CN104769280B - 风力涡轮机塔架 - Google Patents
风力涡轮机塔架 Download PDFInfo
- Publication number
- CN104769280B CN104769280B CN201380047965.XA CN201380047965A CN104769280B CN 104769280 B CN104769280 B CN 104769280B CN 201380047965 A CN201380047965 A CN 201380047965A CN 104769280 B CN104769280 B CN 104769280B
- Authority
- CN
- China
- Prior art keywords
- wind turbine
- self
- turbine tower
- supporting wind
- tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002131 composite material Substances 0.000 claims abstract description 22
- 239000004033 plastic Substances 0.000 claims abstract description 18
- 229920003023 plastic Polymers 0.000 claims abstract description 18
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims description 21
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 13
- 239000004917 carbon fiber Substances 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims description 5
- 239000011151 fibre-reinforced plastic Substances 0.000 claims description 5
- 239000003190 viscoelastic substance Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 239000000463 material Substances 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 238000009816 wet lamination Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/02—Structures made of specified materials
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/02—Structures made of specified materials
- E04H12/08—Structures made of specified materials of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H12/00—Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
- E04H12/02—Structures made of specified materials
- E04H12/08—Structures made of specified materials of metal
- E04H12/085—Details of flanges for tubular masts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/91—Mounting on supporting structures or systems on a stationary structure
- F05B2240/912—Mounting on supporting structures or systems on a stationary structure on a tower
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/60—Structure; Surface texture
- F05B2250/61—Structure; Surface texture corrugated
- F05B2250/611—Structure; Surface texture corrugated undulated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/30—Retaining components in desired mutual position
- F05B2260/301—Retaining bolts or nuts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/20—Inorganic materials, e.g. non-metallic materials
- F05B2280/2006—Carbon, e.g. graphite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6003—Composites; e.g. fibre-reinforced
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6013—Fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Civil Engineering (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
一种具有壁的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架包括上部分(12)和下部分(14)。基本上全部上部分(12)均有复合塑料形成。基本上全部下部分(14)均由低碳钢形成。
Description
技术领域
本发明涉及风力涡轮机塔架。更具体说,本发明涉及自支承式风力涡轮机塔架。
背景技术
用于大型风力涡轮机的传统塔架通常或为管状钢塔架、格构塔架或为混凝土塔架。大部分传统塔架为管状钢塔架,所述管状钢塔架由通过螺栓连接在一起的若干个20米至30米的段在现场形成。然后或者使用锚固螺栓将塔架固定到由混凝土制成的基座(陆地处)、固定到单桩、重力或三脚架基座(离岸、浅滩处)或者固定到浮动基座(离岸、深水处)。
在设计风力涡轮机塔架时,需要考虑塔架与转子的通过频率有关的固有频率。这些通过频率定义为转子旋转一整转的频率和通过塔架的任何叶片的频率,即,由多个叶片划分开的整个转子的旋转频率。如果塔架的固有频率处于转子的通过频率中的任意一个的范围中,则可能会发生共振,导致由涡轮机感知到的振动幅度增大。
塔架的固有频率与其长度平方成比例地减小。因此,更长塔架的固有频率通常低于更短塔架的固有频率。由于塔架长度已增大以适应更大的叶片,因此传统塔架的固有频率可能更接近转子的通过频率。结果,更长的塔架易受共振的影响,所述共振可能导致损坏涡轮机部件或塔架基座。
这样的事实加剧了上述问题,所述事实为涡轮机通常设计成在一定的旋转速度范围内工作。因此,待避免的通过频率通常是一些频率范围而不是窄频带或者固定值。
US 2009/0266004公开了一种由碳纤维复合物形成的风力涡轮机塔架。通过在其它场所制备挠性的织物预成型件、将预成型件运送到组装场所、将预成型件放置在芯轴上、并且用树脂层压预成型件以形成复合外壳来制造塔架。因为塔架的固有频率与制成塔架的材料的比刚度(比刚度是材料的固有特性并且定义为E/ρ,其中,E是杨氏模量而ρ是密度)的平方根成比例,因此使用刚性的碳纤维复合物导致塔架具有增大的固有频率。结果,在改变负载条件的情况下塔架不易于处于激发状态。然而,碳纤维复合物塔架的制造成本远高于相应钢塔架。
US 2011/0138707公开了一种具有混凝土下部和钢上部的风力涡轮机塔架,并且教导这种布置方案允许增大传统钢塔架的高度而同时不使得塔架构造和运送的难度相应增大。然而,在构造时,与更小的传统钢塔架相比这种塔架将具有更低的固有频率。结果,固有频率可能接近转子的通过频率,从而增大了共振以及对涡轮机部件或塔架基座造成相关损坏的风险。
发明内容
根据本发明,提供了一种具有壁的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架包括上部分和下部分,其中,上部分和下部分连接在一起以形成塔架,其中,基本上全部上部分皆由复合塑料形成,并且其中,基本上全部下部分皆由低碳钢形成。
利用这种布置方案,相对于全部由钢形成的塔架,能够获得针对长塔架的有利频率特性,而同时不产生全部由复合塑料形成塔架所需的费用。这是由于这样的事实,即,已经发现与塔架的上部分的比刚度相比,塔架的下部分的比刚度对塔架的整个固有频率产生极其小的影响。
此外,通过由复合塑料形成上部分,要求较小质量的材料满足指定安装的特定刚度要求。因此,能够减小塔架的总质量。与塔架的增大的固有频率相组合,这能够导致显著减小基座处的静负载和疲劳负载。
优选地,上部分包括塔架的长度的20%至80%。
上部分可以是整体部件。可替代地,上部分可以被分成多个分段。除了简化上部分的运输之外,分割上部分还削减了在制造期间使用的工具的成本和任何炉子的成本,并且还使得上部分更易于制造和检查。还允许通过使用工厂控制的预固化分段来紧密控制上部分的机械性能。这对于US 2009/0266004的织物预成型件布置方案而言是不可行的。可以沿着塔架的轴向方向和/或沿着塔架的环向布置所述多个分段。
上部分和下部分可以直接连接。可替代地,垫圈可以定位在上部分和下部分之间,以在两个部分之间产生均匀的压力分布。上部分和/或下部分可以是中空的。
复合塑料可以是选自包括标准模量碳纤维、中间模量碳纤维、高模量碳纤维和玄武岩的组的纤维增强的塑料。
在优选示例中,纤维中的50%至100%布置成相对于轴向方向呈0度,纤维中至多50%布置成相对于轴向方向呈+/-45度,并且纤维中至多30%布置成相对于轴向方向呈90度。
可选地,复合塑料包括粘弹性材料,以增大塔架的滞后阻尼特征。粘弹性材料可以设置作为粘弹性芯部。可替代地,复合塑料可以包括具有粘弹性聚合物基体的纤维增强塑料。
优选地,塔架的外表面包括起伏部、腔或者突出部中的任意一种,所述起伏部、腔或者突出部被布置成用以减小塔架的拖曳力和/或涡度顺风。
优选地,上部分和/或下部分具有沿着该部分的长度变化的壁厚度。以这种方式,能够从不需要材料的位置处移除材料,以提高塔架的动力学表现。
上部分的比刚度可以为至少60GPa/(g/cm3)。
在优选的示例中,下部分的比刚度小于30GPa/(g/cm3)。
附图说明
现在将参照以下附图描述本发明的示例,其中:
图1是根据本发明的风力涡轮机塔架的示意性剖视图;
图2是图1的风力涡轮机塔架的局部侧视图,示出了上部分和下部分之间的连接;
图3是图1的风力涡轮机塔架的上部分的示意性侧视图,其示出了纤维定向;
图4是图1的塔架的上部分的各段之间的连接的局部剖视图;
图5是图1的塔架的局部剖视图;
图6是图1的风力涡轮机塔架的局部剖视图,示出了上部分和下部分之间的第一替代性连接;
图7是图1的风力涡轮机塔架的局部剖视图,示出了上部分和下部分之间的第二替代性连接;
图8是图1的风力涡轮机塔架的局部剖视图,示出了上部分和下部分之间的第三替代性连接;
图9是图1的塔架的上部分的各段之间的第一替代性连接的局部剖视图;
图10是可以用于形成图1的塔架的纵向分割的段的立体图,示出了BladeDynamics公司的专利插入件;和
图11是图10的纵向分割的段的立体图,所述纵向分割的段在其外表面上具有突出部。
具体实施方式
如图1所示,塔架10包括由复合塑料制成的上部分12和由低碳钢制成的下部分14。上部分12和下部分14连接在一起以形成塔架10,所述塔架以本领域中已知的方式安装在基座16上。
如图2所示,为了连接上部分12和下部分14,每个上部分和下部分在一个端部处均具有向外延伸的外周凸缘18。上部分12和下部分14定位成使得它们沿着塔架10的纵向轴线20共轴并且使用螺栓22将凸缘18连接在一起。
制成上部分12的复合塑料具有高的比刚度,即,具有至少60GPa/(g/cm3)的比刚度。
用于上部分12的合适复合塑料包括但不限于由标准模量碳纤维(HSC)、中间模量碳纤维(IMC)、高模量碳纤维(HMC)、玄武岩或者其组合中的任意一种增强的塑料。除了其它传统方法外,还可以使用湿式层压法、浸渍、树脂传递模塑(RTM)或者预浸料坯来构造复合塑料。根据上部分12的结构要求,构造可以是整体式的、夹层的或者被加固的(例如,正交网格、纵梁和环形件等)。可以通过手动、丝体缠绕、自动带放置或者通过任何其它合适的方法来放置材料。
理想的是,复合塑料是层压制品,其中,纤维中的50%至100%呈0度,纤维中的0%至50%呈+/-45度,并且纤维中的0%至30%呈90度。如图3所示,“0度”表示纤维平行于塔架10的纵向轴线20,而“90度”表示纤维垂直于轴线20,即,沿着环向方向行进。0度的材料可以均匀分布地铺设或者可以被添加作为预固化或者预加固的材料堆。
介于+/-20度和+/-70度之间的其它纤维定向也是可行的。能够组合不同的材料,例如,0度的纤维能够由HSC或玄武岩制成,而偏离轴向的层片能够由纤维玻璃制成。同样地,0度的纤维能够由IMC或HMC制成,而偏离轴向的层片能够由HSC制成。
在这个示例中,上部分12包括嵌入在环氧树脂中的标准模量碳纤维,其中纤维体积分数(FVF)为56%,并且纤维中的80%呈0度、纤维中的15%呈+/-45度、纤维中的5%呈90度。采用这种布置方案,上部分12具有大约76GPa/(g/cm3)的比刚度,而下部分14具有大约27GPa/(g/cm3)的比刚度。
如图4所示,上部分12由多个管状段24形成。每个段的直径均介于2米至6米之间并且长度介于5.8米至45米之间。在这个示例中,如在本申请人的早期申请国际专利公开号No.WO 2010/041008中描述的那样,使用根部插入连接件26将相接续的各管状段24连接在一起。唯一的不同之处在于:根部插入连接件26设置在被联接的段24二者之间,并且具有右旋螺纹和左旋螺纹的螺柱28用于将各段24联接在一起。在WO 2010/041008中,根部插入连接件设置在一个工件上并且使用传统螺栓来将所述工件固定到毗邻结构。垫圈30布置在各管状段24之间,以通过预张紧而形成均匀压力分布。
在这个示例中,上部分12的长度为40米,并且其外径介于3.5米至4米之间、厚度介于20mm至30mm之间;下部分14的长度为40米,并且外径为4米、厚度介于14mm至18mm之间。所述上部分和下部分被连接以形成塔架10,所述塔架的高度为80米。
利用这种布置方案,塔架10的固有频率为1.55Hz,而整个由低碳钢构造成的相应塔架的固有频率将为0.97Hz。这表示固有频率增大了59%。
此外,与由低碳钢构造成的相应塔架相比,塔架的总质量减小了大约24%。因为减小了塔架10的总质量并且增大了塔架的固有频率,所以减小了基座处的静负载和疲劳负载。由于减小了加压负载,因此减小塔架的自重还使得固有频率进一步增大。
而且,对于给定的部件质量而言,使用复合材料产生了增大的安全系数。低碳钢的由材料强度除以其密度所限定的比强度是32MPa/(g/cm3),然而对于纤维体积分数为56%的单向HSC-环氧树脂而言,沿着纤维方向比强度为767MPa/(g/cm3)。
尽管风力涡轮机塔架10被描述为由上部分12和下部分14制成,所述上部分由复合塑料制成并且具有第一刚度,所述下部分由低碳钢制成并且具有第二刚度,但是塔架10可以由多个段形成,每个段具有不同的刚度。
塔架10可以具有任何适当的横截面形状,诸如圆形横截面或者具有流线型机翼形状的细长横截面,如图5所示。如果横截面在主要的风向上是对准的,则这种细长横截面能够用于将作用在塔架的拖曳力和来自塔架的顺风涡度最小化。
与具有向外延伸的凸缘18(如图2所示)不同的是,上部分12和下部分14中的每一个的端部可以具有向内延伸的凸缘118(如图6所示),通过所述凸缘118可以连接两个部分12、14。可替代地,可以通过用部分12、部分14之一上的向外延伸的凸缘18与部分14、部分12中的另一个的外表面上的根部插入连接件26相组合来实施连接(见图7)或者通过用部分12、部分14之一上的向内延伸凸缘118与部分14、部分12中的另一个的内表面上的根部插入连接件126相组合来实施连接(见图8)。根部插入连接件126本质上与根部插入连接件26相同,但是从上部分12向内延伸而非从上部分向外延伸。
可以使用任何适当的固定装置来连接相接续的各管状段24。例如,可以使用从每个段24向内延伸的根部插入连接件126来连接各管状段24,如图9所示。
沿着塔架10的纵向轴线20的方向,上部分12或管状段24可以被分成一些纵向分割部32。可以使用例如纵向凸缘34(如图10所示)、接搭接头或折叠机通过机械紧固、结合或机械紧固和结合的组合来实现这些分割部32的纵向连接。可替代地,上部分12可以由整体部件形成,即,所述整体部件不论纵向还是沿着环向方向均没有被分割。
塔架10的外表面可以包括如图11所示的波形部或突出部36,以减小拖曳力和来自塔架的顺风涡度。
Claims (16)
1.一种具有壁的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架包括:
上部分;和
与上部分分开的下部分,
其中,上部分安装在下部分之上以形成塔架,
其中,基本上全部上部分均由复合塑料形成,且上部分被分为沿着塔架环向布置的多个分段,并且
其中,基本上全部下部分均由低碳钢形成,
其中所述自支承式风力涡轮机塔架具有比由低碳钢造成的相应塔架更小的质量和更高的固有频率,且
其中,所述复合塑料是纤维增强的塑料,且纤维中的50%至100%布置成相对于轴向方向呈0度,纤维中至多50%布置成相对于轴向方向呈+/-45度,且纤维中至多30%布置成相对于轴向方向呈90度,且
其中,所述塔架具有圆形横截面或者具有流线型机翼形状的细长横截面,且所述上部分是沿着所述环向被分成多个分段的。
2.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述上部分包括塔架长度的20%至80%。
3.根据权利要求1所述的自支承式风力涡轮机塔架,其中,沿着塔架的轴向方向布置所述多个分段。
4.根据权利要求1所述的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架还包括垫圈,所述垫圈被定位在上部分和下部分之间。
5.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述上部分是中空的。
6.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述下部分是中空的。
7.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述纤维增强的塑料选自包括标准模量碳纤维、中间模量碳纤维、高模量碳纤维和玄武岩构成的组。
8.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述复合塑料包括粘弹性材料。
9.根据权利要求8所述的自支承式风力涡轮机塔架,其中,所述粘弹性材料被设置成作为粘弹性芯部。
10.根据权利要求8所述的自支承式风力涡轮机塔架,其中,所述复合塑料包括具有粘弹性聚合物基体的纤维增强的塑料。
11.根据权利要求1所述的自支承式风力涡轮机塔架,其中,塔架的外表面包括起伏部、腔或者突出部中的任意一种,所述起伏部、腔或者突出部被布置成用以减小塔架顺风向的拖曳力和/或涡度。
12.根据权利要求5所述的自支承式风力涡轮机塔架,其中,所述上部分具有沿着上部分的长度变化的壁厚度。
13.根据权利要求6所述的自支承式风力涡轮机塔架,其中,所述下部分具有沿着下部分的长度变化的壁厚度。
14.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述上部分具有至少60GPa(g/cm < 3 > )的比刚度。
15.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述下部分具有小于30GPa(g/cm < 3 > )的比刚度。
16.一种风力涡轮机,所述风力涡轮机包括根据任意一项前述权利要求所述的自支承式风力涡轮机塔架。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1215004.1 | 2012-08-23 | ||
GBGB1215004.1A GB201215004D0 (en) | 2012-08-23 | 2012-08-23 | Wind turbine tower |
PCT/GB2013/052220 WO2014030007A1 (en) | 2012-08-23 | 2013-08-22 | Wind turbine tower |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104769280A CN104769280A (zh) | 2015-07-08 |
CN104769280B true CN104769280B (zh) | 2020-09-25 |
Family
ID=47045260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380047965.XA Expired - Fee Related CN104769280B (zh) | 2012-08-23 | 2013-08-22 | 风力涡轮机塔架 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9651029B2 (zh) |
EP (1) | EP2888474B1 (zh) |
CN (1) | CN104769280B (zh) |
DK (1) | DK2888474T3 (zh) |
GB (1) | GB201215004D0 (zh) |
WO (1) | WO2014030007A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201215004D0 (en) | 2012-08-23 | 2012-10-10 | Blade Dynamics Ltd | Wind turbine tower |
GB201217210D0 (en) | 2012-09-26 | 2012-11-07 | Blade Dynamics Ltd | A metod of forming a structural connection between a spar cap fairing for a wind turbine blade |
GB201217212D0 (en) | 2012-09-26 | 2012-11-07 | Blade Dynamics Ltd | Windturbine blade |
DE102016114114A1 (de) * | 2016-07-29 | 2018-02-01 | Wobben Properties Gmbh | Verbindungselement zum Verbinden von Turmabschnitten, Turmabschnitt, Turm, Windenergieanlage sowie Verfahren zum Herstellen eines Turmabschnitts und zum Verbinden von Turmabschnitten |
US10294687B2 (en) * | 2016-11-08 | 2019-05-21 | Valmont West Coast Engineering Ltd. | System for coupling together segments of a utility pole, and a utility pole assembly comprising the same |
US11572861B2 (en) | 2017-01-31 | 2023-02-07 | General Electric Company | Method for forming a rotor blade for a wind turbine |
US10669993B2 (en) * | 2017-05-30 | 2020-06-02 | General Electric Company | Wind turbine tower reinforcement system |
JP6293961B1 (ja) * | 2017-08-28 | 2018-03-14 | 有限会社神奈川技研 | 標識柱の構造及び標識柱 |
DK3670899T3 (da) * | 2018-12-21 | 2024-05-27 | Nordex Energy Spain Sau | Fremgangsmåde til samling af en vindmølle og vindmølle samlet på grundlag af fremgangsmåden |
DE102019104350A1 (de) * | 2019-02-20 | 2020-08-20 | Wobben Properties Gmbh | Stahlturmringsegment für einen Windenergieanlagen-Turmabschnitt und Verfahren |
DE102019109904A1 (de) * | 2019-04-15 | 2020-10-15 | Wobben Properties Gmbh | Turmsegment und Verfahren zum Aufbau eines Turms |
EP3741931A1 (en) * | 2019-05-20 | 2020-11-25 | ABB Power Grids Switzerland AG | Post and method of providing a post |
EP4001639B1 (en) * | 2020-11-12 | 2023-09-13 | Siemens Gamesa Renewable Energy A/S | Coupling assembly |
EP4202212A1 (en) * | 2021-12-21 | 2023-06-28 | TotalEnergies OneTech | Floating wind platform and associated floating wind assembly |
EP4202213A1 (en) * | 2021-12-21 | 2023-06-28 | TotalEnergies OneTech | Floating wind platform and associated floating wind assembly |
CN114382657B (zh) * | 2022-01-21 | 2023-06-06 | 江苏金风科技有限公司 | 一种组合塔架、塔架基础和风力发电机组 |
WO2024006427A1 (en) | 2022-06-29 | 2024-01-04 | Dominguez Eddy E | System and method for carbon fiber pole construction |
NO20220974A1 (en) | 2022-09-13 | 2024-03-14 | Odfjell Oceanwind As | Support member for a rotor and nacelle assembly |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003820A1 (en) * | 1995-07-17 | 1997-02-06 | Composite Development Corporation | Composite tubular member having consistent strength and method |
WO2002043947A1 (en) * | 2000-12-01 | 2002-06-06 | Pratt William F | Improved wavy composite structures |
WO2007012201A1 (en) * | 2005-07-25 | 2007-02-01 | The University Of Manitoba | Composite wind tower systems and methods of manufacture |
CN101532474A (zh) * | 2008-03-10 | 2009-09-16 | 通用电气公司 | 包括感应钎焊接头的风力涡轮机塔架及其制造方法 |
CN101564897A (zh) * | 2008-04-25 | 2009-10-28 | 通用电气公司 | 复合风力涡轮机塔架及其制造方法 |
US20100307097A1 (en) * | 2009-06-09 | 2010-12-09 | Word Iii Thomas Nott | Structural flange connection system and method |
US20110138729A1 (en) * | 2010-08-25 | 2011-06-16 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator tower |
Family Cites Families (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2767461A (en) | 1951-03-27 | 1956-10-23 | Lockheed Aircraft Corp | Method of making propeller or rotor blade |
US3487518A (en) | 1965-08-12 | 1970-01-06 | Henry Hopfeld | Method for making a reinforced structural member |
US3531901A (en) | 1966-05-18 | 1970-10-06 | Owens Corning Fiberglass Corp | Heat insulating structural member |
GB1229595A (zh) | 1968-04-26 | 1971-04-28 | ||
US3980894A (en) | 1974-07-02 | 1976-09-14 | Philip Vary | Flow tubes for producing electric energy |
US4120998A (en) | 1977-02-03 | 1978-10-17 | Northrop Corporation | Composite structure |
DE2944359A1 (de) | 1979-02-14 | 1980-08-21 | Composite Tech Corp | Verbundkoerper |
DE3113079C2 (de) | 1981-04-01 | 1985-11-21 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Aerodynamischer Groß-Flügel und Verfahren zu dessen Herstellung |
US4662587A (en) | 1981-09-30 | 1987-05-05 | The Boeing Company | Composite for aircraft wing and method of making |
US4580380A (en) | 1983-11-07 | 1986-04-08 | Ballard Derryl R | Composite filled interior structural box beams |
US5273819A (en) | 1986-10-15 | 1993-12-28 | Jex Edward R | Fiber reinforced resin composites, method of manufacture and improved composite products |
US4752513A (en) | 1987-04-09 | 1988-06-21 | Ppg Industries, Inc. | Reinforcements for pultruding resin reinforced products and novel pultruded products |
DE3811427A1 (de) | 1988-04-05 | 1989-10-26 | Audi Ag | Verbindungsanordnung von karosserieteilen |
US4976587A (en) | 1988-07-20 | 1990-12-11 | Dwr Wind Technologies Inc. | Composite wind turbine rotor blade and method for making same |
US5096384A (en) | 1990-07-27 | 1992-03-17 | The Marley Cooling Tower Company | Plastic fan blade for industrial cooling towers and method of making same |
US5145320A (en) | 1990-08-28 | 1992-09-08 | The United States Of America As Represented By The Secretary Of The Navy | Mass loaded composite rotor for vibro-acoustic application |
US5281454A (en) | 1991-08-16 | 1994-01-25 | Kaiser Aerospace & Electronics Corporation | Closed composite sections with bonded scarf joints |
US5549947A (en) * | 1994-01-07 | 1996-08-27 | Composite Development Corporation | Composite shaft structure and manufacture |
FR2710871B1 (fr) | 1993-10-07 | 1995-12-01 | France Etat Armement | Procédé d'assemblage d'éléments en matériau composite et éléments assemblages entre eux. |
CA2161040A1 (en) | 1994-10-21 | 1996-04-22 | Delbert D. Derees | Vehicle assembly method |
DE19529476C2 (de) | 1995-08-11 | 2000-08-10 | Deutsch Zentr Luft & Raumfahrt | Flügel mit schubsteifen Flügelschalen aus Faserverbundwerkstoffen für Luftfahrzeuge |
DE69706403T2 (de) | 1996-02-22 | 2002-05-29 | Depuy Orthopaedics, Inc. | Externe befestigungsvorrichtung mit ringen aus kompositmaterial |
US6341467B1 (en) | 1996-05-10 | 2002-01-29 | Henkel Corporation | Internal reinforcement for hollow structural elements |
JPH1054204A (ja) | 1996-05-20 | 1998-02-24 | General Electric Co <Ge> | ガスタービン用の多構成部翼 |
NL1005423C2 (nl) | 1997-03-03 | 1998-09-18 | Polva Pipelife Bv | Lijmmofverbinding, alsmede lijmmof daarvoor. |
US6096403A (en) | 1997-07-21 | 2000-08-01 | Henkel Corporation | Reinforced structural members |
DE19737966A1 (de) | 1997-08-30 | 1998-08-06 | Daimler Benz Ag | Klebverbindung zwischen zwei Bauteilen |
US7906191B2 (en) * | 1997-11-14 | 2011-03-15 | William F. Pratt | Wavy composite structures |
US6295779B1 (en) | 1997-11-26 | 2001-10-02 | Fred C. Canfield | Composite frame member and method of making the same |
US6332301B1 (en) | 1999-12-02 | 2001-12-25 | Jacob Goldzak | Metal beam structure and building construction including same |
DE19962989B4 (de) | 1999-12-24 | 2006-04-13 | Wobben, Aloys, Dipl.-Ing. | Rotorblatt für Windenergieanlagen |
DE10126912A1 (de) | 2001-06-01 | 2002-12-19 | Oevermann Gmbh & Co Kg Hoch Un | Turmbauwerk aus Spannbeton |
FR2831479B1 (fr) | 2001-10-26 | 2004-01-02 | Coriolis Composites | Procede de fabrication de profils presentant un etat de surface specifique en resines synthetiques renforcees par des fibres et machine pour mettre en oeuvre le procede |
ES2285123T3 (es) | 2002-01-11 | 2007-11-16 | Fiberline A/S | Procedimiento para la produccion de un elemento estructural reforzado con fibra. |
NL1019953C2 (nl) | 2002-02-12 | 2002-12-19 | Mecal Applied Mechanics B V | Geprefabriceerde toren of mast, alsmede een methode voor het samenvoegen en/of naspannen van segmenten die één constructie moeten vormen, alsmede een werkwijze voor het opbouwen van een toren of mast bestaande uit segmenten. |
DE20206942U1 (de) | 2002-05-02 | 2002-08-08 | REpower Systems AG, 22335 Hamburg | Rotorblatt für Windenergieanlagen |
US6945727B2 (en) | 2002-07-19 | 2005-09-20 | The Boeing Company | Apparatuses and methods for joining structural members, such as composite structural members |
GB2391270B (en) | 2002-07-26 | 2006-03-08 | Rolls Royce Plc | Turbomachine blade |
DE10235496B4 (de) | 2002-08-02 | 2015-07-30 | General Electric Co. | Verfahren zum Herstellen eines Rotorblattes, Rotorblatt und Windenergieanlage |
FR2843967B1 (fr) | 2002-08-30 | 2004-11-26 | Hexcel Composites | Nouveaux produits composites et articles moules obtenus a partir desdits produits |
GB0222466D0 (en) | 2002-09-27 | 2002-11-06 | Marine Current Turbines Ltd | Improvements in rotor blades and/or hydrofoils |
BR0318120A (pt) | 2003-02-28 | 2006-02-07 | Vestas Wind Sys As | Método de fabricação de uma pá de turbina eólica, pá de turbina eólica, cobertura de revestimento frontal e uso de uma cobertura de revestimento frontal |
GB0306408D0 (en) | 2003-03-20 | 2003-04-23 | Holloway Wynn P | A composite beam |
DE10336461A1 (de) | 2003-08-05 | 2005-03-03 | Aloys Wobben | Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage |
FR2863321A1 (fr) | 2003-12-09 | 2005-06-10 | Ocea Sa | Pale d'aerogenerateur integrant des moyens de liaison ameliores entre la racine de la pale et le moyeu de l'aerogenerateur, bride, procede de fabrication et aerogenerateur correspondant |
ATE534817T1 (de) | 2004-06-30 | 2011-12-15 | Vestas Wind Sys As | Aus zwei getrennten teilen hergestellte windturbinenflügel |
EP1624137A1 (en) * | 2004-08-02 | 2006-02-08 | The European Community, represented by the European Commission | Support column for a wind turbine or a bridge |
US7634891B2 (en) | 2004-09-09 | 2009-12-22 | Kazak Composites, Inc. | Hybrid beam and stanchion incorporating hybrid beam |
CA2495596A1 (en) * | 2005-02-07 | 2006-08-07 | Resin Systems Inc. | Method of modular pole construction and modular pole assembly |
JP2006336555A (ja) * | 2005-06-02 | 2006-12-14 | Shinko Electric Co Ltd | 風力発電設備用の円筒部材 |
US7438524B2 (en) | 2005-07-20 | 2008-10-21 | United Technologies Corporation | Winged structural joint and articles employing the joint |
WO2007012200A1 (en) * | 2005-07-25 | 2007-02-01 | The University Of Manitoba | Design system for composite wind towers |
DK176367B1 (da) | 2005-09-19 | 2007-10-01 | Lm Glasfiber As | Materialelag til optagelse af overskydende lim |
DE102005062347A1 (de) | 2005-12-23 | 2007-06-28 | Eurocopter Deutschland Gmbh | Hochdehnbares Energie- und/oder Signalübertragungskabel sowie Rotorblatt mit einem derartigen Kabel |
DK176321B1 (da) | 2005-12-28 | 2007-08-06 | Lm Glasfiber As | Planering af rodbösninger på vinger til vindenergianlæg |
JP5007051B2 (ja) | 2006-02-10 | 2012-08-22 | 富士重工業株式会社 | 接着方法 |
US7427189B2 (en) | 2006-02-13 | 2008-09-23 | General Electric Company | Wind turbine rotor blade |
US8051627B2 (en) * | 2006-04-30 | 2011-11-08 | General Electric Company | Tower adapter, method of producing a tower foundation and tower foundation |
EP1880833A1 (en) | 2006-07-19 | 2008-01-23 | National University of Ireland, Galway | Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction |
PT103562B (pt) * | 2006-09-13 | 2008-08-14 | Alexandre Francisco Mal Aragao | Torres em betão polimérico para geradores eólicos e outras grandes aplicações estruturais |
US7824592B2 (en) | 2006-09-22 | 2010-11-02 | General Electric Company | Bond line forming method |
US7810757B2 (en) | 2006-11-02 | 2010-10-12 | The Boeing Company | Mounting device for an aircraft |
EP1925436B1 (en) | 2006-11-23 | 2012-08-29 | Siemens Aktiengesellschaft | Method for manufacturing of a fibre reinforced laminate, use of this laminate, wind turbine blade and wind turbine comprising this laminate |
WO2008136717A1 (en) * | 2007-05-07 | 2008-11-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Antenna tower structure with installation shaft |
FR2919819B1 (fr) | 2007-08-10 | 2009-12-18 | Eads Europ Aeronautic Defence | Procede de fabrication d'une structure complexe en materiau composite par assemblage d'elements rigides |
GB0717690D0 (en) | 2007-09-11 | 2007-10-17 | Blade Dynamics Ltd | Wind turbine blade |
CN101440207B (zh) | 2007-09-19 | 2012-08-08 | 住化拜耳氨酯株式会社 | 表皮整体成形品、表皮整体成形品以及带表皮的层叠体的制造方法 |
US8171633B2 (en) | 2007-12-19 | 2012-05-08 | General Electric Company | Method for assembling a multi-segment wind turbine blade |
DE102007061318B3 (de) | 2007-12-19 | 2009-05-14 | Mathias Hofmann | Verfahren zum Herstellen einer Längsverbindung für tragende Holzbauteile sowie tragendes Holzbauteil |
US7740453B2 (en) | 2007-12-19 | 2010-06-22 | General Electric Company | Multi-segment wind turbine blade and method for assembling the same |
US8167569B2 (en) | 2007-12-21 | 2012-05-01 | General Electric Company | Structure and method for self-aligning rotor blade joints |
WO2009109619A2 (en) | 2008-03-05 | 2009-09-11 | Vestas Wind Systems A/S | An assembly tool and a method of manufacturing a blade |
ES2364258B1 (es) | 2008-03-05 | 2012-06-01 | Manuel Torres Martinez | Sistema de union de tramos de palas de aerogenerador |
GB2458685B (en) | 2008-03-28 | 2010-05-12 | Rolls Royce Plc | An article formed from a composite material |
CL2009000892A1 (es) | 2008-04-14 | 2010-03-05 | Atlantis Resources Corporation Pte Ltd | Aspa para accionar una maquina generadora de energia submarina, con una base, una punta, un borde anterior y uno posterior que se extienden desde la base hasta la punta, una cuerda de base, una cuerda de punta de aspa desplazada con respecto a la cuerda de base en un angulo de torsion entre 50 y 90 grados; maquina generadora. |
GB0807515D0 (en) | 2008-04-24 | 2008-06-04 | Blade Dynamics Ltd | A wind turbine blade |
CN102165186B (zh) | 2008-08-25 | 2014-03-26 | 维斯塔斯风力系统集团公司 | 组件和制备组件的方法 |
GB0818467D0 (en) | 2008-10-08 | 2008-11-12 | Blade Dynamics Ltd | An insert for forming an end connection in a uni-axial composite material |
GB0818466D0 (en) | 2008-10-08 | 2008-11-12 | Blade Dynamics Ltd | A wind turbine rotor |
CA2741479A1 (en) | 2008-10-22 | 2010-04-29 | Vec Industries, L.L.C. | Wind turbine blade and method for manufacturing thereof |
ES2341074B1 (es) | 2008-10-28 | 2011-05-20 | GAMESA INNOVATION & TECHNOLOGY, S.L | Una pala de aerogenerador multi-panel con la raiz integrada. |
US20100116938A1 (en) | 2008-11-13 | 2010-05-13 | Kline William T | Method and apparatus for joining composite structural members and structural members made thereby |
WO2010065928A1 (en) | 2008-12-05 | 2010-06-10 | Modular Wind Energy, Inc. | Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use |
DK2396540T3 (en) | 2009-02-16 | 2016-05-17 | Vestas Wind Sys As | A blade for a wind turbine and a method for manufacturing the same |
US8096750B2 (en) | 2009-03-30 | 2012-01-17 | Ocean Renewable Power Company, Llc | High efficiency turbine and method of generating power |
US7854594B2 (en) | 2009-04-28 | 2010-12-21 | General Electric Company | Segmented wind turbine blade |
US7998303B2 (en) | 2009-05-28 | 2011-08-16 | General Electric Company | Method for assembling jointed wind turbine blade |
FR2948153B1 (fr) * | 2009-07-15 | 2011-12-30 | Saipem Sa | Eolienne maritime a pylone ajuste verticalement par calage |
MX336672B (es) * | 2009-08-24 | 2016-01-27 | Utility Composite Solutions International Inc | Poste modular compuesto de servicio publico. |
US8281547B2 (en) * | 2009-09-17 | 2012-10-09 | Ershigs, Inc. | Modular tower apparatus and method of manufacture |
GB0920749D0 (en) | 2009-11-26 | 2010-01-13 | Blade Dynamics Ltd | An aerodynamic fairing for a wind turbine and a method of connecting adjacent parts of such a fairing |
JP5308323B2 (ja) | 2009-12-22 | 2013-10-09 | 三菱重工業株式会社 | 風車翼及びそれを用いた風力発電装置 |
US20110175365A1 (en) * | 2010-01-15 | 2011-07-21 | Douglas Hines | Wind-driven electric generator structure vibration-deadening apparatus and methods |
GB201001527D0 (en) | 2010-01-29 | 2010-03-17 | Blade Dynamics Ltd | A blade for a turbine operating in water |
WO2011106733A2 (en) | 2010-02-25 | 2011-09-01 | The Regents Of The University Of California | Advanced aerodynamic and structural blade and wing design |
AU2011242786A1 (en) * | 2010-04-20 | 2012-11-15 | Conett, Inc. | Composite pole and method for making the same |
GB201007336D0 (en) | 2010-04-30 | 2010-06-16 | Blade Dynamics Ltd | A modular structural composite beam |
EP2400147A1 (en) | 2010-06-25 | 2011-12-28 | Siemens Aktiengesellschaft | Root of the blade of a wind turbine |
GB201011539D0 (en) | 2010-07-08 | 2010-08-25 | Blade Dynamics Ltd | A wind turbine blade |
US8307593B2 (en) | 2010-08-18 | 2012-11-13 | General Electric Company | Tower with adapter section |
US7976275B2 (en) | 2010-08-30 | 2011-07-12 | General Electric Company | Wind turbine rotor blade assembly having an access window and related methods |
BR112013011146B1 (pt) * | 2010-11-04 | 2021-01-12 | University Of Maine System Board Of Trustees | plataforma de turbina de vento semissubmersível capaz de flutuar em um corpo de água e suportar uma turbina de vento |
KR101222041B1 (ko) | 2010-12-30 | 2013-01-15 | 재단법인 포항산업과학연구원 | 하이브리드 타워 구조체 |
GB201109412D0 (en) | 2011-06-03 | 2011-07-20 | Blade Dynamics Ltd | A wind turbine rotor |
GB201118419D0 (en) | 2011-10-25 | 2011-12-07 | Blade Dynamics Ltd | A method of making a root end joint of a wind turbine blade and a root segment for such a joint |
GB201215004D0 (en) | 2012-08-23 | 2012-10-10 | Blade Dynamics Ltd | Wind turbine tower |
-
2012
- 2012-08-23 GB GBGB1215004.1A patent/GB201215004D0/en not_active Ceased
-
2013
- 2013-08-22 DK DK13756197.3T patent/DK2888474T3/en active
- 2013-08-22 CN CN201380047965.XA patent/CN104769280B/zh not_active Expired - Fee Related
- 2013-08-22 WO PCT/GB2013/052220 patent/WO2014030007A1/en active Application Filing
- 2013-08-22 EP EP13756197.3A patent/EP2888474B1/en not_active Not-in-force
-
2015
- 2015-02-20 US US14/627,644 patent/US9651029B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997003820A1 (en) * | 1995-07-17 | 1997-02-06 | Composite Development Corporation | Composite tubular member having consistent strength and method |
WO2002043947A1 (en) * | 2000-12-01 | 2002-06-06 | Pratt William F | Improved wavy composite structures |
WO2007012201A1 (en) * | 2005-07-25 | 2007-02-01 | The University Of Manitoba | Composite wind tower systems and methods of manufacture |
CN101532474A (zh) * | 2008-03-10 | 2009-09-16 | 通用电气公司 | 包括感应钎焊接头的风力涡轮机塔架及其制造方法 |
CN101564897A (zh) * | 2008-04-25 | 2009-10-28 | 通用电气公司 | 复合风力涡轮机塔架及其制造方法 |
US20100307097A1 (en) * | 2009-06-09 | 2010-12-09 | Word Iii Thomas Nott | Structural flange connection system and method |
US20110138729A1 (en) * | 2010-08-25 | 2011-06-16 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator tower |
Also Published As
Publication number | Publication date |
---|---|
CN104769280A (zh) | 2015-07-08 |
GB201215004D0 (en) | 2012-10-10 |
US20150159635A1 (en) | 2015-06-11 |
EP2888474B1 (en) | 2017-01-18 |
WO2014030007A1 (en) | 2014-02-27 |
EP2888474A1 (en) | 2015-07-01 |
US9651029B2 (en) | 2017-05-16 |
DK2888474T3 (en) | 2017-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104769280B (zh) | 风力涡轮机塔架 | |
US9555588B2 (en) | Insert for forming an end connection in a uni-axial composite material | |
US7866121B2 (en) | Composite wind tower systems and methods of manufacture | |
US7438533B2 (en) | Wind turbine rotor blade | |
JP5806319B2 (ja) | 1枚以上のモジュール化ブレードを有する垂直軸風力タービン | |
CN103732383A (zh) | 具有根部区带有提供有金属纤维的延长的紧固构件的风力涡轮机叶片 | |
US20140064980A1 (en) | Rotor blades with infused prefabricated shear webs and methods for making the same | |
WO2012140039A2 (en) | Wind turbine blade comprising circumferential retaining means in root regions | |
EP2591229B1 (en) | Notch-reduced composite joint | |
KR20110025147A (ko) | 풍력 터빈 타워 및 시스템과 그 제조 방법 | |
CN102734082A (zh) | 用于现场塔架形成的装置、复合部段和方法 | |
US9951751B2 (en) | Segmented wind turbine rotor blade with rod and tube joint connection | |
US10961979B2 (en) | Reinforced wind turbine blade component | |
US11994100B2 (en) | Manufacturing of segmented wind turbine blade | |
RU2699861C1 (ru) | Полка лонжерона и способ ее изготовления | |
WO2012041992A1 (en) | Modular wind turbine blade for a vertical axis wind turbine | |
EP4283115A1 (en) | An improved flow enhancing fabric, spar cap and wind turbine blade | |
US10711763B2 (en) | Wind-turbine rotor blade and method for producing a wind-turbine rotor blade | |
US20230400009A1 (en) | An improved interlayer, spar cap and wind turbine blade | |
WO2012041993A1 (en) | Blade attachment arrangement for a vertical axis wind turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200925 |