矩和轴力计算结果如下:
式中,h为管壁厚度,具体来说h=H2。
S600:根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算。
根据步骤S400、S500计算获得的提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值,对提取截面进行配筋计算。具体来说,配筋计算可以根据混凝土结构设计规范或水工混凝土结构设计规范,采用理正等软件直接计算得到。其中,提取截面等效柱截面的剪力值用于复核截面厚度是否满足抗剪要求。
S700:对钢筋混凝土管沟二维模型中提取的不同截面进行配筋计算,获得钢筋混凝土管沟二维模型中不同截面的配筋计算结果。
步骤S400、S500以及S600只获得针对单个提取截面的配筋计算结果,针对钢筋混凝土管沟二维模型中不同截面,采用上述相同的方式,来获得不同截面的配筋计算结果。具体来说,如图9所示,外侧主筋1对应柱截面的顶部配筋,若柱顶配筋为k1根,则外侧主筋间距为B/k1(B=1000mm),直径同柱顶钢筋直径,图9中外侧主筋2对应柱截面的底部配筋,若柱底配筋为k2根,则内侧主筋间距为B/k2(B=1000mm),直径同柱底钢筋直径。外侧分布筋3和内侧分布筋4按构造配置,一般比对应的主筋降低2个或者3个级别,间距取为150mm~200mm。配筋结果可以不同方向的侧壁,单一方向的侧壁也可以分成几段,每段的配筋,应考虑该段内的所有典型剖面及所有的工况组合中的最不利情况进行配置。
S800:根据钢筋混凝土管沟二维模型中不同截面的配筋计算结果以及钢筋混凝土管沟尺寸参数,获得现浇钢筋混凝土管沟的设计结果。
基于步骤S100的钢筋混凝土管沟尺寸参数以及步骤S700最终获得的钢筋混凝土管沟二维模型中不同截面的配筋计算结果,即可获得现浇钢筋混凝土管沟最终设计结果,实现对现浇钢筋混凝土管沟的准确设计。
本发明现浇钢筋混凝土管沟的设计方法,获取钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型,对钢筋混凝土管沟二维模型进行有限元计算,提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力,计算提取截面等效柱截面的弯矩与轴力以及剪力值,对提取截面进行配筋计算,计算不同截面的配筋计算结果,获得现浇钢筋混凝土管沟的设计结果。整个过程中,基于有限元理论将三维模型转化为二维模型进行处理,并对二维模型进行有限元计算,获得提取截面等效柱截面的弯矩与轴力以及剪力值,再对提取截面进行配筋计算,能够实现现浇钢筋混凝土管沟的准确设计。
如图10所示,一种现浇钢筋混凝土管沟的设计系统,包括:
参数获取模块100,用于获取钢筋混凝土管沟尺寸参数。
模型转换模块200,用于根据钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型。
有限元计算模块300,用于对钢筋混凝土管沟二维模型进行有限元计算,有限元计算包括设计荷载及荷载工况组合确定、有限元网格的划分、材料参数的设定以及荷载施加与有限元静力分析。
第一计算模块400,用于提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力。
第二计算模块500,用于根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力,根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值。
第三计算模块600,用于根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算。
迭代模块700,用于控制第一计算模块400、第二计算模块500以及第三计算模块600对钢筋混凝土管沟二维模型中提取的不同截面进行配筋计算,获得钢筋混凝土管沟二维模型中不同截面的配筋计算结果。
结果获取模块800,用于根据钢筋混凝土管沟二维模型中不同截面的配筋计算结果以及钢筋混凝土管沟尺寸参数,获得现浇钢筋混凝土管沟的设计结果。
本发明现浇钢筋混凝土管沟的设计系统,获取钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型,对钢筋混凝土管沟二维模型进行有限元计算,提取钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力,计算提取截面等效柱截面的弯矩与轴力以及剪力值,对提取截面进行配筋计算,计算不同截面的配筋计算结果,获得现浇钢筋混凝土管沟的设计结果。整个过程中,基于有限元理论将三维模型转化为二维模型进行处理,并对二维模型进行有限元计算,获得提取截面等效柱截面的弯矩与轴力以及剪力值,再对提取截面进行配筋计算,能够实现现浇钢筋混凝土管沟的准确设计。
在其中一个实施例中,第二计算模块500包括:
剔除单元,用于剔除提取截面上各节点的正应力中提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力。
拟合单元,用于采用最小二乘法,将剔除后剩余的提取截面上各节点的正应力拟合为一条直线。
重新计算单元,用于根据拟合的直线,重新计算提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力。
弯矩与轴力计算单元,用于根据重新计算获得的提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力,计算提取截面等效柱截面的弯矩与轴力。
在其中一个实施例中,提取截面等效柱截面的弯矩与轴力计算公式分别为:
式中,M为提取截面的弯矩,N提取截面的轴力,σ1为重新计算获得的提取截面与管壁内边缘的交点处对应的正应力,σ2为重新计算获得的提取截面与管壁外边缘的交点处对应的正应力,h为管壁厚度,B为提取截面宽度。
在其中一个实施例中,第二计算模块500根据提取截面上各节点的剪应力,采用平均剪应力法计算提取截面等效柱截面的剪力值。
在其中一个实施例中,第三计算模块600用于根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值,并基于混凝土结构设计规范或水工混凝土结构设计规范,采用理正软件对提取截面进行配筋计算。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
1.一种现浇钢筋混凝土管沟的设计方法,其特征在于,包括步骤:
获取钢筋混凝土管沟尺寸参数,所述钢筋混凝土管沟尺寸参数包括管长度、管宽度、管沟高度、管净空宽、管净空高以及管壁厚度;
根据所述钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将所述钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型;
对所述钢筋混凝土管沟二维模型进行有限元计算,所述有限元计算包括设计荷载及荷载工况组合确定、有限元网格的划分、材料参数的设定以及荷载施加与有限元静力分析;
提取所述钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力;
根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力,根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值;
根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算;
对所述钢筋混凝土管沟二维模型中提取的不同截面进行配筋计算,获得所述钢筋混凝土管沟二维模型中不同截面的配筋计算结果;
根据所述钢筋混凝土管沟二维模型中不同截面的配筋计算结果以及所述钢筋混凝土管沟尺寸参数,获得现浇钢筋混凝土管沟的设计结果;
所述根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力包括:
剔除所述提取截面上各节点的正应力中提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力;
采用最小二乘法,将剔除后剩余的所述提取截面上各节点的正应力拟合为一条直线;
根据拟合的直线,重新计算提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力;
根据重新计算获得的提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力,计算提取截面等效柱截面的弯矩与轴力;
所述根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值包括:根据提取截面上各节点的剪应力,采用平均剪应力法计算提取截面等效柱截面的剪力值,其中,所述平均剪应力法计算提取截面等效柱截面的剪力值如下:
3.根据权利要求1所述的现浇钢筋混凝土管沟的设计方法,其特征在于,所述根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算的步骤包括:
根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值,并基于混凝土结构设计规范或水工混凝土结构设计规范,采用理正软件对提取截面进行配筋计算。
4.根据权利要求1所述的现浇钢筋混凝土管沟的设计方法,其特征在于,所述提取所述钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力之后,还包括:
建立二维平面坐标系,在二维平面坐标系中,第一轴线方向表征节点正应力,第二轴线方向表征节点距离截面与管壁内边缘的交点的距离。
5.根据权利要求4所述的现浇钢筋混凝土管沟的设计方法,其特征在于,所述第一轴线方向为Y轴方向,所述第二轴线方向为X轴方向。
6.一种现浇钢筋混凝土管沟的设计系统,其特征在于,包括:
参数获取模块,用于获取钢筋混凝土管沟尺寸参数,所述钢筋混凝土管沟尺寸参数包括管长度、管宽度、管沟高度、管净空宽、管净空高以及管壁厚度;
模型转换模块,用于根据所述钢筋混凝土管沟尺寸参数,构建钢筋混凝土管沟三维模型,并根据有限元理论,将所述钢筋混凝土管沟三维模型转换为钢筋混凝土管沟二维模型;
有限元计算模块,用于对所述钢筋混凝土管沟二维模型进行有限元计算,所述有限元计算包括设计荷载及荷载工况组合确定、有限元网格的划分、材料参数的设定以及荷载施加与有限元静力分析;
第一计算模块,用于提取所述钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力;
第二计算模块,用于根据提取截面上各节点的正应力,计算提取截面等效柱截面的弯矩与轴力,根据提取截面上各节点的剪应力,计算提取截面等效柱截面的剪力值;
第三计算模块,用于根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值对提取截面进行配筋计算;
迭代模块,用于控制所述第一计算模块、所述第二计算模块以及所述第三计算模块对所述钢筋混凝土管沟二维模型中提取的不同截面进行配筋计算,获得所述钢筋混凝土管沟二维模型中不同截面的配筋计算结果;
结果获取模块,用于根据所述钢筋混凝土管沟二维模型中不同截面的配筋计算结果以及所述钢筋混凝土管沟尺寸参数,获得现浇钢筋混凝土管沟的设计结果;
所述第二计算模块包括:
剔除单元,用于剔除所述提取截面上各节点的正应力中提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力;
拟合单元,用于采用最小二乘法,将剔除后剩余的所述提取截面上各节点的正应力拟合为一条直线;
重新计算单元,用于根据拟合的直线,重新计算提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力;
弯矩与轴力计算单元,用于根据重新计算获得的提取截面与管壁内边缘的交点处对应的正应力以及提取截面与管壁外边缘的交点处对应的正应力,计算提取截面等效柱截面的弯矩与轴力;
所述第二计算模块根据提取截面上各节点的剪应力,采用平均剪应力法计算提取截面等效柱截面的剪力值,其中,所述平均剪应力法计算提取截面等效柱截面的剪力值如下:
8.根据权利要求6所述的现浇钢筋混凝土管沟的设计系统,其特征在于,所述第三计算模块用于根据提取截面上各节点的正应力、提取截面等效柱截面的弯矩与轴力以及提取截面等效柱截面的剪力值,并基于混凝土结构设计规范或水工混凝土结构设计规范,采用理正软件对提取截面进行配筋计算。
9.根据权利要求6所述的现浇钢筋混凝土管沟的设计系统,其特征在于,所述提取所述钢筋混凝土管沟二维模型中任意截面,根据有限元计算结果,获取提取的截面上各节点的正应力和剪应力之后,还包括:
建立二维平面坐标系,在二维平面坐标系中,第一轴线方向表征节点正应力,第二轴线方向表征节点距离截面与管壁内边缘的交点的距离。
10.根据权利要求9所述的现浇钢筋混凝土管沟的设计系统,其特征在于,所述第一轴线方向为Y轴方向,所述第二轴线方向为X轴方向。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710020927.5A CN106815424B (zh) | 2017-01-12 | 2017-01-12 | 现浇钢筋混凝土管沟的设计方法与系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710020927.5A CN106815424B (zh) | 2017-01-12 | 2017-01-12 | 现浇钢筋混凝土管沟的设计方法与系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106815424A CN106815424A (zh) | 2017-06-09 |
CN106815424B true CN106815424B (zh) | 2021-02-09 |
Family
ID=59109799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710020927.5A Active CN106815424B (zh) | 2017-01-12 | 2017-01-12 | 现浇钢筋混凝土管沟的设计方法与系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106815424B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107220462B (zh) * | 2017-06-27 | 2021-07-13 | 中建一局集团建设发展有限公司 | 一种应用于预制构件的参数化钢筋的生产方法及系统 |
CZ307586B6 (cs) * | 2017-06-27 | 2018-12-27 | ÄŚeskĂ© vysokĂ© uÄŤenĂ technickĂ© v Praze - KloknerĹŻv Ăşstav | Způsob optimalizace rozmístění a orientace betonářské výztuže v betonu |
CZ307587B6 (cs) * | 2017-06-27 | 2018-12-27 | ÄŚeskĂ© vysokĂ© uÄŤenĂ technickĂ© v Praze - KloknerĹŻv Ăşstav | Způsob optimalizace rozmístění a orientace vláken v ultra-vysokohodnotném betonu |
CN108984869B (zh) * | 2018-06-29 | 2023-07-25 | 中国中元国际工程有限公司 | 一种任意形状截面钢筋混凝土构件的配筋设计方法 |
CN110826118B (zh) * | 2019-09-06 | 2023-09-05 | 久瓴(江苏)数字智能科技有限公司 | 轻型钢结构的柱工厂变截面拼接节点的生成方法和装置 |
CN111379458B (zh) * | 2020-03-13 | 2021-07-20 | 兰州理工大学 | 一种大高宽比混凝土矩形储液结构的设计方法及其结构 |
CN111444655B (zh) * | 2020-04-08 | 2021-03-16 | 中国水利水电科学研究院 | 一种水工建筑结构静动力配筋方法 |
CN111553109A (zh) * | 2020-05-29 | 2020-08-18 | 国网河南省电力公司电力科学研究院 | 一种薄壁离心混凝土钢管塔受力及有限元分析方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636634A (zh) * | 2012-01-20 | 2012-08-15 | 中国寰球工程公司 | 一种混凝土构件温度效应确定方法 |
CN103488834A (zh) * | 2013-09-25 | 2014-01-01 | 中国能源建设集团广东省电力设计研究院 | 核电站大直径现浇三通压力混凝土供水管的制作方法 |
CN103790396A (zh) * | 2014-01-27 | 2014-05-14 | 中国矿业大学 | 一种框架结构建筑物平移装置及行走梁和基础梁设计方法 |
US8974147B1 (en) * | 2013-07-02 | 2015-03-10 | Brian Webb | Slot form for pipeline buoyancy control |
-
2017
- 2017-01-12 CN CN201710020927.5A patent/CN106815424B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102636634A (zh) * | 2012-01-20 | 2012-08-15 | 中国寰球工程公司 | 一种混凝土构件温度效应确定方法 |
US8974147B1 (en) * | 2013-07-02 | 2015-03-10 | Brian Webb | Slot form for pipeline buoyancy control |
CN103488834A (zh) * | 2013-09-25 | 2014-01-01 | 中国能源建设集团广东省电力设计研究院 | 核电站大直径现浇三通压力混凝土供水管的制作方法 |
CN103790396A (zh) * | 2014-01-27 | 2014-05-14 | 中国矿业大学 | 一种框架结构建筑物平移装置及行走梁和基础梁设计方法 |
Non-Patent Citations (1)
Title |
---|
有限元法求解截面内力方法比较;颜天佑 等;《水电能源科学》;20080630;第26卷(第3期);141-143 * |
Also Published As
Publication number | Publication date |
---|---|
CN106815424A (zh) | 2017-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106815424B (zh) | 现浇钢筋混凝土管沟的设计方法与系统 | |
Yang et al. | Optimal finite element model with response surface methodology for concrete structures based on Terrestrial Laser Scanning technology | |
CN108984869B (zh) | 一种任意形状截面钢筋混凝土构件的配筋设计方法 | |
CN101615212B (zh) | 一种排桩-内支撑支护体系简化设计计算方法 | |
CN111859745B (zh) | 型钢混凝土结构响应分布的获取方法、装置和设备 | |
CN102819632A (zh) | 一种钢框架结构节点多尺度有限元模型建模方法 | |
CN104573202A (zh) | 框架-核心筒结构体系施工全过程的结构分析方法 | |
WO2018014454A1 (zh) | 一种多点吊装计算方法 | |
CN102493569B (zh) | 一种建筑结构基于抗震性能的优化方法和系统 | |
CN102880769B (zh) | 大跨径混凝土斜拉桥的施工控制方法与预拱度计算方法 | |
CN110059382B (zh) | 一种非均匀加筋层的重型机床复合基础设计方法 | |
CN102108715B (zh) | 筒形结构建筑物的正交网格式数值配筋方法 | |
CN116306061A (zh) | 考虑非对称受荷基坑群围护结构受力变形确定和评估方法 | |
CN103272982B (zh) | 金属薄壁件铆接装配的铆钉镦粗方向确定方法 | |
CN111797447A (zh) | 一种复杂地基混凝土坝孔道配筋方法 | |
CN110362872B (zh) | 一种用于吊挂看台的三向定位高精度控制方法 | |
CN106777694A (zh) | 平面圆管结构极限承载力分析的一次线弹性估算方法 | |
CN107871045A (zh) | 一种基于bim的传动建筑构件量化提取方法 | |
CN116186829B (zh) | 复合式衬砌计算模型构建方法、装置及终端设备 | |
CN103020406A (zh) | 竖井围护结构的数据处理方法及其计算机辅助设计系统 | |
Tian et al. | Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes | |
CN102799791A (zh) | 网壳结构稳定极限承载力标准值及其相对误差的确定方法 | |
CN104965957B (zh) | 基于等效原理的pc箱梁截面不均匀收缩效应确定方法 | |
CN109145357A (zh) | 一种不均匀沉降对上部框架结构影响的分析方法 | |
CN110427632B (zh) | 一种钢板混凝土剪力墙墙肢配筋设计方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |