CN104708458B - 一种提高薄壁件支撑装置加工精度的方法 - Google Patents

一种提高薄壁件支撑装置加工精度的方法 Download PDF

Info

Publication number
CN104708458B
CN104708458B CN201510067261.XA CN201510067261A CN104708458B CN 104708458 B CN104708458 B CN 104708458B CN 201510067261 A CN201510067261 A CN 201510067261A CN 104708458 B CN104708458 B CN 104708458B
Authority
CN
China
Prior art keywords
slideway
cutting
wall part
upmilling
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510067261.XA
Other languages
English (en)
Other versions
CN104708458A (zh
Inventor
刘志兵
王东前
刘彪
闫正虎
王西彬
赵倩
吕维维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201510067261.XA priority Critical patent/CN104708458B/zh
Publication of CN104708458A publication Critical patent/CN104708458A/zh
Application granted granted Critical
Publication of CN104708458B publication Critical patent/CN104708458B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • B23Q3/062Work-clamping means adapted for holding workpieces having a special form or being made from a special material
    • B23Q3/065Work-clamping means adapted for holding workpieces having a special form or being made from a special material for holding workpieces being specially deformable, e.g. made from thin-walled or elastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2270/00Details of milling machines, milling processes or milling tools not otherwise provided for
    • B23C2270/08Clamping mechanisms or provision for clamping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

本发明涉及先进制造领域,具体涉及一种薄壁件支撑装置及其提高加工精度的方法,本发明通过配合扣与环道、滑道配合可以在支撑台上完成不同空间形状的支撑姿态,能够有效的完成对薄壁件的支撑固定,利用支撑装置进行夹持能够获得更精确的模态参数,本发明在充分考虑边界限制条件(切入角、切出角和切削厚度)的情况下,利用数值积分方法进行迭代运算,通过对一定范围的主轴转速和轴向切深进行细分,得到振动位移仿真图,最终得到铣削的稳定性图,提高了模拟精度,进而提升了加工质量。

Description

一种提高薄壁件支撑装置加工精度的方法
技术领域
本发明涉及先进制造领域,具体涉及一种提高薄壁件支撑装置加工精度的方法。
背景技术
在机械制造领域中,评价加工结果最直接的方式就是工件最终的表面质量,而加工过程中的再生颤振对最终的加工结果影响最大(尤其是薄壁件,多采用铣削方式加工),颤振的形成理论以及抑制方法已基本成熟,目前在进行理论计算时,多假定X方向不影响Y方向(径向切深),即二者是独立,实际加工过程中,两个方向往往存在耦合现象,这就对最终的模拟预测结果造成影响;而且在逆铣过程中,当径向浸入确定后,在理论计算时多认为切入角、切出角是固定不变的,这均对后续的拟合结果造成影响,进而影响到实际加工过程参数的选取;此外在采用计算频响函数得到切深与主轴转速的切削稳定度图时,得到的图像起伏较大,不利于参数的选取,最终对加工精度造成影响。
中国专利公开了“一种高速铣削稳定性快速判定方法”(公告号为:CN101905340A)、“一种基于叶轮叶片动态刚度的铣削精加工方法”(公告号为:CN102554326A)、“一种铣削工艺参数优化方法”(公告号为:CN104076733A),以上算法在进行稳定性分析时没有采用相应支撑结构便简化了运算条件,也没有考虑振动引起的边界限制条件变化,使误差在模拟过程中传递,这对后续模拟结果造成很大影响,得到的稳定图参数不是最优的参数,进而影响加工效率的进一步提升。
发明内容
本发明所要解决的技术问题是提供一种固定薄壁件牢稳,能够增大X方向刚度的薄壁件支撑装置,同时提供了一种基于支撑装置并考虑边界限制条件(切入角、切出角和切削厚度)变化,通过临界振幅拟合出稳定性图的提高加工精度的方法。
为解决以上技术问题,本发明采用如下技术方案:
技术方案一:
一种薄壁件支撑装置,其包括支撑台、第一环道、第二环道、X向滑道、设有通孔的配合扣、第一滑道、第二滑道、第三滑道、第四滑道以及用于固定支撑薄壁件的支撑机构;所述第一环道和第二环道同心并依次设置在支撑台上,所述X向滑道设置在支撑台上并通过第一环道与第二环道的圆心,所述第一滑道与第二滑道对称设置在X向滑道两侧,所述第三滑道与第四滑道对称设置在X向滑道两侧,所述配合扣设于第一环道、第二环道与第一滑道、第二滑道、第三滑道、第四滑道的交汇处;
所述支撑机构包括上夹板、下夹板、弹簧以及支杆,所述下夹板设置在支杆上,所述上夹板通过弹簧与上夹板连接,所述支杆下端设有台肩,所述支杆通过其下端台肩与配合扣连接。
所述第一滑道与第二滑道的夹角为15°,所述第三滑道与第四滑道夹角为15°,所述X向滑道与坐标轴X平行。
所述配合扣纵截面呈十字形,所述上夹板和下夹板外表覆盖的材质为橡胶。
技术方案二:
本发明提高加工精度的方法步骤如下(基于薄壁件支撑装置):
①将所述配合扣沿着X轴设置在X向滑道,通过支撑机构将薄壁件沿着X轴支撑固定,增加X方向刚度,从而X方向接受的激励对径向切削Y方向产生的影响忽略不计;
②建立薄壁件逆铣过程的动态方程;
动态逆铣厚度为:h(φj)=[hst+(vj-1-vj)]g(φj) (一)
其中hst为静态切削厚度,hst=fzsin(φj);vj-1,vj分别为前一刀齿周期和当前刀齿的动态位移,且满足vj=-x sin(φj)-y cos(φj);g(φj)为单位阶跃函数,用于确定刀齿是否处于切削中,即
其中φst为切入角,φex为切出角
作用在第j齿y方向上的逆铣力可表示为:
Fyj=Ftjsin(φj)-Frjcos(φj) (三)
其中Ftj=Ktaphj)为切向切削力,Frj=KrFtj为径向切削力,将所有刀齿y方向上的切削力相加得到y方向上总的切削力为:
作用在工件上的切削力为:
Fyw=-Fy (五)
进而得出对工件系统的动力学方程
③求y方向时域解;
将(六)式变形可得:
其中初始条件y0
采用数值积分方法即可求y方向的时域解:
④拟合振动位移仿真图;
在给定转速n(rpm)、轴向切深ap(mm)、径向切深ae(mm)和每齿进给fz(mm)的情况下,通过所需要的加工精度选择合适的临界振幅A0,在给定每齿进给以及径向切深条件下,将一定范围的主轴转速和轴向切深进行细分,得到振动位移仿真图;
⑤拟合逆铣系统的二维稳定性图;
以临界振幅A0为判断条件,对给定的主轴转速得到相应的临界轴向切深,将所有的临界值拟合成曲线即可得到逆铣系统的二维稳定性图。
⑥根据系统的二维稳定性图,合理选取参数,进行实际切削(逆铣)加工。
本发明所述步骤②中的逆铣厚度、切入角或切出角由于y方向的振动,会发生变化,引入新变量S,当刀齿处于切削时,并且切削力大于等于0时,则S为当前振动,有:
S=vj (十)
当切削角在切入角和切出角之间,但切削力小于0时,则并未切削,经过赋值得到前齿振动:
S=S+fzsin(φj) (十一)
最后可以得到瞬时切削厚度表达式为:
h(φj)=[fzsin(φj)+S-vj]g(φj) (十二)
y方向振动也会导致切出角变化(逆铣),
切入角(逆铣)也会变化,由于切入时切削厚度变化极小,切入角按标称值0来计算。
本发明所述步骤⑤中拟合稳定性图示,通过改变每齿进给或径向切深时,绘制出三维稳定性图。
本发明的积极效果如下:本发明通过配合扣与环道、滑道配合可以在支撑台上完成不同空间形状的支撑姿态,能够有效的完成对薄壁件的支撑固定,利用支撑装置进行夹持能够获得更精确的模态参数;本发明将配合扣沿X轴向布置在X向滑道,通过提高X向的刚度,极大的减少对Y方向的影响,为理论运算中的简化提供依据,保障了最终的加工精度;本发明在充分考虑边界限制条件(切入角、切出角和切削厚度)的情况下,利用数值积分方法进行迭代运算,通过对一定范围的主轴转速和轴向切深进行细分,得到振动位移仿真图,最终得到逆铣的稳定性图,提高了模拟精度,进而提升了加工质量;本发明相比传统的稳定性算法得到的稳定性图具有更好的指导意义,尤其是在低转速下,大振幅的情况具有更高的准确性。
附图说明
图1为本发明支撑装置的结构示意图;
图2为本发明上夹板的结构示意图;
图3为本发明薄壁件逆铣示意图;
图4为本发明刀齿动态位移示意图;
图5为本发明振动位移随时间变化示意图;
图6为本发明最终拟合的逆铣稳定性图;
图7为本发明振动位移对切出角的影响的示意图;
在图中:1第一环道、2第二环道、3支撑台、4配合扣、5X向滑道、6通孔、7-1第一滑道、7-2第二滑道、8-1第三滑道、8-2第四滑道、9-1上夹板、9-2下夹板、10弹簧、11支杆、A表示振幅(A0表示临界振幅)、B表示工件、C表示刀具。
具体实施方式
一、本发明装置的实施例:
如图1、2所示,一种薄壁件支撑装置,其包括支撑台3、第一环道1、第二环道2、X向滑道5、设有通孔6的配合扣4、第一滑道7-1、第二滑道7-2、第三滑道8-1、第四滑道8-2以及用于固定支撑薄壁件的支撑机构;所述第一环道1和第二环道2同心并依次设置在支撑台3上,所述X向滑道5设置在支撑台3上并通过第一环道1与第二环道2的圆心,所述第一滑道7-1与第二滑道7-2对称设置在X向滑道5两侧,所述第三滑道8-1与第四滑道8-2对称设置在X向滑道5两侧,所述配合扣4设于第一环道1、第二环道2与第一滑道7-1、第二滑道7-2、第三滑道8-1、第四滑道8-2的交汇处;
所述支撑机构包括上夹板9-1、下夹板9-2、弹簧10以及支杆11,所述下夹板9-2设置在支杆11上,所述上夹板9-1通过弹簧10与上夹板9-1连接,所述支杆11下端设有台肩,所述支杆11通过其下端台肩与配合扣4连接。
所述第一滑道7-1与第二滑道7-2的夹角为15°,所述第三滑道8-1与第四滑道8-2夹角为15°,所述X向滑道5与坐标轴X平行。
所述配合扣4纵截面呈十字形,所述上夹板9-1和下夹板9-2外表覆盖的材质为橡胶。
本发明将配合扣沿X轴向布置在X向滑道,通过提高X向的刚度,极大的减少对Y方向的影响,为理论运算中的简化提供依据,保障了最终的加工精度。
二、本发明方法的实施例:
本实施例利用薄壁件支撑装置进行提高加工精度的方法步骤如下:
①将所述配合扣沿着X轴设置在X向滑道,通过支撑机构将薄壁件沿着X轴支撑固定,增加X方向刚度,从而X方向接受的激励对径向切削Y方向产生的影响忽略不计;
②建立薄壁件逆铣过程的动态方程;
如图3、4所示,动态逆铣厚度为:h(φj)=[hst+(vj-1-vj)]g(φj) (一)
其中hst为静态切削厚度,hst=fzsin(φj);vj-1,vj分别为前一刀齿周期和当前刀齿的动态位移,且满足vj=-x sin(φj)-y cos(φj);g(φj)为单位阶跃函数,用于确定刀齿是否处于切削中,即
其中φst为切入角,φex为切出角
作用在第j齿y方向上的逆铣力可表示为:
Fyj=Ftjsin(φj)-Frjcos(φj) (三)
其中Ftj=Ktaph(φj)为切向切削力,Frj=KrFtj为径向切削力,将所有刀齿y方向上的切削力相加得到y方向上总的切削力为:
作用在工件上的切削力为:
Fyw=-Fy (五)
进而得出对工件系统的动力学方程
③求y方向时域解;
将(六)式变形可得:
其中初始条件y0
采用数值积分方法即可求y方向的时域解:
④拟合振动位移仿真图;
如图5所示,在给定转速n(rpm)、轴向切深ap(mm)、径向切深ae(mm)和每齿进给fz(mm)的情况下,通过所需要的加工精度选择合适的临界振幅A0,在给定每齿进给以及径向切深条件下,将一定范围的主轴转速和轴向切深进行细分,得到振动位移仿真图;
⑤拟合逆铣系统的二维稳定性图;
如图6所示,以临界振幅A0为判断条件,对给定的主轴转速得到相应的临界轴向切深,将所有的临界值拟合成曲线即可得到逆铣系统的二维稳定性图;
⑥根据系统的二维稳定性图,合理选取参数,进行实际切削(逆铣)加工。
本发明所述步骤②中的逆铣厚度、切入角或切出角由于y方向的振动,会发生变化,引入新变量S,当刀齿处于切削时,并且切削力大于等于0时,则S为当前振动,有:
S=vj (十)
当切削角在切入角和切出角之间,但切削力小于0时,则并未切削,经过赋值得到前齿振动:
S=S+fzsin(φj) (十一)
最后可以得到瞬时切削厚度表达式为:
h(φj)=[fzsin(φj)+S-vj]g(φj) (十二)
如图7所示,y方向振动也会导致切出角变化(逆铣),
切入角(逆铣)也会变化,由于切入时切削厚度变化极小,切入角按标称值0来计算。
本发明所述步骤⑤中拟合稳定性图示,通过改变每齿进给或径向切深时,绘制出三维稳定性图。
本发明图5、图6是将上述式(一)-(十三)在MATLAB中进行编程,模拟得出。
通过本发明得到的稳定性图考虑到了薄壁件加工过程中振幅较大的实际情况,相比传统的稳定性算法得到的稳定性图具有更好的指导意义,尤其是在低转速下,大振幅的情况具有更高的准确性和指导意义。对于实际加工时,通过理论得到的稳定性图可以选择合适的切削参数,从而保证加工精度。
以上所述实施方式仅为本发明的优选实施例,而并非本发明可行实施的穷举。对于本领域一般技术人员而言,在不背离本发明原理和精神的前提下对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。

Claims (5)

1.一种提高薄壁件支撑装置加工精度的方法,其包括支撑台(3)、第一环道(1)、X向滑道(5)、第一滑道(7-1)、第二滑道(7-2)、第三滑道(8-1)、第四滑道(8-2)以及用于固定支撑薄壁件的支撑机构;
其特征在于该提高加工精度的方法步骤如下:
①还包括第二环道(2)以及设有通孔(6)的配合扣(4);所述第一环道(1)和第二环道(2)同心并依次设置在支撑台(3)上,所述X向滑道(5)设置在支撑台(3)上并通过第一环道(1)与第二环道(2)的圆心,所述第一滑道(7-1)与第二滑道(7-2)对称设置在X向滑道(5)两侧,所述第三滑道(8-1)与第四滑道(8-2)对称设置在X向滑道(5)两侧,所述配合扣(4)设于第一环道(1)、第二环道(2)与第一滑道(7-1)、第二滑道(7-2)、第三滑道(8-1)、第四滑道(8-2)的交汇处;所述支撑机构包括上夹板(9-1)、下夹板(9-2)、弹簧(10)以及支杆(11),所述下夹板(9-2)设置在支杆(11)上,所述上夹板(9-1)通过弹簧(10)与上夹板(9-1)连接,所述支杆(11)下端设有台肩,所述支杆(11)通过其下端台肩与配合扣(4)连接;
将所述配合扣(4)沿着X轴设置在X向滑道(5),通过支撑机构将薄壁件沿着X轴支撑固定,增加X方向刚度,从而X方向接受的激励对径向切削Y方向产生的影响忽略不计;
②建立薄壁件逆铣过程的动态方程;动态逆铣厚度为:
h(φj)=[hst+(vj-1-vj)]g(φj) (一)
其中hst为静态切削厚度,hst=fzsin(φj);vj-1,vj分别为前一刀齿周期和当前刀齿的动态位移,且满足vj=-xsin(φj)-ycos(φj);g(φj)为单位阶跃函数,用于确定刀齿是否处于切削中,即
其中φst为切入角,φex为切出角,
作用在第j齿y方向上的逆铣力可表示为:
Fyj=Ftjsin(φj)-Frjcos(φj) (三)
其中Ftj=Ktaph(φj)为切向切削力,Frj=KrFtj为径向切削力,将所有刀齿y方向上的切削力相加得到y方向上总的切削力为:
作用在工件上的切削力为:
Fyw=-Fy (五)
进而得出对工件系统的动力学方程:
③求y方向时域解;
将(六)式变形可得:
其中初始条件y0
采用数值积分方法即可求y方向的时域解:
④拟合振动位移仿真图;
在给定转速n(rpm)、轴向切深ap(mm)、径向切深ae(mm)和每齿进给fz(mm)的情况下,通过所需要的加工精度选择合适的临界振幅A0,在给定每齿进给以及径向切深条件下,将一定范围的主轴转速和轴向切深进行细分,得到振动位移仿真图;
⑤拟合逆铣系统的二维稳定性图;
以临界振幅A0为判断条件,对给定的主轴转速得到相应的临界轴向切深,将所有的临界值拟合成曲线即可得到逆铣系统的二维稳定性图;
⑥根据系统的二维稳定性图,合理选取参数,进行实际切削(逆铣)加工。
2.根据权利要求1所述的一种提高薄壁件支撑装置加工精度的方法,其特征在于:所述步骤②中的逆铣厚度、切入角或切出角由于y方向的振动,会发生变化,引入新变量s,当刀齿处于切削时,并且切削力大于等于0时,则s为当前振动,则有:
S=vj (十)
当切削角在切入角和切出角之间,但切削力小于0时,则并未切削,经过赋值得到前齿振动:
S=S+fzsin(φj) (十一)
最后可以得到瞬时切削厚度表达式为:
h(φj)=[fzsin(φj)+S-vj]g(φj) (十二)
y方向振动也会导致切出角变化(逆铣),
切入角(逆铣)也会变化,由于切入时切削厚度变化极小,切入角按标称值0来计算。
3.根据权利要求1所述的一种提高薄壁件支撑装置加工精度的方法,其特征在于:所述第一滑道(7-1)与第二滑道(7-2)的夹角为15°,所述第三滑道(8-1)与第四滑道(8-2)夹角为15°,所述X向滑道(5)与坐标轴X平行。
4.根据权利要求1或2所述的一种提高薄壁件支撑装置加工精度的方法,其特征在于:所述配合扣(4)纵截面呈十字形,所述上夹板(9-1)和下夹板(9-2)外表覆盖的材质为橡胶。
5.根据权利要求4所述的一种提高薄壁件支撑装置加工精度的方法,其特征在于:所述步骤⑤中拟合稳定性图示,通过改变每齿进给或径向切深时,绘制出三维稳定性图。
CN201510067261.XA 2015-02-10 2015-02-10 一种提高薄壁件支撑装置加工精度的方法 Expired - Fee Related CN104708458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510067261.XA CN104708458B (zh) 2015-02-10 2015-02-10 一种提高薄壁件支撑装置加工精度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510067261.XA CN104708458B (zh) 2015-02-10 2015-02-10 一种提高薄壁件支撑装置加工精度的方法

Publications (2)

Publication Number Publication Date
CN104708458A CN104708458A (zh) 2015-06-17
CN104708458B true CN104708458B (zh) 2017-02-22

Family

ID=53408452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510067261.XA Expired - Fee Related CN104708458B (zh) 2015-02-10 2015-02-10 一种提高薄壁件支撑装置加工精度的方法

Country Status (1)

Country Link
CN (1) CN104708458B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105058097B (zh) * 2015-07-31 2017-03-22 安徽涌诚机械有限公司 球形大型铸件多孔多平面同方位加工用夹具
CN107065765B (zh) * 2016-12-26 2019-04-19 西北工业大学 基于刀具轴线运动模型的切削厚度计算方法
CN106808246B (zh) * 2017-03-01 2017-10-27 南京航空航天大学 薄壁环形件加工方法及其自动辅助支撑装置
CN107717544A (zh) * 2017-10-26 2018-02-23 兰州高压阀门有限公司 用于大口径金属密封蝶阀蝶板的车削工装夹具
CN108942322A (zh) * 2018-09-30 2018-12-07 贵州欣佰亿实业有限公司 一种用于大型薄壁环形件的防变形夹紧装置
CN111723446B (zh) * 2020-06-28 2022-06-14 福州大学 铝合金薄壁件铣削过程的有限元仿真方法
CN115846737B (zh) * 2023-02-24 2023-05-09 江阴鼎鑫铝业有限公司 一种铝型材铣孔装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242146B (en) * 1990-03-22 1993-07-28 Skf Gmbh A device for clamping tubular elements
DE102010038035A1 (de) * 2010-10-07 2012-04-12 Rolf Wissner Vorrichtung zur materialabtragenden Werkstückbearbeitung mit einer nach dem Bernoulli-Prinzip kontaktlos arbeitenden Werkstückhalteeinrichtung
CN103447851A (zh) * 2013-08-27 2013-12-18 镇江索达联轴器有限公司 环状薄壁件车加工防变形夹具
CN103846690A (zh) * 2012-11-29 2014-06-11 大连凯泓科技有限公司 活动定位装置
CN203726149U (zh) * 2014-03-04 2014-07-23 栗生锐 一种用于大型薄壁环形件的柔性辅助支撑夹紧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242146B (en) * 1990-03-22 1993-07-28 Skf Gmbh A device for clamping tubular elements
DE102010038035A1 (de) * 2010-10-07 2012-04-12 Rolf Wissner Vorrichtung zur materialabtragenden Werkstückbearbeitung mit einer nach dem Bernoulli-Prinzip kontaktlos arbeitenden Werkstückhalteeinrichtung
CN103846690A (zh) * 2012-11-29 2014-06-11 大连凯泓科技有限公司 活动定位装置
CN103447851A (zh) * 2013-08-27 2013-12-18 镇江索达联轴器有限公司 环状薄壁件车加工防变形夹具
CN203726149U (zh) * 2014-03-04 2014-07-23 栗生锐 一种用于大型薄壁环形件的柔性辅助支撑夹紧装置

Also Published As

Publication number Publication date
CN104708458A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
CN104708458B (zh) 一种提高薄壁件支撑装置加工精度的方法
CN102681488B (zh) 一种铣削加工工件表面形貌的建模方法
CN104731014B (zh) 椭圆振动辅助切削微槽的形貌建模方法
CN102621932B (zh) 一种数控机床服役过程的能量消耗预测方法
CN104133417B (zh) 叶片式流体机械数控加工切削力的快速预测方法
CN106503281B (zh) 切削性能导向的机床结构设计方法
CN108515217A (zh) 一种球头铣削自由曲面表面形貌仿真方法
CN104794305B (zh) 变曲率曲面侧铣过程中的瞬时铣削力预测方法
CN105184031B (zh) 一种装配机器人臂部结构的轻量化设计方法
CN104898568A (zh) 基于刚度辨识的数控机床进给系统控制参数优化方法
CN105678043A (zh) 一种考虑刚度时变的大切除率铣削颤振监测方法
CN106294977A (zh) 一种机器人铣削加工中工件装夹位置优划方法
CN104400649A (zh) 一种回转类零件圆弧修整算法及其控制系统
CN109910180A (zh) 一种圆盘锯粗加工三维异型石材的锯切方法
CN103268430A (zh) 基于机床刀具动刚度测量的铣削工艺参数优化方法
CN106406239A (zh) 一种复杂曲面高效加工方法
CN105700469B (zh) 面向三角网格曲面数控加工的刀位点求取方法及其应用
CN106681278A (zh) 五轴侧铣加工过程中刀具与工件瞬时接触轮廓提取方法
CN101298104A (zh) 一种透平叶轮的铣削方法
CN103586517B (zh) 一种整体叶轮窄深腔数控铣加工方法
CN104657607A (zh) 一种薄壁件支撑装置及铣削稳定性预测方法
CN201042761Y (zh) 倒置式加工机结构
CN106393111A (zh) 针对机器人形变问题的机器人曲面切削力控制方法
CN107971538A (zh) 一种正交车铣加工表面微观形貌的仿真方法
CN207140098U (zh) 一种固定加工式浴缸裁边打孔机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170222

Termination date: 20200210

CF01 Termination of patent right due to non-payment of annual fee