CN104737338B - 一种用于可充电锂离子电池的新型固溶体复合材料LiMVO4‑LiNi1‑x‑yCoxMnyO2 - Google Patents

一种用于可充电锂离子电池的新型固溶体复合材料LiMVO4‑LiNi1‑x‑yCoxMnyO2 Download PDF

Info

Publication number
CN104737338B
CN104737338B CN201280075043.5A CN201280075043A CN104737338B CN 104737338 B CN104737338 B CN 104737338B CN 201280075043 A CN201280075043 A CN 201280075043A CN 104737338 B CN104737338 B CN 104737338B
Authority
CN
China
Prior art keywords
composite
lini
lithium ion
lithium
limvo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280075043.5A
Other languages
English (en)
Other versions
CN104737338A (zh
Inventor
黎军
何金铧
陈珍莲
张贤惠
唐元昊
王德宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Kehua Dingsheng Energy Storage Science And Technology Ltd
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Guangdong Kehua Dingsheng Energy Storage Science And Technology Ltd
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Kehua Dingsheng Energy Storage Science And Technology Ltd, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Guangdong Kehua Dingsheng Energy Storage Science And Technology Ltd
Publication of CN104737338A publication Critical patent/CN104737338A/zh
Application granted granted Critical
Publication of CN104737338B publication Critical patent/CN104737338B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提出的是一种新的固溶体复合材料用于锂离子电池正极材料。这种固溶体复合材料αLiMVO4‑βLiNi 1‑x‑yCoxMnyO2,其中,LiMVO4是反尖晶石结构空间群(式1),LiNi 1‑x‑yCoxMnyO2是层状结构空间群(式2),两者全部或部分共享一个氧亚晶格。这种用于锂离子电池的新型复合材料的优势是其工作电压可以通过控制α和β的摩尔比例来调控,并且工作电压高于当前的二次电池材料。本发明还提出了制备该复合材料的方法。

Description

一种用于可充电锂离子电池的新型固溶体复合材料LiMVO4- LiNi1-x-yCoxMnyO2
技术领域
本发明涉及的是一种新型固溶体复合材料及其制备方法,该复合材料可应用于碱金属离子二次(可充电)电池,特别是锂离子电池。
背景技术
碱金属离子二次(可充电)电池,例如可充电锂离子电池,因具有高容量被作为最有潜力的能量存储系统广泛应用于各种便携式设备。与传统的镍氢电池,镍镉电池,铅酸电池相比,锂离子电池不仅能够提供比它们高出2-3倍的能量密度和5-6倍的功率密度,而且还具有循环寿命长,自放电率低,工作电压高,工作温度范围更广以及没有“记忆效应”等优点。然而,正极材料阻碍了锂离子电池的进一步发展。作为一种新的锂离子电池正极材料,层状过渡金属氧化物LiNi1-x-yCoxMnyO2引起了研究者们的广泛关注。研究表明,层状过渡金属氧化物具有较高的理论可逆容量,良好的结构弹性与稳定性,快速的锂离子扩散,长循环寿命,高安全性能,高工作电压,低成本和环境友好等优点。然而,当前的锂离子电池能量密度低,不能满足电动汽车的要求。因此,开发具有高能量密度的锂离子电池新材料是当前一项迫切任务。
发明内容
本发明的目的在于,提供一种新型固溶体复合材料用作可充电的锂离子电池正极材料。
第一方面,本发明提供了一种锂离子电池固溶体复合材料,通式为
αLiMVO4-βLiNi1-x-yCoxMnyO2,其中,LiMVO4是反尖晶石结构,空间群为LiNi1-x-yCoxMnyO2是层状结构,空间群为两者全部或部分共享一个立方密堆积的氧亚晶格。
在一优选实施方案中,α(LiMVO4)和β(LiNi1-x-yCoxMnyO2)的摩尔比从5:1至1:5,更优选为5:1至1:1。
在另一优选实施方案中,该复合材料的工作电压范围可通过控制α和β的摩尔比例来调控,并且其工作电压高于当前二次电池的正极材料。
在另一优选实施方案中,M选自下组:Al,Sc,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn或是他们的混合物,其中0≤x≤1,0≤y≤1,x+y≤1。
第二方面,本发明提供了本发明提供的固溶体复合材料的制备方法,包括以下步骤:a)LiMVO4和LiNi1-x-yCoxMnyO2按摩尔比从5:1至1:5(优选为5:1至1:1)混合,和b)将混合物在300-1000℃下煅烧15-50小时,得到权利要求1所述的复合材料。
在一优选实施方案中,LiMVO4和LiNi1-x-yCoxMnyO2分别可以由选自固相球磨法、溶胶凝胶法、喷雾干燥法、共沉淀法、燃烧合成法、或水热法的合成方法制备。
第三方面,本发明提供了本发明提供的所述复合材料作为正极材料用于制造可充电的锂离子电池的用途。
第四方面,本发明提供了本发明提供的所述复合材料应用于制造可充电的锂离子电池的用途,所述锂离子电池包含负极,正极,和电解液,其中,正极材料包括本发明提供的固溶体复合材料。
在一优选实施方案中,所述正极进一步包含导电剂和含锂盐的聚合物粘结剂。
在一优选实施方案中,该复合材料作为可充电锂离子电池正极材料,所述负极材料包括的化合物选自锂-碳嵌入化合物,锂-硅嵌入化合物,锂-过渡金属氧化物,锂-过渡金属氮化物,或锂-钛尖晶石化合物;PVDF作为正极的粘结剂,可用的导电剂选自Super P,炭黑,碳纳米管或石墨烯;聚合物粘结剂选自下组:四氟乙烯均聚物,四氟乙烯共聚物,乙烯-丙烯-二烯三元共聚物,聚醚,聚酯,甲基丙烯酸甲酯类聚合物,丙烯腈类聚合物,或偏二氟乙烯类聚合物。
应理解,本发明提供了一种具有高能量密度的锂离子电池材料。
附图说明
图1显示在反尖晶石结构LiNiVO4(图1A)和层状结构LiNi1-x-yCoxMnyO2(图1B)中氧原子阵列都是立方密堆积的。在反尖晶石结构LiNiVO4中,锂离子和镍离子随机占据八面体16d位置,留下一半八面体空位;钒离子占据四面体8a位置,夹在氧原子层和锂/镍原子层之间。在层状结构LiNi1-x-yCoxMnyO2中,锂离子和M离子占据八面体位置,锂离子层和M离子层沿六角c轴方向交替堆垛。在图1A和图1B中,三个结构板(结构单元)层沿c轴方向堆垛。超结构(图1C)为一个LiNi1-x-yCoxMnyO2结构单元层和两个LiNiVO4结构单元层沿C轴方向的堆垛;图1D为LiNi1-x-yCoxMnyO2和LiNiVO4另一摩尔比的结构图;图1D与图1C所示结构相似,说明不同比例对晶体结构并没有影响。
图2显示了本发明实施例一样品LiMVO4-LiNi1-x-yCoxMnyO2的实验及模拟XRD图谱分析。采用Cu靶辐射,波长结果表明,实验样品的XRD图谱与理论模拟的基本上是一致的。
图3显示了本发明实施例一中LiNiVO4与LiNi1/3Co1/3Mn1/3O2按摩尔比为1:1直接混合的XRD图谱,LiNiVO4和LiNi1/3Co1/3Mn1/3O2分别是典型的反尖晶石结构和层状结构,在混合物XRD图谱中并没有检测到新的衍射峰,混合物衍射峰的数目与LiNiVO4和LiNi1/3Co1/3Mn1/ 3O2各自的衍射峰数目相加的和一致,且衍射峰的位置也没有改变。
图4显示了LiNiVO4、LiNi1/3Co1/3Mn1/3O2和上述制备的LiNiVO4-LiNi1/3Co1/3Mn1/3O2的粉末X射线衍射分析结果。采用Cu靶辐射,波长LiNiVO4的晶体结构可判定为具有空间群Fd-3m的立方反尖晶石。LiNi1/3Co1/3Mn1/3O2的晶体结构为六方结构。经混合煅烧后得到的复合材料LiNiVO4-LiNi1/3Co1/3Mn1/3O2,其XRD图谱中出现很多新的衍射峰。LiNiVO4-LiNi1/3Co1/3Mn1/3O2的结构接近于理论模拟的固溶体结果,表明形成了新的固溶体。
图5A和5B分别显示了LiNiVO4和LiNi1/3Co1/3Mn1/3O2的充放电曲线图。图5C显示了实施例一提供的LiNiVO4-LiNi1/3Co1/3Mn1/3O2复合材料在电流密度为15mA/g时的充放电曲线图。图5D显示了实施例二提供的复合材料LiNiVO4-LiNi1/3Co1/3Mn1/3O2在电流密度为15mA/g时的充放电曲线。从图中可以看出,图5C、图5D与图5A、图5B有明显差异。复合材料LiNiVO4-LiNi1/3Co1/3Mn1/3O2的电压平台约为4.3V,与LiNiVO4和LiNi1/3Co1/3Mn1/3O2都不相同,这表明LiNiVO4-LiNi1/3Co1/3Mn1/3O2是一种新的固溶体,这种新的固溶体作为一种锂离子电池材料具有电化学活性及高电压。
具体实施方式
发明人发现了一种由反尖晶石结构LiMVO4和层状结构LiNi1-x-yCoxMnyO2构成的新型固溶体复合材料,这种固溶体展示出了锂离子电池正极材料的电化学活性。
复合材料
在本发明中,“复合材料”一词与“固溶体材料”可替换使用,代表一种新型固溶体材料,其结构为由反尖晶石结构LiMVO4和层状结构LiNi1-x-yCoxMnyO2构成的复合超结构。其中,LiMVO4和LiNi1-x-yCoxMnyO2摩尔比是可以调控的,例如但不限于5-1:1-5,优选为3-2:2-3,最优选为1:1。这种复合材料是反尖晶石结构和层状结构之间的固溶结合,两种结构全部或部分地共用氧亚晶格。
在复合材料中,LiMVO4的空间群为前驱体LiNi1-x-yCoxMnyO2的空间群为M为选自下组的金属元素:Al,Sc,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn或他们的混合,其中0≤x≤1,0≤y≤1,x+y≤1。
本发明提供的这种新型固溶体由于具有高的电压平台,因此提高了材料的能量密度。
复合材料的制备
LiMVO4的制备
LiMVO4可以使用现有技术中公开的方法制备,例如但是不局限于溶胶凝胶法、喷雾干燥法、共沉淀法、水热法、和燃烧合成法。
LiNi1-x-yCoxMnyO2的制备
LiNi1-x-yCoxMnyO2可以使用现有技术中公开的方法制备,例如但是不局限于固相反应法、溶胶凝胶法、喷雾干燥法、共沉淀法、水热法、燃烧合成法等合成方法。
LiMVO4-LiNi1/3Co1/3Mn1/3O2的制备
LiMVO4-LiNi1/3Co1/3Mn1/3O2可以用固相反应法合成,通过球磨方法,将LiMVO4和LiNi1-x-yCoxMnyO2以摩尔比α(LiMVO4):β(LiNi1-x-yCoxMnyO2)为5:1-1:5混合,然后使混合物成为颗粒并以3-8℃/min的升温速度在300-1000℃下煅烧3-50个小时。
复合材料的应用
在一方面,本发明描述的是一种具有电化学活性的固溶体材料。该复合材料基于电化学作用,释放锂离子,并且能够可逆地进行锂离子嵌入/脱出循环。该固溶体复合材料在可充电锂离子电池中用作正极材料。
LiMVO4-LiNi1/3Co1/3Mn1/3O2复合正极材料的制备:将活性物质(80%),Super P(10%)和聚偏二氟乙烯(10%)混合分散到N-甲基吡咯烷酮溶液中,然后将浆料涂敷在铝箔上,110-130℃真空干燥5-15h。将获得的电极薄膜冲压成直径为14mm的圆片,以金属锂作为反电极(负极)材料,在手套箱中组装成CR2032型纽扣半电池,其中电解液溶液为1M LiPF6和碳酸亚乙酯-碳酸二乙酯混合溶液(体积比为1:1)。
实施例一
活性材料的合成
(1)LiNiVO4的制备
用固相反应法制备LiNiVO4。将Li2CO3,NiCO3,NH4VO4作为起始物按摩尔比为1.05:1:1混合在乙醇溶液中球磨均匀,在80℃干燥2小时,然后使混合物成为颗粒并在石英管中,空气条件下以5℃/min的速度升温至450℃煅烧3小时。
(2)LiNi1/3Co1/3Mn1/3O2的制备
Ni1/3Co1/3Mn1/3(OH)2的合成将Ni(CH3COO)2·4H2O,Co(CH3COO)2·4H2O和Mn(CH3COO)2·4H2O(阳离子Ni:Co:Mn=1:1:1)溶解于蒸馏水中,使得醋酸金属盐的总浓度为2mol/L。向持续搅拌中的混合溶液滴加NaOH(2M)/NH4OH(0.2M)后沉淀生成,然后将该溶液于50℃维持24小时,控制pH值在10-11范围内。最后得到褐绿色氢氧化物混合沉淀,过滤洗涤后,将氢氧化物沉淀在120℃干燥24小时以除去吸附的水分。将Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O进行混合(摩尔比为1.05:1),在空气中480℃预烧结5小时,然后900℃煅烧20小时从而得到球状LiNi1/3Co1/3Mn1/3O2材料。
(3)LiNiVO4-LiNi1/3Co1/3Mn1/3O2的制备
LiNiVO4-LiNi1/3Co1/3Mn1/3O2通过固相反应法制备而成。将LiNiVO4和LiNi1/3Co1/ 3Mn1/3O2按摩尔比为1:1混合后进行球磨,然后使混合物成为颗粒并放置在石英管中以5℃/min的升温速度空气条件下700℃煅烧5小时。
实施例二
(1)LiNiVO4的制备
用固相反应法制备LiNiVO4。将Li2CO3,NiCO3,NH4VO4作为起始物按摩尔比为1.05:1:1混合在乙醇溶液中球磨均匀,在80℃干燥2小时后,然后使混合物成为颗粒并在石英管中在空气条件下以5℃/min的升温速度450℃煅烧3小时。
(2)LiNi1/3Co1/3Mn1/3O2的制备
Ni1/3Co1/3Mn1/3CO3的合成:将NiSO4·6H2O,CoSO4·7H2O和MnSO4·5H2O(阳离子Ni:Co:Mn=1:1:1)溶解于蒸馏水中,使得硫酸金属盐的总浓度为2mol/L。向持续搅拌中的混合溶液滴加Na CO3(2M)/NH4OH(0.2M)后沉淀生成,然后将该溶液于80℃维持12h小时,控制pH在7-8范围内。然后过滤、洗涤、干燥后得到绿棕色氢氧化物混合沉淀。过滤洗涤后,将Ni1/ 3Co1/3Mn1/3CO3于120℃干燥24小时以除去吸附的水分。最后将Ni1/3Co1/3Mn1/3CO3和化学计量的LiOH.H2O混合后,在空气中500℃预烧结4小时,然后900℃在空气中煅烧15小时并冷却到室温从而得到球状LiNi1/3Co1/3Mn1/3O2粉末。
(3)LiNiVO4-LiNi1/3Co1/3Mn1/3O2的制备
LiMVO4-LiNi1/3Co1/3Mn1/3O2通过固相反应法制备而成。将LiNiVO4和LiNi1/3Co1/ 3Mn1/3O2按摩尔比为2:1混合后进行球磨,然后将于700℃煅烧10小时得到LiNiVO4-LiNi1/ 3Co1/3Mn1/3O2粉末。
实施例三
(1)LiNiVO4的制备
首先,将Li(CH3COO)2·H2O,Ni(CH3COO)2·4H2O,NH4VO3按摩尔比1.05:1:1混合在去离子水中,然后将其与饱和柠檬酸溶液混合,柠檬酸与金属离子的比例为1:1,通过添加氨水将混合溶液的pH维持在5左右。在85℃搅拌5小时后得到湿凝胶,将湿凝胶在真空干燥箱120℃干燥24小时后得到干凝胶。最后将干凝胶空气中450℃煅烧4小时,随后冷却至室温。
(2)LiNi1/3Co1/3Mn1/3O2的制备
首先,将适量质量的Li(CH3COO)2·H2O,Ni(CH3COO)2·4H2O,Co(CH 3COO)2·7H2O和Mn(CH3COO)2·4H2O溶解于去离子水中,然后将其与饱和草酸溶液混合,草酸与金属离子的比为1:1。通过添加氨水将混合溶液的pH维持在9.0左右。在85℃搅拌5小时后得到湿凝胶,将湿凝胶在真空干燥箱120℃干燥24小时后得到干凝胶。最后将干凝胶空气中400℃煅烧4小时,随后冷却至室温。将获得的前体磨碎,在900℃空气条件下煅烧进行15小时,随后冷却至室温。
(3)LiNiVO4-LiNi1/3Co1/3Mn1/3O2的制备
LiNiVO4-LiNi1/3Co1/3Mn1/3O2通过固相球磨法制备而成。首先将LiNiVO4和LiNi1/ 3Co1/3Mn1/3O2按摩尔比为3:1进行混合,然后加入乙醇以580r/min的速度球磨4h。然后将球磨得到的前驱体在空气条件下600℃煅烧10小时,随后冷却至室温。
电极制备
LiMVO4-LiNi1/3Co1/3Mn1/3O2复合材料的正极制备:将活性物质(80%),Super P(10%)和聚偏二氟乙烯(10%)混合分散在N-甲基吡咯烷酮溶液中,然后将浆料混合物涂敷在铝箔上,120℃真空干燥10小时。将获得的电极薄膜冲压成直径为14mm的圆片,金属锂作为反电极(负极)材料,在手套箱中组装成CR2032型纽扣半电池,其电解液溶液用的是1MLiPF6和碳酸亚乙酯-碳酸二乙酯混合溶液(体积比为1:1)。电池伏安循环测试使用蓝电测试系统,电流密度为15mA/g,电压范围2.0-4.8V。
应理解,本发明提及的实例和实施例仅用于说明本发明的目的,本领域技术人员对本发明可做的各种改动和修改,同样落于本申请权利要求书所限定的范围内。

Claims (8)

1.一种锂离子电池固溶体复合材料,通式为αLiMVO4-βLiNi1-x-yCoxMnyO2,其特征在于,LiMVO4是空间群为的反尖晶石结构,LiNi1-x-yCoxMnyO2是空间群为的层状结构,两者全部或部分共享一个立方密堆积的氧亚晶格;
M选自下组元素:Al,Sc,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn,或是他们的混合物;
α(LiMVO4)和β(LiNi1-x-yCoxMnyO2)的摩尔比从5:1至1:5;
0≤x≤1,0≤y≤1,x+y≤1。
2.如权利要求1所述的复合材料,其特征在于,所述复合材料的工作电压可以通过控制α和β的摩尔比例来调控,并且其工作电压比当前的二次电池材料要高得多。
3.如权利要求1所述的复合材料的合成方法,其特征在于,所述方法包括步骤:a)LiMVO4和LiNi1-x-yCoxMnyO2的以摩尔比从5:1至1:5进行混合,和b)混合物在300-1000℃下煅烧15-50小时以得到如权利要求1所述的复合材料。
4.如权利要求3所述的方法,其特征在于,LiMVO4和LiNi1-x-yCoxMnyO2分别由选自下述的方法制备:固相球磨法、溶胶凝胶法、喷雾干燥法、共沉淀法、燃烧合成法、或水热法。
5.如权利要求1或2所述的复合材料的应用,用于制造可充电锂离子电池正极材料。
6.如权利要求1或2所述复合材料的应用是用于制造可充电锂离子电池,其特征在于,所述锂离子电池包含负极,正极,和电解液,正极材料包括如权利要求1或2所述的固溶体复合材料。
7.如权利要求6所述的应用,其特征在于,所述正极进一步包括导电剂和包含Li+盐的聚合物粘结剂。
8.如权利要求7所述的应用,其特征在于,所述复合材料作为可充电锂离子电池正极材料,所述负极材料包括的化合物选自锂-碳层间化合物,锂-硅层间化合物,锂-过渡金属氧化物,锂-过渡金属氮化物,或锂-钛尖晶石化合物;所述正极材料的粘结剂为PVDF,所述导电剂选自炭黑,碳纳米管或石墨烯;所述聚合物粘结剂选自下组:四氟乙烯均聚物,四氟乙烯共聚物,乙烯-丙烯-二烯三元共聚物,聚醚,聚酯,甲基丙烯酸甲酯类聚合物,丙烯腈类聚合物,或偏二氟乙烯类聚合物。
CN201280075043.5A 2012-08-01 2012-08-01 一种用于可充电锂离子电池的新型固溶体复合材料LiMVO4‑LiNi1‑x‑yCoxMnyO2 Expired - Fee Related CN104737338B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/079486 WO2014019162A1 (en) 2012-08-01 2012-08-01 A new solid solution composite limv04-lini1-x-ycoxmnyo2 material for rechargeable lithium ion batteries

Publications (2)

Publication Number Publication Date
CN104737338A CN104737338A (zh) 2015-06-24
CN104737338B true CN104737338B (zh) 2017-04-19

Family

ID=50027089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280075043.5A Expired - Fee Related CN104737338B (zh) 2012-08-01 2012-08-01 一种用于可充电锂离子电池的新型固溶体复合材料LiMVO4‑LiNi1‑x‑yCoxMnyO2

Country Status (3)

Country Link
US (1) US9917301B2 (zh)
CN (1) CN104737338B (zh)
WO (1) WO2014019162A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125558B (en) * 2013-05-29 2015-11-30 Iprotoxi Oy Device for controlling sensors
CN105047896A (zh) * 2015-06-03 2015-11-11 武汉理工大学 LiCuVO4介孔纳米颗粒及其制备方法和应用
CN109921014B (zh) * 2017-12-13 2021-10-01 荆门市格林美新材料有限公司 具有亚晶结构的镍基锂离子电池正极材料及其制备方法
CN109860582B (zh) * 2018-12-28 2022-04-19 蜂巢能源科技股份有限公司 锂离子电池的正极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656667A1 (en) * 1993-11-09 1995-06-07 Moli Energy (1990) Limited Inverse spinel compounds as cathodes for lithium batteries
CN101017896A (zh) * 2007-01-25 2007-08-15 吉林大学 锂离子二次电池正极材料LiNiVO4及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047180A (ja) * 2002-07-09 2004-02-12 Japan Storage Battery Co Ltd 非水電解質電池
JP2007188699A (ja) * 2006-01-12 2007-07-26 Nihon Kagaku Sangyo Co Ltd 非水電解質二次電池及び同用正極活物質の製造方法
CA2534276A1 (fr) * 2006-01-26 2007-07-26 Hydro Quebec Melange cobroye d'un materiau actif et d'un materiau de conduction, ses procedes de preparation et ses applications
EP2108203B1 (en) * 2007-01-18 2014-03-12 LG Chemical Limited Cathode active material and secondary battery comprising the same
KR100898291B1 (ko) 2007-09-12 2009-05-18 삼성에스디아이 주식회사 리튬 이차 전지
CN101488568B (zh) 2008-01-14 2011-05-04 中国科学院物理研究所 一种用于锂二次电池正极活性材料的表面修饰方法
US8052897B2 (en) * 2008-02-29 2011-11-08 Byd Company Limited Composite compound with mixed crystalline structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656667A1 (en) * 1993-11-09 1995-06-07 Moli Energy (1990) Limited Inverse spinel compounds as cathodes for lithium batteries
CN101017896A (zh) * 2007-01-25 2007-08-15 吉林大学 锂离子二次电池正极材料LiNiVO4及其制备方法

Also Published As

Publication number Publication date
CN104737338A (zh) 2015-06-24
WO2014019162A1 (en) 2014-02-06
US9917301B2 (en) 2018-03-13
US20150243968A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
Ding et al. A short review on layered LiNi0. 8Co0. 1Mn0. 1O2 positive electrode material for lithium-ion batteries
KR101821741B1 (ko) 리튬복합금속산화물 및 이를 포함하는 리튬이차전지
CN102916169B (zh) 一种富锂锰基正极材料及其制备方法
CN101320807B (zh) 多元复合锂离子电池正极材料及其制备方法
CN103904311B (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN104134790B (zh) 一种镍钴锰酸锂改性材料及其制备方法及其应用
CN105140492A (zh) 一种表面包覆锆酸锂的镍钴锰酸锂复合正极材料及制备方法
CN105118983B (zh) 一种镍锰酸锂正极材料的制备方法
TW201240200A (en) Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
Hou et al. Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping
CN106115745A (zh) 多晶金属氧化物、其制备方法以及包括该多晶金属氧化物的制品
CN102244257A (zh) 一种高温型锰酸锂正极材料及其制备方法
CN102496708A (zh) 锂离子电池多元层状正极材料及其制备方法
CN104779385B (zh) 一种高比容量锂离子电池正极材料及其制备方法
CN102569773B (zh) 用于锂离子二次电池的正极材料及其制备方法
CN106207130A (zh) 一种表面改性的锂电池高镍正极材料及其制备方法
CN102208611A (zh) 一种锂离子二次电池正极粉末材料的诱导结晶合成方法
CN101662025A (zh) 一种锂离子电池正极活性材料及其制备方法
CN108550791A (zh) 一种尖晶石包覆的层状正极材料及其制备方法和应用
Ma et al. Effect of metal ion concentration in precursor solution on structure and electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2
CN106410135B (zh) 一种表面处理改性的富锂锰基层状正极材料及制备方法
Wang et al. Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2–LiMn1. 5Ti0. 5O4 composite cathodes with improved electrochemical performance for lithium ion batteries
CN105939968A (zh) 锂复合氧化物
CN104737338B (zh) 一种用于可充电锂离子电池的新型固溶体复合材料LiMVO4‑LiNi1‑x‑yCoxMnyO2
CN103022471A (zh) 改善高镍三元正极材料电化学性能的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170419

Termination date: 20210801

CF01 Termination of patent right due to non-payment of annual fee