CN104692324A - 绝热式天然气催化氧化炉在线烘炉方法 - Google Patents

绝热式天然气催化氧化炉在线烘炉方法 Download PDF

Info

Publication number
CN104692324A
CN104692324A CN201510133393.8A CN201510133393A CN104692324A CN 104692324 A CN104692324 A CN 104692324A CN 201510133393 A CN201510133393 A CN 201510133393A CN 104692324 A CN104692324 A CN 104692324A
Authority
CN
China
Prior art keywords
gas
natural gas
temperature
sweet natural
catalytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510133393.8A
Other languages
English (en)
Other versions
CN104692324B (zh
Inventor
陈义龙
张岩丰
蒯平宇
田文堂
王大祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Original Assignee
Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Kaidi Engineering Technology Research Institute Co Ltd filed Critical Wuhan Kaidi Engineering Technology Research Institute Co Ltd
Priority to CN201510133393.8A priority Critical patent/CN104692324B/zh
Publication of CN104692324A publication Critical patent/CN104692324A/zh
Priority to KR1020177027633A priority patent/KR102032040B1/ko
Priority to CA2980223A priority patent/CA2980223A1/en
Priority to SG11201707658XA priority patent/SG11201707658XA/en
Priority to JP2017549259A priority patent/JP6397142B2/ja
Priority to EP16767645.1A priority patent/EP3275835A4/en
Priority to AU2016236682A priority patent/AU2016236682A1/en
Priority to RU2017134544A priority patent/RU2675014C1/ru
Priority to PCT/CN2016/074636 priority patent/WO2016150268A1/zh
Priority to BR112017020417-7A priority patent/BR112017020417A2/zh
Application granted granted Critical
Publication of CN104692324B publication Critical patent/CN104692324B/zh
Priority to US15/713,689 priority patent/US20180009663A1/en
Priority to ZA2017/07040A priority patent/ZA201707040B/en
Priority to AU2019210500A priority patent/AU2019210500A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • C01B2203/1017Packed bed of catalytic structures, e.g. particles, packing elements characterised by the form of the structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Furnace Details (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

本发明公开了一种绝热式天然气催化氧化炉在线烘炉方法,包括:1)向天然气催化氧化炉中同时充入氧气、天然气和能够降低反应升温速率的控温气体,控制氧气和天然气的摩尔比为0.3~0.6∶1,同时控制控温气体与由氧气和天然气组成的原料气的摩尔比为0.1~7∶1.3~1.6;2)对混合气体进行预热逐步提高温度,直至达氧化反应触发温度时停止预热;3)逐步降低控温气体与原料气的摩尔比例,使反应温度以符合设计烘炉曲线要求的升温速率上升,直至反应温度达到工作温度后停止充入控温气体。本发明解决了烘炉期间温度升高过快的问题,避免了绝热耐火材料因骤热而开裂,保护了天然气催化氧化炉,使其能够平稳地过渡到正常运转的状态。

Description

绝热式天然气催化氧化炉在线烘炉方法
技术领域
本发明涉及催化氧化炉处理技术,具体地指一种绝热式天然气催化氧化炉在线烘炉方法。
背景技术
随着石油探明储量的降低和可开采资源的逐渐枯竭,以煤炭,天然气及生物质为原料,通过间接转化生产液体车用燃料的技术逐渐得以推广,如:南非的煤制油技术,马来西亚以及卡塔尔的气变油技术,神华的煤制油技术等。随着页岩气开采技术的成功开发和大规模工业应用,天然气产量的提高正在改变着矿物能源结构,给天然气的综合利用带来了广阔的前景。天然气的综合利用是通过先将其转化为中间产品—合成气,然后进一步通过合成技术生产化学品,如:氢气,合成氨,尿素,甲醇,烯烃,石蜡,醋酸及其衍生物,或者合成液体燃料,如:柴油,汽油或航空煤油等高附加值产品。
传统的天然气转化制合成气装置,造气工艺大多采用轻烃水蒸汽转化法或自热重整法,通常采用大型合成氨厂,炼油厂,石油化工厂的制氢装置。以天然气,干气或石脑油为原料生产一氧化碳和氢气的合成气,进而生产液体燃料,其主要原则是尽可能多的生产一氧化碳,但传统轻烃水蒸汽转化法或自热重整法,其出口产品气中的H2/CO组成比例通常在3以上,这意味着该气体需通过分去多余的氢气或通过在原料气中补充二氧化碳的方式调整氢碳比后才能用于合成。
天然气部分氧化是一种全新的由天然气制合成气的工艺路线,根据是否采用催化剂,又分为催化氧化及非催化氧化,其中,在催化氧化中,催化剂床层上甲烷和氧气发生如下反应:
CH4+1/2O2=CO+2H2
该反应在一个绝热反应器内进行,不需要加热,可以副产大量高温高压蒸汽,同时产品气的组成中H2/CO≈2:1,不通过变换或者补碳等手段即可直接用于制取液体燃料。
在绝热式天然气催化氧化炉中进行天然气的催化氧化,绝热式天然气催化氧化炉外部为承压金属壳体,内部为绝热耐火材料,在正常运转时,其温度能够达到800℃,在某些极端的情况下甚至可达1300℃或更高;各种绝热耐火材料都有特定的加热升温曲线,即烘炉曲线,为保证绝热式天然气催化氧化炉中绝热耐火材料的使用性能,需控制炉内气体反应温度,使其以符合绝热耐火材料烘炉曲线要求的速率逐渐缓慢上升。但随着进入绝热式天然气催化氧化炉内原料气体温度的升高,当温度达到催化剂上反应的起燃点时,催化氧化反应会瞬间启动,极速温升,使反应气体的温度瞬间达到800℃甚至更高,使得升温阶段,绝热式天然气催化氧化炉内的温度难以控制,而绝热式天然气催化氧化炉内的绝热耐火材料衬里通常是脆性材料,在遇到这种剧烈温升时很容易产生应力,进而产生裂纹,从而导致氧化炉效率降低甚至失效。
目前,对天然气催化氧化的研究主要集中在催化剂的筛选及制备等方面,如:美国专利US6946114B2报道了用于天然气催化氧化的催化剂的配方及反应性能,而如何有效控制天然气催化氧化炉内温度,从而保护天然气催化氧化炉,使其能够平稳地过渡到正常运转的状态,则尚属技术空白。
发明内容
本发明的目的就是要提供一种绝热式天然气催化氧化炉在线烘炉方法,该方法降低了在线烘炉期间的天然气催化氧化炉温升波动,从而避免了炉内耐火材料衬里产生裂纹,使氧化炉平稳过渡到正常运转状态。
为实现上述目的,本发明采用的技术方案是:一种绝热式天然气催化氧化炉在线烘炉方法,该方法包括以下步骤:
1)向装填了催化剂的天然气催化氧化炉中充入由氧气和天然气组成的原料气、以及能够降低反应升温速率的控温气体,控制所述原料气中氧气和天然气的摩尔比为0.3~0.6∶1,同时控制所述控温气体与所述原料气的摩尔比为0.1~7∶1.3~1.6;
2)对步骤1)中由所述原料气和控温气体混合而成的混合气体进行预热,逐步提高所述混合气体的温度,直至达到氧化反应触发温度时,停止预热;
3)在步骤1)描述的摩尔比范围内,逐步降低所述控温气体与所述原料气的摩尔比例,使所述混合气体的反应温度以符合所述天然气催化氧化炉内绝热耐火材料的设计烘炉曲线要求的升温速率上升,直至反应温度达到工作温度后,停止充入控温气体。
进一步地,所述步骤3)中,在逐步降低所述控温气体与所述原料气的摩尔比例的同时,调节所述原料气中氧气与天然气的摩尔比例,使所述混合气体的反应温度以符合所述天然气催化氧化炉内绝热耐火材料的设计烘炉曲线要求的升温速率上升。
进一步地,所述步骤1)中,所述控温气体为惰性气体、N2、CO2或水蒸汽中一种或多种任意比例的组合。
进一步地,所述步骤2)中,所述氧化反应的触发温度为300~600℃。
进一步地,所述步骤3)中,在逐步降低所述控温气体与所述原料气的摩尔比例的同时,逐步增加所述原料气中氧气与天然气的摩尔比例,使所述混合气体的反应温度以符合所述天然气催化氧化炉内绝热耐火材料的设计烘炉曲线要求的升温速率上升。
进一步地,所述步骤3)中,在所述混合气体的温度从280℃升至750℃的过程中,将所述控温气体与所述原料气的摩尔比从7∶1.3~1.6降低至0~5∶1.3~1.6。
进一步地,所述步骤3)中,在所述混合气体的温度从280℃升至750℃的过程中,将所述控温气体与所述原料气的摩尔比从5.1~7∶1.4~1.6降低至0~5∶1.4~1.6,并同时将所述原料气中氧气与天然气的摩尔比例从0.3~0.4∶1增至0.41~0.6∶1。
与现有技术相比,本发明具有以下优点:
其一,本发明通过在原料气中掺入不具有燃烧或助燃性质的控温气体,利用控温气体降低反应速率并带走一部分热量,在升温阶段通过妥善控制控温气体的摩尔比例来控制反应温度,降低了在线烘炉/起炉期间氧化炉内温度升高波动幅度,避免了触发氧化反应时炉内容易产生的骤热现象,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,实现天然气催化氧化炉升温曲线的可控,从而避免了绝热耐火材料因骤热而开裂,保护了天然气催化氧化炉,使其能够平稳地过渡到正常运转的状态。
其二,本发明在原料气中掺入不具有燃烧或助燃性质的控温气体,在升温阶段通过妥善控制控温气体的摩尔比例及同时调节天然气与氧气之间的摩尔比例来控制反应温度,从而提供了一种可控且相对温和的绝热式天然气催化氧化炉的在线烘炉方式,更有效地避免了因产生裂纹而导致氧化炉效率降低甚至失效。
其三,本发明方法能够控制在线烘炉/起炉过程中的升温范围,并降低了绝热式天然气催化氧化炉的积碳风险,使氧化炉能够平稳地过渡到正常运转的状态。
附图说明
图1为一种绝热耐火材料的烘炉曲线。
图2为实施例1中出催化剂床层气体温度随混入N2量的变化图。
图3为实施例2中出催化剂床层气体温度随混入He量的变化图。
图4为实施例3中出催化剂床层气体温度随混入CO2量的变化图。
图5为实施例4中出催化剂床层气体温度随混入N2量的变化图。
图6为实施例5中出催化剂床层气体温度随混入H2O量的变化图。
图7为实施例6中出催化剂床层气体温度随混入Ar量的变化图。
具体实施方式
下面结合附图对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
实施例1:
首先,向已经经过干燥并装填了贵金属催化剂的天然气催化氧化炉中送入N2,天然气及氧气,其中,天然气含>99.9%甲烷,天然气流量为1kmol/h;氧气纯度>99.9%,氧气流量为0.6kmol/h;氮气纯度为>99.9%,氮气流量为7kmol/h;然后,对由上述氮气,天然气及氧气混合而成的混合气进行预热,逐步提高混合气温度,直至加热至300℃触发催化氧化反应后,停止预热并逐步减小混入的氮气流量,直至氮气流量降至0,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,平稳过渡到1115℃的正常运行工况,天然气催化氧化炉内绝热耐火材料的烘炉曲线如图1所示。
在烘炉阶段,随着N2流量的降低,其中,当N2流量分别为7,6,5,4,3,2,1,0.1kmol/h时,出催化剂床层的气体温度见图2,从图2可以看出炉内气体温度随着N2流量的降低而平缓升高,无骤热现象;在烘炉过程中的各保温阶段,天然气,氧气及N2的摩尔比例见下表1。
实施例2:
首先,向已经经过干燥并装填了贵金属催化剂的天然气催化氧化炉中送入He,天然气及氧气,其中,天然气含>99.9%甲烷,天然气流量为1kmol/h;氧气纯度为>99.9%,氧气流量为0.3kmol/h;He纯度为>99.9%,He流量为7kmol/h;然后,对由上述He,天然气及氧气混合而成的混合气进行预热,逐步提高混合气温度,直至加热至550℃触发催化氧化反应后,停止预热并逐步减小混入的He流量,直至He流量降至0,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,平稳过渡到760℃的正常运行工况,天然气催化氧化炉内绝热耐火材料的烘炉曲线如图1所示。
在烘炉阶段,随着He流量的降低,其中,当He流量分别为7,6,5,4,3,2,1,0.1kmol/h时,出催化剂床层的气体温度见图3,从图3可以看出炉内气体温度随着He流量的降低而平缓升高,无骤热现象;在烘炉过程中的各保温阶段,天然气,氧气及N2的摩尔比例见下表1。
实施例3:
首先,向已经经过干燥并装填了贵金属催化剂的天然气催化氧化炉中送入CO2,天然气及氧气,其中,天然气含>99.9%甲烷,天然气流量为1kmol/h;氧气纯度为>99.9%,氧气流量为0.4kmol/h;CO2纯度为>99.9%,CO2流量为7kmol/h;然后,对由上述CO2,天然气及氧气混合而成的混合气进行预热,逐步提高混合气温度,直至加热至600℃触发催化氧化反应后,停止预热并逐步减小混入的CO2流量,直至CO2流量降至0,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,平稳过渡到760℃的正常运行工况,天然气催化氧化炉内绝热耐火材料的烘炉曲线如图1所示。
在烘炉阶段,随着CO2流量的降低,其中,当CO2流量分别为7,6,5,4,3,2,1,0.1kmol/h时,出催化剂床层的气体温度见图4,从图4可以看出炉内气体温度随着CO2流量的降低而平缓升高,无骤热现象;在烘炉过程中的各保温阶段,天然气,氧气及CO2的摩尔比例见下表1。
实施例4:
首先,向已经经过干燥并装填了贵金属催化剂的天然气催化氧化炉中送入N2,天然气及氧气,其中,天然气含>99.9%甲烷,天然气流量为1kmol/h;氧气纯度为>99.9%,氧气流量为0.3kmol/h;N2纯度为>99.9%,N2流量为7kmol/h;然后,对由上述N2,天然气及氧气混合而成的混合气进行预热,逐步提高混合气温度,直至加热至300℃触发催化氧化反应后停止预热,逐步减小混入的N2流量的同时逐步调整天然气与氧气的摩尔比例,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,平稳过渡到1115℃的正常运行工况,此时,N2流量降至0,天然气和氧气比例达到1:0.6,天然气催化氧化炉内绝热耐火材料的烘炉曲线如图1所示。
在烘炉阶段,随着N2流量的降低及氧气流量的增加,其中,当N2流量分别为7,6,5,4,3,2,1,0.1kmol/h,氧气流量分别为0.3,0.4,0.5,0.6kmol/h时,出催化剂床层的气体温度见图5,从图5可以看出炉内气体温度随着N2流量的降低及氧气流量的增加而平缓升高,无骤热现象;在烘炉过程中的各保温阶段,天然气,氧气及N2的摩尔比例见下表1。
实施例5:
首先,向已经经过干燥并装填了贵金属催化剂的天然气催化氧化炉中送入水蒸汽,天然气及氧气,其中,天然气含>99.9%甲烷,天然气流量为1kmol/h;氧气纯度为>99.9%,氧气流量为0.3kmol/h;水蒸汽纯度>99.9%,水蒸汽流量为7kmol/h;然后,对由上述水蒸汽,天然气及氧气混合而成的混合气进行预热,逐步提高混合气温度,直至加热至600℃触发催化氧化反应后停止预热,逐步减小混入的水蒸汽流量的同时调整天然气与氧气的摩尔比例,即:逐步增加氧气的摩尔比例,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,平稳过渡到1342℃的正常运行工况,此时,水蒸汽流量降至0,天然气和氧气比例达到1:0.6,天然气催化氧化炉内绝热耐火材料的烘炉曲线如图1所示。
在烘炉阶段,随着水蒸汽流量的降低及氧气流量的增加,其中,当水蒸汽流量分别为7,6,5,4,3,2,1,0.1kmol/h,氧气流量分别为0.3,0.4,0.5,0.6kmol/h时,出催化剂床层的气体温度见图6,从图6可以看出炉内气体温度随着水蒸汽流量的降低及氧气流量的增加而平缓升高,无骤热现象;在烘炉过程中的各保温阶段,天然气,氧气及水蒸汽的摩尔比例见下表1。
实施例6:
首先,向已经经过干燥并装填了贵金属催化剂的天然气催化氧化炉中送入Ar,天然气及氧气,其中,天然气含>99.9%甲烷,天然气流量为1kmol/h;氧气纯度为>99.9%,氧气流量为0.3kmol/h;Ar纯度为>99.9%,Ar流量为7kmol/h;然后,对由上述Ar,天然气及氧气混合而成的混合气进行预热,逐步提高混合气温度,直至加热至300℃触发催化氧化反应后停止预热,逐步减小混入的Ar流量的同时调整天然气与氧气的摩尔比例,即:逐步增加氧气的摩尔比例,使得反应温度以符合天然气催化氧化炉内绝热耐火材料的烘炉曲线要求的升温速率上升,平稳过渡到1115℃的正常运行工况,此时,Ar流量降至0,天然气和氧气比例达到1:0.6,天然气催化氧化炉内绝热耐火材料的烘炉曲线如图1所示。
在烘炉阶段,随着Ar流量的降低及氧气流量的增加,其中,当Ar流量分别为7,6,5,4,3,2,1,0.1kmol/h,氧气流量分别为0.3,0.4,0.5,0.6kmol/h时,出催化剂床层的气体温度见图7,从图7可以看出炉内气体温度随着Ar流量的降低及氧气流量的增加而平缓升高,无骤热现象;在烘炉过程中的各保温阶段,天然气,氧气及Ar的摩尔比例见下表1。
表1

Claims (8)

1.一种绝热式天然气催化氧化炉在线烘炉方法,其特征在于:该方法包括以下步骤:
1)向装填了催化剂的天然气催化氧化炉中充入由氧气和天然气组成的原料气、以及能够降低反应升温速率的控温气体,控制所述原料气中氧气和天然气的摩尔比为0.3~0.6∶1,同时控制所述控温气体与所述原料气的摩尔比为0.1~7∶1.3~1.6;
2)对步骤1)中由所述原料气和控温气体混合而成的混合气体进行预热,逐步提高所述混合气体的温度,直至达到氧化反应触发温度时,停止预热;
3)在步骤1)描述的摩尔比范围内,逐步降低所述控温气体与所述原料气的摩尔比例,使所述混合气体的反应温度以符合所述天然气催化氧化炉内绝热耐火材料的设计烘炉曲线要求的升温速率上升,直至反应温度达到工作温度后,停止充入控温气体。
2.根据权利要求1所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤3)中,在逐步降低所述控温气体与所述原料气的摩尔比例的同时,调节所述原料气中氧气与天然气的摩尔比例,使所述混合气体的反应温度以符合所述天然气催化氧化炉内绝热耐火材料的设计烘炉曲线要求的升温速率上升。
3.根据权利要求1或2所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤1)中,所述控温气体为惰性气体、N2、CO2或水蒸汽中一种或多种任意比例的组合。
4.根据权利要求1或2所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤2)中,所述氧化反应的触发温度为300~600℃。
5.根据权利要求1或2所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤3)中,在逐步降低所述控温气体与所述原料气的摩尔比例的同时,逐步增加所述原料气中氧气与天然气的摩尔比例,使所述混合气体的反应温度以符合所述天然气催化氧化炉内绝热耐火材料的设计烘炉曲线要求的升温速率上升。
6.根据权利要求1或2所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤3)中,在所述混合气体的温度从280℃升至750℃的过程中,将所述控温气体与所述原料气的摩尔比从7∶1.3~1.6降低至0~5∶1.3~1.6。
7.根据权利要求1或2所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤3)中,在所述混合气体的温度从280℃升至750℃的过程中,将所述控温气体与所述原料气的摩尔比从5.1~7∶1.4~1.6降低至0~5∶1.4~1.6,并同时将所述原料气中氧气与天然气的摩尔比例从0.3~0.4∶1增至0.41~0.6∶1。
8.根据权利要求5所述的绝热式天然气催化氧化炉在线烘炉方法,其特征在于:所述步骤3)中,在所述混合气体的温度从280℃升至750℃的过程中,将所述控温气体与所述原料气的摩尔比从5.1~7∶1.4~1.6降低至0~5∶1.4~1.6,并同时将所述原料气中氧气与天然气的摩尔比例从0.3~0.4∶1增至0.41~0.6∶1。
CN201510133393.8A 2015-03-25 2015-03-25 绝热式天然气催化氧化炉在线烘炉方法 Active CN104692324B (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN201510133393.8A CN104692324B (zh) 2015-03-25 2015-03-25 绝热式天然气催化氧化炉在线烘炉方法
AU2016236682A AU2016236682A1 (en) 2015-03-25 2016-02-26 Online furnace drying method for heat-insulation natural gas catalytic oxidizing furnace
PCT/CN2016/074636 WO2016150268A1 (zh) 2015-03-25 2016-02-26 绝热式天然气催化氧化炉在线烘炉方法
SG11201707658XA SG11201707658XA (en) 2015-03-25 2016-02-26 Online furnace drying method for heat-insulation natural gas catalytic oxidizing furnace
JP2017549259A JP6397142B2 (ja) 2015-03-25 2016-02-26 断熱式天然ガス触媒酸化炉のオンライン炉乾燥方法
EP16767645.1A EP3275835A4 (en) 2015-03-25 2016-02-26 Online furnace drying method for heat-insulation natural gas catalytic oxidizing furnace
KR1020177027633A KR102032040B1 (ko) 2015-03-25 2016-02-26 천연가스의 단열 촉매 산화 퍼니스용 온라인 퍼니스 건조 방법
RU2017134544A RU2675014C1 (ru) 2015-03-25 2016-02-26 Способ интерактивной сушки теплоизолированной печи каталитического окисления природного газа
CA2980223A CA2980223A1 (en) 2015-03-25 2016-02-26 Online furnace drying method for heat-insulation natural gas catalytic oxidizing furnace
BR112017020417-7A BR112017020417A2 (zh) 2015-03-25 2016-02-26 On - line Oven Method for Adiabatic Natural Gas Catalytic Oxidation Furnace
US15/713,689 US20180009663A1 (en) 2015-03-25 2017-09-24 Method for drying catalytic oxidation furnace
ZA2017/07040A ZA201707040B (en) 2015-03-25 2017-10-18 Online furnace drying method for heat-insulation natural gas catalytic oxidizing furnace
AU2019210500A AU2019210500A1 (en) 2015-03-25 2019-07-29 Online Furnace Drying Method For Heat-Insulation Natural Gas Catalytic Oxidizing Furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510133393.8A CN104692324B (zh) 2015-03-25 2015-03-25 绝热式天然气催化氧化炉在线烘炉方法

Publications (2)

Publication Number Publication Date
CN104692324A true CN104692324A (zh) 2015-06-10
CN104692324B CN104692324B (zh) 2017-02-01

Family

ID=53339945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510133393.8A Active CN104692324B (zh) 2015-03-25 2015-03-25 绝热式天然气催化氧化炉在线烘炉方法

Country Status (12)

Country Link
US (1) US20180009663A1 (zh)
EP (1) EP3275835A4 (zh)
JP (1) JP6397142B2 (zh)
KR (1) KR102032040B1 (zh)
CN (1) CN104692324B (zh)
AU (2) AU2016236682A1 (zh)
BR (1) BR112017020417A2 (zh)
CA (1) CA2980223A1 (zh)
RU (1) RU2675014C1 (zh)
SG (1) SG11201707658XA (zh)
WO (1) WO2016150268A1 (zh)
ZA (1) ZA201707040B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150268A1 (zh) * 2015-03-25 2016-09-29 武汉凯迪工程技术研究总院有限公司 绝热式天然气催化氧化炉在线烘炉方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706161A (zh) * 2012-05-09 2012-10-03 江西中烨高新技术有限公司 陶瓷与不定型耐火材料复合制备炉窑内衬施工技术

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69322129T2 (de) * 1992-06-24 1999-05-12 Shell Int Research Verfahren zur katalytischen Kohlenwasserstoffteiloxidation
US6329434B1 (en) * 1999-06-04 2001-12-11 Exxonmobil Research And Engineering Company Catalytic partial oxidation with improved ignition system
CN1093506C (zh) * 1999-08-02 2002-10-30 石油大学(北京) 一种天然气两段催化氧化制成合成气的方法
US6726850B1 (en) * 2000-01-14 2004-04-27 Sebastian C. Reyes Catalytic partial oxidation using staged oxygen addition
AU2001290617B2 (en) * 2000-09-05 2007-06-21 Conocophillips Company Lanthanide-promoted rhodium catalysts and process for producing synthesis gas
JP2003073106A (ja) * 2001-09-04 2003-03-12 Exxonmobil Research & Engineering Co 着火系が改善された接触部分酸化
US6846585B2 (en) * 2002-03-08 2005-01-25 General Motors Corporation Method for quick start-up of a fuel processing system using controlled staged oxidation
DE10320966A1 (de) * 2003-05-09 2004-11-25 Linde Ag Wärmeisolierter Hochtemperaturreaktor
KR100570375B1 (ko) 2003-09-15 2006-04-11 한국가스공사 탄화수소로부터 합성가스를 제조하는 방법 및 그 시스템
EP1701909A1 (en) * 2004-01-08 2006-09-20 Syntroleum Corporation Processes for starting up an autothermal reformer
JP5374702B2 (ja) * 2007-03-09 2013-12-25 国立大学法人横浜国立大学 水素生成方法
KR101084367B1 (ko) * 2008-10-22 2011-11-21 에스케이에너지 주식회사 Fcc 공정의 반응기, 촉매재생기, 및 연도 가스 배관 내벽에 코팅되는 내화물을 건조시키는 방법
CN101811666B (zh) * 2009-02-19 2012-03-14 中国石油化工股份有限公司 天然气催化氧化制取合成气的方法
CN102788508B (zh) * 2011-07-21 2014-11-05 宁波连通设备制造有限公司 用于工业炉模块烘炉方法的烘炉装置
CN104534512B (zh) * 2014-12-26 2017-01-18 北京神雾环境能源科技集团股份有限公司 水冷壁天然气部分氧化转化炉的点火方法
CN104692324B (zh) * 2015-03-25 2017-02-01 武汉凯迪工程技术研究总院有限公司 绝热式天然气催化氧化炉在线烘炉方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706161A (zh) * 2012-05-09 2012-10-03 江西中烨高新技术有限公司 陶瓷与不定型耐火材料复合制备炉窑内衬施工技术

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150268A1 (zh) * 2015-03-25 2016-09-29 武汉凯迪工程技术研究总院有限公司 绝热式天然气催化氧化炉在线烘炉方法

Also Published As

Publication number Publication date
JP6397142B2 (ja) 2018-09-26
KR20170125073A (ko) 2017-11-13
RU2675014C1 (ru) 2018-12-14
WO2016150268A1 (zh) 2016-09-29
SG11201707658XA (en) 2017-10-30
EP3275835A1 (en) 2018-01-31
JP2018509370A (ja) 2018-04-05
ZA201707040B (en) 2019-09-25
EP3275835A4 (en) 2018-08-22
KR102032040B1 (ko) 2019-10-14
US20180009663A1 (en) 2018-01-11
CN104692324B (zh) 2017-02-01
AU2016236682A1 (en) 2017-11-09
BR112017020417A2 (zh) 2018-06-05
AU2019210500A1 (en) 2019-08-15
CA2980223A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
KR101265355B1 (ko) 가스 터빈 연료 준비 및 주입 방법
KR102135521B1 (ko) 고로 샤프트부로의 수소 함유 환원 가스 공급 방법
Shapovalova et al. Syngas and hydrogen production from biogas in volumetric (3D) matrix reformers
EP4257543A1 (en) Ammonia decomposition device
JP2014518924A5 (zh)
AU2005292828B2 (en) Method and apparatus for producing synthesis gas
CN203159209U (zh) 二氧化碳-甲烷自热重整反应器
JP2015504034A (ja) 水素含有気体燃料を製造するための多段法及び熱ガス発生炉設備
CN103354801A (zh) 用于启动自热重整反应器的方法
CN104692324A (zh) 绝热式天然气催化氧化炉在线烘炉方法
WO2009154512A2 (ru) Способ получения синтез-газа и устройство для его осуществления
CN1018731B (zh) 含甲烷链烷烃的均相部分氧化
CN113845089B (zh) 一种利用焦炉气生产还原铁用合成气的方法
CN104513679A (zh) 一种焦炉气甲烷化制天然气的新工艺
WO2015088614A1 (en) Methods and reactors for producing acetylene
CN204853479U (zh) 量子燃烧器及轻质油裂解系统
JP2015504033A (ja) 合成ガスの製造
CN103373889B (zh) 烃部分氧化制备乙炔的方法
CN105271115A (zh) 一种气态烃转化炉烧嘴
WO2012154042A1 (en) A process for catalytic steam reforming of a feedstock comprising an oxygenated hydrocarbon and a hydrocarbon
RU125190U1 (ru) Устройство подготовки попутных нефтяных газов для использования в энергоустановках
KR101123384B1 (ko) 오일 분산성 나노첨가제를 이용한 중질유의 가스화 방법
CN117580800A (zh) 对催化剂进行活化处理的方法
CN101883734A (zh) 通过蒸汽转化制备合成气的方法
CN113226980A (zh) 用于制备氢气、一氧化碳和含碳产物的方法和设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant