CN104769280B - 风力涡轮机塔架 - Google Patents

风力涡轮机塔架 Download PDF

Info

Publication number
CN104769280B
CN104769280B CN201380047965.XA CN201380047965A CN104769280B CN 104769280 B CN104769280 B CN 104769280B CN 201380047965 A CN201380047965 A CN 201380047965A CN 104769280 B CN104769280 B CN 104769280B
Authority
CN
China
Prior art keywords
wind turbine
self
turbine tower
supporting wind
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380047965.XA
Other languages
English (en)
Other versions
CN104769280A (zh
Inventor
P·海登
J·古铁雷斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power UK Ltd
Original Assignee
Blade Dynamics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blade Dynamics Ltd filed Critical Blade Dynamics Ltd
Publication of CN104769280A publication Critical patent/CN104769280A/zh
Application granted granted Critical
Publication of CN104769280B publication Critical patent/CN104769280B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/60Structure; Surface texture
    • F05B2250/61Structure; Surface texture corrugated
    • F05B2250/611Structure; Surface texture corrugated undulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/20Inorganic materials, e.g. non-metallic materials
    • F05B2280/2006Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6013Fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种具有壁的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架包括上部分(12)和下部分(14)。基本上全部上部分(12)均有复合塑料形成。基本上全部下部分(14)均由低碳钢形成。

Description

风力涡轮机塔架
技术领域
本发明涉及风力涡轮机塔架。更具体说,本发明涉及自支承式风力涡轮机塔架。
背景技术
用于大型风力涡轮机的传统塔架通常或为管状钢塔架、格构塔架或为混凝土塔架。大部分传统塔架为管状钢塔架,所述管状钢塔架由通过螺栓连接在一起的若干个20米至30米的段在现场形成。然后或者使用锚固螺栓将塔架固定到由混凝土制成的基座(陆地处)、固定到单桩、重力或三脚架基座(离岸、浅滩处)或者固定到浮动基座(离岸、深水处)。
在设计风力涡轮机塔架时,需要考虑塔架与转子的通过频率有关的固有频率。这些通过频率定义为转子旋转一整转的频率和通过塔架的任何叶片的频率,即,由多个叶片划分开的整个转子的旋转频率。如果塔架的固有频率处于转子的通过频率中的任意一个的范围中,则可能会发生共振,导致由涡轮机感知到的振动幅度增大。
塔架的固有频率与其长度平方成比例地减小。因此,更长塔架的固有频率通常低于更短塔架的固有频率。由于塔架长度已增大以适应更大的叶片,因此传统塔架的固有频率可能更接近转子的通过频率。结果,更长的塔架易受共振的影响,所述共振可能导致损坏涡轮机部件或塔架基座。
这样的事实加剧了上述问题,所述事实为涡轮机通常设计成在一定的旋转速度范围内工作。因此,待避免的通过频率通常是一些频率范围而不是窄频带或者固定值。
US 2009/0266004公开了一种由碳纤维复合物形成的风力涡轮机塔架。通过在其它场所制备挠性的织物预成型件、将预成型件运送到组装场所、将预成型件放置在芯轴上、并且用树脂层压预成型件以形成复合外壳来制造塔架。因为塔架的固有频率与制成塔架的材料的比刚度(比刚度是材料的固有特性并且定义为E/ρ,其中,E是杨氏模量而ρ是密度)的平方根成比例,因此使用刚性的碳纤维复合物导致塔架具有增大的固有频率。结果,在改变负载条件的情况下塔架不易于处于激发状态。然而,碳纤维复合物塔架的制造成本远高于相应钢塔架。
US 2011/0138707公开了一种具有混凝土下部和钢上部的风力涡轮机塔架,并且教导这种布置方案允许增大传统钢塔架的高度而同时不使得塔架构造和运送的难度相应增大。然而,在构造时,与更小的传统钢塔架相比这种塔架将具有更低的固有频率。结果,固有频率可能接近转子的通过频率,从而增大了共振以及对涡轮机部件或塔架基座造成相关损坏的风险。
发明内容
根据本发明,提供了一种具有壁的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架包括上部分和下部分,其中,上部分和下部分连接在一起以形成塔架,其中,基本上全部上部分皆由复合塑料形成,并且其中,基本上全部下部分皆由低碳钢形成。
利用这种布置方案,相对于全部由钢形成的塔架,能够获得针对长塔架的有利频率特性,而同时不产生全部由复合塑料形成塔架所需的费用。这是由于这样的事实,即,已经发现与塔架的上部分的比刚度相比,塔架的下部分的比刚度对塔架的整个固有频率产生极其小的影响。
此外,通过由复合塑料形成上部分,要求较小质量的材料满足指定安装的特定刚度要求。因此,能够减小塔架的总质量。与塔架的增大的固有频率相组合,这能够导致显著减小基座处的静负载和疲劳负载。
优选地,上部分包括塔架的长度的20%至80%。
上部分可以是整体部件。可替代地,上部分可以被分成多个分段。除了简化上部分的运输之外,分割上部分还削减了在制造期间使用的工具的成本和任何炉子的成本,并且还使得上部分更易于制造和检查。还允许通过使用工厂控制的预固化分段来紧密控制上部分的机械性能。这对于US 2009/0266004的织物预成型件布置方案而言是不可行的。可以沿着塔架的轴向方向和/或沿着塔架的环向布置所述多个分段。
上部分和下部分可以直接连接。可替代地,垫圈可以定位在上部分和下部分之间,以在两个部分之间产生均匀的压力分布。上部分和/或下部分可以是中空的。
复合塑料可以是选自包括标准模量碳纤维、中间模量碳纤维、高模量碳纤维和玄武岩的组的纤维增强的塑料。
在优选示例中,纤维中的50%至100%布置成相对于轴向方向呈0度,纤维中至多50%布置成相对于轴向方向呈+/-45度,并且纤维中至多30%布置成相对于轴向方向呈90度。
可选地,复合塑料包括粘弹性材料,以增大塔架的滞后阻尼特征。粘弹性材料可以设置作为粘弹性芯部。可替代地,复合塑料可以包括具有粘弹性聚合物基体的纤维增强塑料。
优选地,塔架的外表面包括起伏部、腔或者突出部中的任意一种,所述起伏部、腔或者突出部被布置成用以减小塔架的拖曳力和/或涡度顺风。
优选地,上部分和/或下部分具有沿着该部分的长度变化的壁厚度。以这种方式,能够从不需要材料的位置处移除材料,以提高塔架的动力学表现。
上部分的比刚度可以为至少60GPa/(g/cm3)。
在优选的示例中,下部分的比刚度小于30GPa/(g/cm3)。
附图说明
现在将参照以下附图描述本发明的示例,其中:
图1是根据本发明的风力涡轮机塔架的示意性剖视图;
图2是图1的风力涡轮机塔架的局部侧视图,示出了上部分和下部分之间的连接;
图3是图1的风力涡轮机塔架的上部分的示意性侧视图,其示出了纤维定向;
图4是图1的塔架的上部分的各段之间的连接的局部剖视图;
图5是图1的塔架的局部剖视图;
图6是图1的风力涡轮机塔架的局部剖视图,示出了上部分和下部分之间的第一替代性连接;
图7是图1的风力涡轮机塔架的局部剖视图,示出了上部分和下部分之间的第二替代性连接;
图8是图1的风力涡轮机塔架的局部剖视图,示出了上部分和下部分之间的第三替代性连接;
图9是图1的塔架的上部分的各段之间的第一替代性连接的局部剖视图;
图10是可以用于形成图1的塔架的纵向分割的段的立体图,示出了BladeDynamics公司的专利插入件;和
图11是图10的纵向分割的段的立体图,所述纵向分割的段在其外表面上具有突出部。
具体实施方式
如图1所示,塔架10包括由复合塑料制成的上部分12和由低碳钢制成的下部分14。上部分12和下部分14连接在一起以形成塔架10,所述塔架以本领域中已知的方式安装在基座16上。
如图2所示,为了连接上部分12和下部分14,每个上部分和下部分在一个端部处均具有向外延伸的外周凸缘18。上部分12和下部分14定位成使得它们沿着塔架10的纵向轴线20共轴并且使用螺栓22将凸缘18连接在一起。
制成上部分12的复合塑料具有高的比刚度,即,具有至少60GPa/(g/cm3)的比刚度。
用于上部分12的合适复合塑料包括但不限于由标准模量碳纤维(HSC)、中间模量碳纤维(IMC)、高模量碳纤维(HMC)、玄武岩或者其组合中的任意一种增强的塑料。除了其它传统方法外,还可以使用湿式层压法、浸渍、树脂传递模塑(RTM)或者预浸料坯来构造复合塑料。根据上部分12的结构要求,构造可以是整体式的、夹层的或者被加固的(例如,正交网格、纵梁和环形件等)。可以通过手动、丝体缠绕、自动带放置或者通过任何其它合适的方法来放置材料。
理想的是,复合塑料是层压制品,其中,纤维中的50%至100%呈0度,纤维中的0%至50%呈+/-45度,并且纤维中的0%至30%呈90度。如图3所示,“0度”表示纤维平行于塔架10的纵向轴线20,而“90度”表示纤维垂直于轴线20,即,沿着环向方向行进。0度的材料可以均匀分布地铺设或者可以被添加作为预固化或者预加固的材料堆。
介于+/-20度和+/-70度之间的其它纤维定向也是可行的。能够组合不同的材料,例如,0度的纤维能够由HSC或玄武岩制成,而偏离轴向的层片能够由纤维玻璃制成。同样地,0度的纤维能够由IMC或HMC制成,而偏离轴向的层片能够由HSC制成。
在这个示例中,上部分12包括嵌入在环氧树脂中的标准模量碳纤维,其中纤维体积分数(FVF)为56%,并且纤维中的80%呈0度、纤维中的15%呈+/-45度、纤维中的5%呈90度。采用这种布置方案,上部分12具有大约76GPa/(g/cm3)的比刚度,而下部分14具有大约27GPa/(g/cm3)的比刚度。
如图4所示,上部分12由多个管状段24形成。每个段的直径均介于2米至6米之间并且长度介于5.8米至45米之间。在这个示例中,如在本申请人的早期申请国际专利公开号No.WO 2010/041008中描述的那样,使用根部插入连接件26将相接续的各管状段24连接在一起。唯一的不同之处在于:根部插入连接件26设置在被联接的段24二者之间,并且具有右旋螺纹和左旋螺纹的螺柱28用于将各段24联接在一起。在WO 2010/041008中,根部插入连接件设置在一个工件上并且使用传统螺栓来将所述工件固定到毗邻结构。垫圈30布置在各管状段24之间,以通过预张紧而形成均匀压力分布。
在这个示例中,上部分12的长度为40米,并且其外径介于3.5米至4米之间、厚度介于20mm至30mm之间;下部分14的长度为40米,并且外径为4米、厚度介于14mm至18mm之间。所述上部分和下部分被连接以形成塔架10,所述塔架的高度为80米。
利用这种布置方案,塔架10的固有频率为1.55Hz,而整个由低碳钢构造成的相应塔架的固有频率将为0.97Hz。这表示固有频率增大了59%。
此外,与由低碳钢构造成的相应塔架相比,塔架的总质量减小了大约24%。因为减小了塔架10的总质量并且增大了塔架的固有频率,所以减小了基座处的静负载和疲劳负载。由于减小了加压负载,因此减小塔架的自重还使得固有频率进一步增大。
而且,对于给定的部件质量而言,使用复合材料产生了增大的安全系数。低碳钢的由材料强度除以其密度所限定的比强度是32MPa/(g/cm3),然而对于纤维体积分数为56%的单向HSC-环氧树脂而言,沿着纤维方向比强度为767MPa/(g/cm3)。
尽管风力涡轮机塔架10被描述为由上部分12和下部分14制成,所述上部分由复合塑料制成并且具有第一刚度,所述下部分由低碳钢制成并且具有第二刚度,但是塔架10可以由多个段形成,每个段具有不同的刚度。
塔架10可以具有任何适当的横截面形状,诸如圆形横截面或者具有流线型机翼形状的细长横截面,如图5所示。如果横截面在主要的风向上是对准的,则这种细长横截面能够用于将作用在塔架的拖曳力和来自塔架的顺风涡度最小化。
与具有向外延伸的凸缘18(如图2所示)不同的是,上部分12和下部分14中的每一个的端部可以具有向内延伸的凸缘118(如图6所示),通过所述凸缘118可以连接两个部分12、14。可替代地,可以通过用部分12、部分14之一上的向外延伸的凸缘18与部分14、部分12中的另一个的外表面上的根部插入连接件26相组合来实施连接(见图7)或者通过用部分12、部分14之一上的向内延伸凸缘118与部分14、部分12中的另一个的内表面上的根部插入连接件126相组合来实施连接(见图8)。根部插入连接件126本质上与根部插入连接件26相同,但是从上部分12向内延伸而非从上部分向外延伸。
可以使用任何适当的固定装置来连接相接续的各管状段24。例如,可以使用从每个段24向内延伸的根部插入连接件126来连接各管状段24,如图9所示。
沿着塔架10的纵向轴线20的方向,上部分12或管状段24可以被分成一些纵向分割部32。可以使用例如纵向凸缘34(如图10所示)、接搭接头或折叠机通过机械紧固、结合或机械紧固和结合的组合来实现这些分割部32的纵向连接。可替代地,上部分12可以由整体部件形成,即,所述整体部件不论纵向还是沿着环向方向均没有被分割。
塔架10的外表面可以包括如图11所示的波形部或突出部36,以减小拖曳力和来自塔架的顺风涡度。

Claims (16)

1.一种具有壁的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架包括:
上部分;和
与上部分分开的下部分,
其中,上部分安装在下部分之上以形成塔架,
其中,基本上全部上部分均由复合塑料形成,且上部分被分为沿着塔架环向布置的多个分段,并且
其中,基本上全部下部分均由低碳钢形成,
其中所述自支承式风力涡轮机塔架具有比由低碳钢造成的相应塔架更小的质量和更高的固有频率,且
其中,所述复合塑料是纤维增强的塑料,且纤维中的50%至100%布置成相对于轴向方向呈0度,纤维中至多50%布置成相对于轴向方向呈+/-45度,且纤维中至多30%布置成相对于轴向方向呈90度,且
其中,所述塔架具有圆形横截面或者具有流线型机翼形状的细长横截面,且所述上部分是沿着所述环向被分成多个分段的。
2.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述上部分包括塔架长度的20%至80%。
3.根据权利要求1所述的自支承式风力涡轮机塔架,其中,沿着塔架的轴向方向布置所述多个分段。
4.根据权利要求1所述的自支承式风力涡轮机塔架,所述自支承式风力涡轮机塔架还包括垫圈,所述垫圈被定位在上部分和下部分之间。
5.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述上部分是中空的。
6.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述下部分是中空的。
7.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述纤维增强的塑料选自包括标准模量碳纤维、中间模量碳纤维、高模量碳纤维和玄武岩构成的组。
8.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述复合塑料包括粘弹性材料。
9.根据权利要求8所述的自支承式风力涡轮机塔架,其中,所述粘弹性材料被设置成作为粘弹性芯部。
10.根据权利要求8所述的自支承式风力涡轮机塔架,其中,所述复合塑料包括具有粘弹性聚合物基体的纤维增强的塑料。
11.根据权利要求1所述的自支承式风力涡轮机塔架,其中,塔架的外表面包括起伏部、腔或者突出部中的任意一种,所述起伏部、腔或者突出部被布置成用以减小塔架顺风向的拖曳力和/或涡度。
12.根据权利要求5所述的自支承式风力涡轮机塔架,其中,所述上部分具有沿着上部分的长度变化的壁厚度。
13.根据权利要求6所述的自支承式风力涡轮机塔架,其中,所述下部分具有沿着下部分的长度变化的壁厚度。
14.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述上部分具有至少60GPa(g/cm < 3 > )的比刚度。
15.根据权利要求1所述的自支承式风力涡轮机塔架,其中,所述下部分具有小于30GPa(g/cm < 3 > )的比刚度。
16.一种风力涡轮机,所述风力涡轮机包括根据任意一项前述权利要求所述的自支承式风力涡轮机塔架。
CN201380047965.XA 2012-08-23 2013-08-22 风力涡轮机塔架 Expired - Fee Related CN104769280B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1215004.1 2012-08-23
GBGB1215004.1A GB201215004D0 (en) 2012-08-23 2012-08-23 Wind turbine tower
PCT/GB2013/052220 WO2014030007A1 (en) 2012-08-23 2013-08-22 Wind turbine tower

Publications (2)

Publication Number Publication Date
CN104769280A CN104769280A (zh) 2015-07-08
CN104769280B true CN104769280B (zh) 2020-09-25

Family

ID=47045260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380047965.XA Expired - Fee Related CN104769280B (zh) 2012-08-23 2013-08-22 风力涡轮机塔架

Country Status (6)

Country Link
US (1) US9651029B2 (zh)
EP (1) EP2888474B1 (zh)
CN (1) CN104769280B (zh)
DK (1) DK2888474T3 (zh)
GB (1) GB201215004D0 (zh)
WO (1) WO2014030007A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201215004D0 (en) 2012-08-23 2012-10-10 Blade Dynamics Ltd Wind turbine tower
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
DE102016114114A1 (de) * 2016-07-29 2018-02-01 Wobben Properties Gmbh Verbindungselement zum Verbinden von Turmabschnitten, Turmabschnitt, Turm, Windenergieanlage sowie Verfahren zum Herstellen eines Turmabschnitts und zum Verbinden von Turmabschnitten
US10294687B2 (en) * 2016-11-08 2019-05-21 Valmont West Coast Engineering Ltd. System for coupling together segments of a utility pole, and a utility pole assembly comprising the same
US11572861B2 (en) 2017-01-31 2023-02-07 General Electric Company Method for forming a rotor blade for a wind turbine
US10669993B2 (en) * 2017-05-30 2020-06-02 General Electric Company Wind turbine tower reinforcement system
JP6293961B1 (ja) * 2017-08-28 2018-03-14 有限会社神奈川技研 標識柱の構造及び標識柱
DK3670899T3 (da) * 2018-12-21 2024-05-27 Nordex Energy Spain Sau Fremgangsmåde til samling af en vindmølle og vindmølle samlet på grundlag af fremgangsmåden
DE102019104350A1 (de) * 2019-02-20 2020-08-20 Wobben Properties Gmbh Stahlturmringsegment für einen Windenergieanlagen-Turmabschnitt und Verfahren
DE102019109904A1 (de) * 2019-04-15 2020-10-15 Wobben Properties Gmbh Turmsegment und Verfahren zum Aufbau eines Turms
EP3741931A1 (en) * 2019-05-20 2020-11-25 ABB Power Grids Switzerland AG Post and method of providing a post
EP4001639B1 (en) * 2020-11-12 2023-09-13 Siemens Gamesa Renewable Energy A/S Coupling assembly
EP4202212A1 (en) * 2021-12-21 2023-06-28 TotalEnergies OneTech Floating wind platform and associated floating wind assembly
EP4202213A1 (en) * 2021-12-21 2023-06-28 TotalEnergies OneTech Floating wind platform and associated floating wind assembly
CN114382657B (zh) * 2022-01-21 2023-06-06 江苏金风科技有限公司 一种组合塔架、塔架基础和风力发电机组
WO2024006427A1 (en) 2022-06-29 2024-01-04 Dominguez Eddy E System and method for carbon fiber pole construction
NO20220974A1 (en) 2022-09-13 2024-03-14 Odfjell Oceanwind As Support member for a rotor and nacelle assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003820A1 (en) * 1995-07-17 1997-02-06 Composite Development Corporation Composite tubular member having consistent strength and method
WO2002043947A1 (en) * 2000-12-01 2002-06-06 Pratt William F Improved wavy composite structures
WO2007012201A1 (en) * 2005-07-25 2007-02-01 The University Of Manitoba Composite wind tower systems and methods of manufacture
CN101532474A (zh) * 2008-03-10 2009-09-16 通用电气公司 包括感应钎焊接头的风力涡轮机塔架及其制造方法
CN101564897A (zh) * 2008-04-25 2009-10-28 通用电气公司 复合风力涡轮机塔架及其制造方法
US20100307097A1 (en) * 2009-06-09 2010-12-09 Word Iii Thomas Nott Structural flange connection system and method
US20110138729A1 (en) * 2010-08-25 2011-06-16 Mitsubishi Heavy Industries, Ltd. Wind turbine generator tower

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767461A (en) 1951-03-27 1956-10-23 Lockheed Aircraft Corp Method of making propeller or rotor blade
US3487518A (en) 1965-08-12 1970-01-06 Henry Hopfeld Method for making a reinforced structural member
US3531901A (en) 1966-05-18 1970-10-06 Owens Corning Fiberglass Corp Heat insulating structural member
GB1229595A (zh) 1968-04-26 1971-04-28
US3980894A (en) 1974-07-02 1976-09-14 Philip Vary Flow tubes for producing electric energy
US4120998A (en) 1977-02-03 1978-10-17 Northrop Corporation Composite structure
DE2944359A1 (de) 1979-02-14 1980-08-21 Composite Tech Corp Verbundkoerper
DE3113079C2 (de) 1981-04-01 1985-11-21 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Aerodynamischer Groß-Flügel und Verfahren zu dessen Herstellung
US4662587A (en) 1981-09-30 1987-05-05 The Boeing Company Composite for aircraft wing and method of making
US4580380A (en) 1983-11-07 1986-04-08 Ballard Derryl R Composite filled interior structural box beams
US5273819A (en) 1986-10-15 1993-12-28 Jex Edward R Fiber reinforced resin composites, method of manufacture and improved composite products
US4752513A (en) 1987-04-09 1988-06-21 Ppg Industries, Inc. Reinforcements for pultruding resin reinforced products and novel pultruded products
DE3811427A1 (de) 1988-04-05 1989-10-26 Audi Ag Verbindungsanordnung von karosserieteilen
US4976587A (en) 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
US5096384A (en) 1990-07-27 1992-03-17 The Marley Cooling Tower Company Plastic fan blade for industrial cooling towers and method of making same
US5145320A (en) 1990-08-28 1992-09-08 The United States Of America As Represented By The Secretary Of The Navy Mass loaded composite rotor for vibro-acoustic application
US5281454A (en) 1991-08-16 1994-01-25 Kaiser Aerospace & Electronics Corporation Closed composite sections with bonded scarf joints
US5549947A (en) * 1994-01-07 1996-08-27 Composite Development Corporation Composite shaft structure and manufacture
FR2710871B1 (fr) 1993-10-07 1995-12-01 France Etat Armement Procédé d'assemblage d'éléments en matériau composite et éléments assemblages entre eux.
CA2161040A1 (en) 1994-10-21 1996-04-22 Delbert D. Derees Vehicle assembly method
DE19529476C2 (de) 1995-08-11 2000-08-10 Deutsch Zentr Luft & Raumfahrt Flügel mit schubsteifen Flügelschalen aus Faserverbundwerkstoffen für Luftfahrzeuge
DE69706403T2 (de) 1996-02-22 2002-05-29 Depuy Orthopaedics, Inc. Externe befestigungsvorrichtung mit ringen aus kompositmaterial
US6341467B1 (en) 1996-05-10 2002-01-29 Henkel Corporation Internal reinforcement for hollow structural elements
JPH1054204A (ja) 1996-05-20 1998-02-24 General Electric Co <Ge> ガスタービン用の多構成部翼
NL1005423C2 (nl) 1997-03-03 1998-09-18 Polva Pipelife Bv Lijmmofverbinding, alsmede lijmmof daarvoor.
US6096403A (en) 1997-07-21 2000-08-01 Henkel Corporation Reinforced structural members
DE19737966A1 (de) 1997-08-30 1998-08-06 Daimler Benz Ag Klebverbindung zwischen zwei Bauteilen
US7906191B2 (en) * 1997-11-14 2011-03-15 William F. Pratt Wavy composite structures
US6295779B1 (en) 1997-11-26 2001-10-02 Fred C. Canfield Composite frame member and method of making the same
US6332301B1 (en) 1999-12-02 2001-12-25 Jacob Goldzak Metal beam structure and building construction including same
DE19962989B4 (de) 1999-12-24 2006-04-13 Wobben, Aloys, Dipl.-Ing. Rotorblatt für Windenergieanlagen
DE10126912A1 (de) 2001-06-01 2002-12-19 Oevermann Gmbh & Co Kg Hoch Un Turmbauwerk aus Spannbeton
FR2831479B1 (fr) 2001-10-26 2004-01-02 Coriolis Composites Procede de fabrication de profils presentant un etat de surface specifique en resines synthetiques renforcees par des fibres et machine pour mettre en oeuvre le procede
ES2285123T3 (es) 2002-01-11 2007-11-16 Fiberline A/S Procedimiento para la produccion de un elemento estructural reforzado con fibra.
NL1019953C2 (nl) 2002-02-12 2002-12-19 Mecal Applied Mechanics B V Geprefabriceerde toren of mast, alsmede een methode voor het samenvoegen en/of naspannen van segmenten die één constructie moeten vormen, alsmede een werkwijze voor het opbouwen van een toren of mast bestaande uit segmenten.
DE20206942U1 (de) 2002-05-02 2002-08-08 REpower Systems AG, 22335 Hamburg Rotorblatt für Windenergieanlagen
US6945727B2 (en) 2002-07-19 2005-09-20 The Boeing Company Apparatuses and methods for joining structural members, such as composite structural members
GB2391270B (en) 2002-07-26 2006-03-08 Rolls Royce Plc Turbomachine blade
DE10235496B4 (de) 2002-08-02 2015-07-30 General Electric Co. Verfahren zum Herstellen eines Rotorblattes, Rotorblatt und Windenergieanlage
FR2843967B1 (fr) 2002-08-30 2004-11-26 Hexcel Composites Nouveaux produits composites et articles moules obtenus a partir desdits produits
GB0222466D0 (en) 2002-09-27 2002-11-06 Marine Current Turbines Ltd Improvements in rotor blades and/or hydrofoils
BR0318120A (pt) 2003-02-28 2006-02-07 Vestas Wind Sys As Método de fabricação de uma pá de turbina eólica, pá de turbina eólica, cobertura de revestimento frontal e uso de uma cobertura de revestimento frontal
GB0306408D0 (en) 2003-03-20 2003-04-23 Holloway Wynn P A composite beam
DE10336461A1 (de) 2003-08-05 2005-03-03 Aloys Wobben Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage
FR2863321A1 (fr) 2003-12-09 2005-06-10 Ocea Sa Pale d'aerogenerateur integrant des moyens de liaison ameliores entre la racine de la pale et le moyeu de l'aerogenerateur, bride, procede de fabrication et aerogenerateur correspondant
ATE534817T1 (de) 2004-06-30 2011-12-15 Vestas Wind Sys As Aus zwei getrennten teilen hergestellte windturbinenflügel
EP1624137A1 (en) * 2004-08-02 2006-02-08 The European Community, represented by the European Commission Support column for a wind turbine or a bridge
US7634891B2 (en) 2004-09-09 2009-12-22 Kazak Composites, Inc. Hybrid beam and stanchion incorporating hybrid beam
CA2495596A1 (en) * 2005-02-07 2006-08-07 Resin Systems Inc. Method of modular pole construction and modular pole assembly
JP2006336555A (ja) * 2005-06-02 2006-12-14 Shinko Electric Co Ltd 風力発電設備用の円筒部材
US7438524B2 (en) 2005-07-20 2008-10-21 United Technologies Corporation Winged structural joint and articles employing the joint
WO2007012200A1 (en) * 2005-07-25 2007-02-01 The University Of Manitoba Design system for composite wind towers
DK176367B1 (da) 2005-09-19 2007-10-01 Lm Glasfiber As Materialelag til optagelse af overskydende lim
DE102005062347A1 (de) 2005-12-23 2007-06-28 Eurocopter Deutschland Gmbh Hochdehnbares Energie- und/oder Signalübertragungskabel sowie Rotorblatt mit einem derartigen Kabel
DK176321B1 (da) 2005-12-28 2007-08-06 Lm Glasfiber As Planering af rodbösninger på vinger til vindenergianlæg
JP5007051B2 (ja) 2006-02-10 2012-08-22 富士重工業株式会社 接着方法
US7427189B2 (en) 2006-02-13 2008-09-23 General Electric Company Wind turbine rotor blade
US8051627B2 (en) * 2006-04-30 2011-11-08 General Electric Company Tower adapter, method of producing a tower foundation and tower foundation
EP1880833A1 (en) 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction
PT103562B (pt) * 2006-09-13 2008-08-14 Alexandre Francisco Mal Aragao Torres em betão polimérico para geradores eólicos e outras grandes aplicações estruturais
US7824592B2 (en) 2006-09-22 2010-11-02 General Electric Company Bond line forming method
US7810757B2 (en) 2006-11-02 2010-10-12 The Boeing Company Mounting device for an aircraft
EP1925436B1 (en) 2006-11-23 2012-08-29 Siemens Aktiengesellschaft Method for manufacturing of a fibre reinforced laminate, use of this laminate, wind turbine blade and wind turbine comprising this laminate
WO2008136717A1 (en) * 2007-05-07 2008-11-13 Telefonaktiebolaget Lm Ericsson (Publ) Antenna tower structure with installation shaft
FR2919819B1 (fr) 2007-08-10 2009-12-18 Eads Europ Aeronautic Defence Procede de fabrication d'une structure complexe en materiau composite par assemblage d'elements rigides
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
CN101440207B (zh) 2007-09-19 2012-08-08 住化拜耳氨酯株式会社 表皮整体成形品、表皮整体成形品以及带表皮的层叠体的制造方法
US8171633B2 (en) 2007-12-19 2012-05-08 General Electric Company Method for assembling a multi-segment wind turbine blade
DE102007061318B3 (de) 2007-12-19 2009-05-14 Mathias Hofmann Verfahren zum Herstellen einer Längsverbindung für tragende Holzbauteile sowie tragendes Holzbauteil
US7740453B2 (en) 2007-12-19 2010-06-22 General Electric Company Multi-segment wind turbine blade and method for assembling the same
US8167569B2 (en) 2007-12-21 2012-05-01 General Electric Company Structure and method for self-aligning rotor blade joints
WO2009109619A2 (en) 2008-03-05 2009-09-11 Vestas Wind Systems A/S An assembly tool and a method of manufacturing a blade
ES2364258B1 (es) 2008-03-05 2012-06-01 Manuel Torres Martinez Sistema de union de tramos de palas de aerogenerador
GB2458685B (en) 2008-03-28 2010-05-12 Rolls Royce Plc An article formed from a composite material
CL2009000892A1 (es) 2008-04-14 2010-03-05 Atlantis Resources Corporation Pte Ltd Aspa para accionar una maquina generadora de energia submarina, con una base, una punta, un borde anterior y uno posterior que se extienden desde la base hasta la punta, una cuerda de base, una cuerda de punta de aspa desplazada con respecto a la cuerda de base en un angulo de torsion entre 50 y 90 grados; maquina generadora.
GB0807515D0 (en) 2008-04-24 2008-06-04 Blade Dynamics Ltd A wind turbine blade
CN102165186B (zh) 2008-08-25 2014-03-26 维斯塔斯风力系统集团公司 组件和制备组件的方法
GB0818467D0 (en) 2008-10-08 2008-11-12 Blade Dynamics Ltd An insert for forming an end connection in a uni-axial composite material
GB0818466D0 (en) 2008-10-08 2008-11-12 Blade Dynamics Ltd A wind turbine rotor
CA2741479A1 (en) 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
ES2341074B1 (es) 2008-10-28 2011-05-20 GAMESA INNOVATION &amp; TECHNOLOGY, S.L Una pala de aerogenerador multi-panel con la raiz integrada.
US20100116938A1 (en) 2008-11-13 2010-05-13 Kline William T Method and apparatus for joining composite structural members and structural members made thereby
WO2010065928A1 (en) 2008-12-05 2010-06-10 Modular Wind Energy, Inc. Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
DK2396540T3 (en) 2009-02-16 2016-05-17 Vestas Wind Sys As A blade for a wind turbine and a method for manufacturing the same
US8096750B2 (en) 2009-03-30 2012-01-17 Ocean Renewable Power Company, Llc High efficiency turbine and method of generating power
US7854594B2 (en) 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
US7998303B2 (en) 2009-05-28 2011-08-16 General Electric Company Method for assembling jointed wind turbine blade
FR2948153B1 (fr) * 2009-07-15 2011-12-30 Saipem Sa Eolienne maritime a pylone ajuste verticalement par calage
MX336672B (es) * 2009-08-24 2016-01-27 Utility Composite Solutions International Inc Poste modular compuesto de servicio publico.
US8281547B2 (en) * 2009-09-17 2012-10-09 Ershigs, Inc. Modular tower apparatus and method of manufacture
GB0920749D0 (en) 2009-11-26 2010-01-13 Blade Dynamics Ltd An aerodynamic fairing for a wind turbine and a method of connecting adjacent parts of such a fairing
JP5308323B2 (ja) 2009-12-22 2013-10-09 三菱重工業株式会社 風車翼及びそれを用いた風力発電装置
US20110175365A1 (en) * 2010-01-15 2011-07-21 Douglas Hines Wind-driven electric generator structure vibration-deadening apparatus and methods
GB201001527D0 (en) 2010-01-29 2010-03-17 Blade Dynamics Ltd A blade for a turbine operating in water
WO2011106733A2 (en) 2010-02-25 2011-09-01 The Regents Of The University Of California Advanced aerodynamic and structural blade and wing design
AU2011242786A1 (en) * 2010-04-20 2012-11-15 Conett, Inc. Composite pole and method for making the same
GB201007336D0 (en) 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
EP2400147A1 (en) 2010-06-25 2011-12-28 Siemens Aktiengesellschaft Root of the blade of a wind turbine
GB201011539D0 (en) 2010-07-08 2010-08-25 Blade Dynamics Ltd A wind turbine blade
US8307593B2 (en) 2010-08-18 2012-11-13 General Electric Company Tower with adapter section
US7976275B2 (en) 2010-08-30 2011-07-12 General Electric Company Wind turbine rotor blade assembly having an access window and related methods
BR112013011146B1 (pt) * 2010-11-04 2021-01-12 University Of Maine System Board Of Trustees plataforma de turbina de vento semissubmersível capaz de flutuar em um corpo de água e suportar uma turbina de vento
KR101222041B1 (ko) 2010-12-30 2013-01-15 재단법인 포항산업과학연구원 하이브리드 타워 구조체
GB201109412D0 (en) 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
GB201118419D0 (en) 2011-10-25 2011-12-07 Blade Dynamics Ltd A method of making a root end joint of a wind turbine blade and a root segment for such a joint
GB201215004D0 (en) 2012-08-23 2012-10-10 Blade Dynamics Ltd Wind turbine tower

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003820A1 (en) * 1995-07-17 1997-02-06 Composite Development Corporation Composite tubular member having consistent strength and method
WO2002043947A1 (en) * 2000-12-01 2002-06-06 Pratt William F Improved wavy composite structures
WO2007012201A1 (en) * 2005-07-25 2007-02-01 The University Of Manitoba Composite wind tower systems and methods of manufacture
CN101532474A (zh) * 2008-03-10 2009-09-16 通用电气公司 包括感应钎焊接头的风力涡轮机塔架及其制造方法
CN101564897A (zh) * 2008-04-25 2009-10-28 通用电气公司 复合风力涡轮机塔架及其制造方法
US20100307097A1 (en) * 2009-06-09 2010-12-09 Word Iii Thomas Nott Structural flange connection system and method
US20110138729A1 (en) * 2010-08-25 2011-06-16 Mitsubishi Heavy Industries, Ltd. Wind turbine generator tower

Also Published As

Publication number Publication date
CN104769280A (zh) 2015-07-08
GB201215004D0 (en) 2012-10-10
US20150159635A1 (en) 2015-06-11
EP2888474B1 (en) 2017-01-18
WO2014030007A1 (en) 2014-02-27
EP2888474A1 (en) 2015-07-01
US9651029B2 (en) 2017-05-16
DK2888474T3 (en) 2017-02-27

Similar Documents

Publication Publication Date Title
CN104769280B (zh) 风力涡轮机塔架
US9555588B2 (en) Insert for forming an end connection in a uni-axial composite material
US7866121B2 (en) Composite wind tower systems and methods of manufacture
US7438533B2 (en) Wind turbine rotor blade
JP5806319B2 (ja) 1枚以上のモジュール化ブレードを有する垂直軸風力タービン
CN103732383A (zh) 具有根部区带有提供有金属纤维的延长的紧固构件的风力涡轮机叶片
US20140064980A1 (en) Rotor blades with infused prefabricated shear webs and methods for making the same
WO2012140039A2 (en) Wind turbine blade comprising circumferential retaining means in root regions
EP2591229B1 (en) Notch-reduced composite joint
KR20110025147A (ko) 풍력 터빈 타워 및 시스템과 그 제조 방법
CN102734082A (zh) 用于现场塔架形成的装置、复合部段和方法
US9951751B2 (en) Segmented wind turbine rotor blade with rod and tube joint connection
US10961979B2 (en) Reinforced wind turbine blade component
US11994100B2 (en) Manufacturing of segmented wind turbine blade
RU2699861C1 (ru) Полка лонжерона и способ ее изготовления
WO2012041992A1 (en) Modular wind turbine blade for a vertical axis wind turbine
EP4283115A1 (en) An improved flow enhancing fabric, spar cap and wind turbine blade
US10711763B2 (en) Wind-turbine rotor blade and method for producing a wind-turbine rotor blade
US20230400009A1 (en) An improved interlayer, spar cap and wind turbine blade
WO2012041993A1 (en) Blade attachment arrangement for a vertical axis wind turbine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200925