CN104674208A - 对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法 - Google Patents

对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法 Download PDF

Info

Publication number
CN104674208A
CN104674208A CN201510037123.7A CN201510037123A CN104674208A CN 104674208 A CN104674208 A CN 104674208A CN 201510037123 A CN201510037123 A CN 201510037123A CN 104674208 A CN104674208 A CN 104674208A
Authority
CN
China
Prior art keywords
diamond
preparation
matrix material
plating
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510037123.7A
Other languages
English (en)
Other versions
CN104674208B (zh
Inventor
杨滨
赵妍冰
张洋
王西涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201510037123.7A priority Critical patent/CN104674208B/zh
Publication of CN104674208A publication Critical patent/CN104674208A/zh
Application granted granted Critical
Publication of CN104674208B publication Critical patent/CN104674208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,属于金属基复合材料和电子封装材料领域。其特征是将金刚石:MoO3=1:2~1:4(wt%)混合均匀,将其装于氧化铝坩埚中,分别置于通有氢气、氩气气氛的管式炉中加热。加热温度为900~1050℃,保温时间2~4h,完成镀钼过程。样品随炉冷却取出后,对金刚石颗粒进行超声波清洗并烘干。按镀钼后的金刚石:Cu=60:40~40:60(体积%)配比称量置于行星球磨机中混合均匀。球磨机转速为300r/min,球磨时间为120min。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料,烧结完成即得到高导热率的金刚石/Cu电子封装复合材料。本发明制备的电子封装复合材料热导率高,可重复性强。

Description

对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法
技术领域
本发明属于电子封装复合材料制备领域,具体涉及一种高性能金刚石强化Cu基电子封装复合材料及其制备方法,尤其涉及采用粉末覆盖燃烧法对金刚石表面镀Mo的制备方法。
背景技术
现代化工业水平、国防技术高度发展,人类已进入微型计算机、移动通信等电子技术飞速发展的信息时代,世界各国对信息技术和产品的要求提高,使半导体集成电路(IC)向高密度、高性能的方向发展。半导体器件的集成度增加,器件单位功率提高,发热量增大,使得封装形式由表面贴装器件向立体微电子封装技术方向发展。工作环境的恶化也对电子封装材料提出了更高的要求,电子封装材料日益向小型化、轻便化、低成本、高性能和高可靠性的方向发展。芯片集成度的提高,导致电路工作温度上升,材料由于热疲劳和热膨胀系数不匹配而引起的热应力增大,导致半导体器件的失效概率增大。解决上述问题一是要进行合理的热封装和散热设计,二是急需开发一种具有高热导、低热膨胀系数以及良好综合性能的新型电子封装材料。
现代电子封装材料不仅要有高的热导率,还必须具有与半导体材料相匹配的热膨胀系数。传统的电子封装材料如塑料、陶瓷和金属,在上述热学性能方面都或多或少存在不足。例如,铜因其具有高的热导率和良好加工性能较早便用于电子封装材料,但是其热膨胀系数与半导体芯片不匹配,限制了其实际应用。
金刚石不仅具有较高的热导率,可达600~2000W/(m·K),而且具有较低的热膨胀系数(0.8×10-6/K)。利用金刚石低的热膨胀系数来调节金属材料过高的热膨胀系数,发挥金刚石良好热导率的优势,可发展一系列兼具高热导率、低热膨胀系数、低密度的新型电子封装复合材料。然而,非金属的金刚石与金属之间的润湿性差,界面热阻高,导致复合材料的实际热导率较低。原因在于金刚石晶体中,碳原子间通过sp3杂化轨道形成高能的共价单键,构成了稳定的正四面体结构。同时,所有的价电子都参与了成键,使得金刚石具有稳定的晶体表面。当它们与金属基体复合制备成电子封装材料时,由于金刚石强的化学惰性,难以形成结合良好的两相界面。因此,在金刚石强化金属基复合材料的研究中,改善两相界面、以实现金刚石高导热性能向金属基体的传递,是获得高性能金刚石强化金属基电子封装复合材料的关键。改善两相界面结合的方法主要有三种,即金属基体改性、金刚石表面金属化和复合材料制备工艺控制。本发明侧重金刚石表面的金属化。通过对金刚石颗粒表面进行镀覆处理,达到改善金刚石和铜之间的界面结合,有效降低界面热阻,制得具有优良热导率的金刚石/铜(Diamond/Cu)复合材料的目的。
发明内容
本发明要解决的技术问题是,发明一种对金刚石颗粒表面镀Mo及其金刚石/Cu复合材料的制备方法。镀覆层从内向外,内层是碳化物层,该层强固地附着在金刚石表面上;外层为合金层或金属层,该层的形成,使金刚石表面具有金属特性:即可导电性、可焊接性和可烧结性。
由于电子主导铜的热传导,声子主导金刚石的热传导。因此,对于金刚石/金属基复合材料的热传导,能量转换必须发生在电子和声子之间。为此,在金刚石和金属之间镀覆一层非常薄的碳化物相界面层必定有利于促进电子-声子之间的耦合。为达到上述目的,本发明采用以下技术方案。
采用粉末覆盖燃烧法对金刚石表面镀Mo,将金刚石:MoO3=1:2~1:4(wt%)置于玛瑙研钵中混合均匀,将其装于氧化铝坩埚中,分别置于通有氢气、氩气气氛的管式炉中加热,温度为900~1050℃,保温时间2-4h,完成镀钼过程。样品随炉冷却取出后,对镀钼后的金刚石颗粒进行超声波清洗并烘干。根据镀钼后的金刚石和Cu的密度及体积百分比计算出所需镀钼后的金刚石颗粒与Cu的质量,将二者配比称量。然后,将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。
Mo作为一种强碳化物形成元素具有较高的热导率[138W/(m·K)],显著高于Ti、Cr、B、V等其他强碳化物形成元素;Mo在Cu中的固溶度很小,不会显著降低复合材料的热导率。本发明并非选择直接在金刚石颗粒表面镀Mo,而是选用MoO3。这是因为Mo与金刚石很难直接发生反应,而MoO3可在一定条件下与金刚石表面碳原子反应,与金刚石形成强有力的冶金结合。且镀层元素与金刚石颗粒间的化学反应是可控的,在不同的镀覆条件下可获得成分可控的镀层。
所述复合材料制备方法的优选方案为,选取通有保护气体而非通有空气的管式炉加热,原因有两点:一是在金刚石与MoO3反应的过程中会形成少量的Mo。在高于600℃的温度下Mo易与氧气反应生成MoO2并进一步被氧化为MoO3,因此氧气的存在使得反应不利于向生成Mo的方向进行;二是如果在空气中加热金刚石与MoO3的混合物,会发生以下几个化学反应:2C+O2→2CO,MoO3+3C→Mo+3CO,2MoO3+7C→Mo2C+6CO。由以上化学反应式可见,CO的生成会阻碍金刚石与MoO3生成Mo2C的反应,不利于镀层在金刚石表面的形成。因此,镀覆过程须在通有保护气氛的管式炉中进行。
在氩气中对金刚石镀Mo,金刚石表面镀覆产物以颗粒状分布在金刚石颗粒表面,镀层厚度不均,镀层成分为单一稳定的Mo2C(图1);在氢气中对金刚石镀Mo,可获得相对完整连续的镀层。镀覆温度高于1050℃时,镀层成分为Mo2C。当低于该温度、高于950℃时镀层成分从内向外依次为Mo2C和Mo。这是因为在氩气中镀Mo时,氩气未参与化学反应,MoO3与金刚石反应生成稳定的Mo2C镀层;在氢气中镀Mo时,氢气参与反应起还原作用。升温过程中一部分MoO3的还原产物MoO2与金刚石反应生成稳定的Mo2C,还有部分钼的氧化中间产物被氢气还原为Mo。镀层产物为Mo2C和Mo(图2)。但当镀覆温度高至1050℃时,Mo与金刚石生成更稳定的Mo2C相,镀层成分为单一稳定的Mo2C。
一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,包括以下的制备步骤:
a、金刚石表面镀覆:选用人造金刚石颗粒为强化相,MoO3为金刚石表面镀覆物质,铜粉为基体。将金刚石颗粒和MoO3粉末置于玛瑙研钵中混合均匀,将其装于氧化铝坩埚中,分别置于通有氢气、氩气气氛的管式炉中加热。镀钼后的金刚石颗粒随炉冷却取出后,对镀钼后的金刚石颗粒进行超声波清洗并烘干。
b、金刚石/铜复合材料的制备:首先,根据镀钼后的金刚石和Cu的密度及体积百分比计算出所需金刚石颗粒与Cu的质量,将二者配比称量;其次,将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。
所述金刚石表面镀覆的优选方案为,步骤a中所述金刚石品级为MBD-12,粒度为80~100目(150~180μm)。MoO3纯度为99.99wt%,粒度300目。铜粉纯度为99.99wt%,粒度为400目。
所述金刚石表面镀覆的优选方案为,步骤a中金刚石颗粒和MoO3粉末的比例为1:2~1:4(wt%)。
所述金刚石表面镀覆的优选方案为,步骤a中管式炉加热温度为900~1050℃,保温时间2~4h。
所述金刚石表面镀覆的优选方案为,步骤a中氢气和氩气的纯度为99.99%,流量为180~220ml/min。
所述金刚石表面镀覆的优选方案为,步骤a中烘干温度为120℃。
所述金刚石/铜复合材料制备的优选方案为,步骤b中镀钼后的金刚石颗粒和Cu粉末按照体积分数比60:40~40:60混合。
所述金刚石/铜复合材料制备的优选方案为,步骤b中球磨机转速为300r/min,球磨时间为120min。放电等离子烧结真空度为10Pa,烧结压力为50~70MPa,保压时间5~10min,烧结温度为950~970℃,烧结后随炉冷却,得到的复合材料直径为10或15mm,厚度为3mm。
本发明制备的电子封装复合材料的热导率可达586W/(m·K),可重复性强。
附图说明
图1为本发明实施例1和2中1000℃、氩气气氛下金刚石颗粒镀Mo后的XRD图。
图2为本发明实施例3和4中氢气气氛、不同温度下保温3h金刚石颗粒镀Mo后的XRD图。
图3为本发明实施例1中1000℃、氩气气氛下保温3h金刚石颗粒镀Mo后的SEM图。
图4为本发明实施例2中1050℃、氩气气氛下保温3h金刚石颗粒镀Mo后的SEM图。
图5为实施例3中950℃、氢气气氛下金刚石颗粒镀Mo后的SEM图
图6为实施例4中1000℃、氢气气氛下金刚石颗粒镀Mo后的SEM图。
具体实施方式
下面结合附图对本发明做进一步的说明。
实施例1
选用品级为MBD-12,粒度为80目的金刚石颗粒和纯度为99.99wt%,粒度300目的MoO3粉末。按金刚石:MoO3=1:2(wt%)置于玛瑙研钵中混合均匀,装于氧化铝坩埚中,置于通有氩气气氛的管式炉中加热。管式炉加热温度为1000℃,保温时间2h。氩气的纯度为99.99%,流量为180ml/min。样品随炉冷却取出后,对金刚石颗粒进行超声波清洗并烘干(形貌见图3)。烘干温度为120℃。按镀钼后的金刚石:Cu=50:50(体积%)配比称量。然后,将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀。球磨机转速为300r/min,球磨时间为120min。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。放电等离子烧结真空度为10Pa,烧结压力为50MPa,保压时间5min,烧结温度为960℃,烧结后随炉冷却,得到的复合材料直径为10mm,厚度为3mm。复合材料的热导率为412W/(m·K)。
实施例2
选用品级为MBD-12,粒度为100目的金刚石颗粒和纯度为99.99wt%,粒度300目的MoO3粉末。按金刚石:MoO3=1:4(wt%)置于玛瑙研钵中混合均匀,装于氧化铝坩埚中,置于通有氩气气氛的管式炉中加热。管式炉加热温度为1050℃,保温时间3h。氩气的纯度为99.99%,流量为200ml/min。样品随炉冷却取出后,对镀钼后的金刚石颗粒进行超声波清洗并烘干(形貌见图4)。烘干温度为120℃。按镀钼后的金刚石:Cu=60:40(体积%)配比称量。然后,将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀。球磨机转速为300r/min,球磨时间为120min。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。放电等离子烧结真空度为10Pa,烧结压力为70MPa,保压时间10min,烧结温度为970℃,烧结后随炉冷却,得到的复合材料直径为15mm,厚度为3mm。复合材料的热导率为426W/(m·K)。
实施例3
选用品级为MBD-12,粒度为80~100目(150~180μm)的金刚石颗粒和纯度为99.99wt%,粒度300目的MoO3粉末。按金刚石:MoO3=1:3(wt%)置于玛瑙研钵中混合均匀,装于氧化铝坩埚中,置于通有氢气气氛的管式炉中加热。管式炉加热温度为950℃,保温时间3h。氩气的纯度为99.99%,流量为210ml/min。样品随炉冷却取出后,对金刚石颗粒进行超声波清洗并烘干(形貌见图5)。烘干温度为120℃。按镀钼后的金刚石:Cu=40:60(体积%)配比称量。然后,将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀。球磨机转速为300r/min,球磨时间为120min。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。放电等离子烧结真空度为10Pa,烧结压力为50MPa,保压时间8min,烧结温度为960℃,烧结后随炉冷却,得到的复合材料直径为10mm,厚度为3mm。复合材料的热导率为513W/(m·K)。
实施例4
选用品级为MBD-12,粒度为80~100目(150~180μm)的金刚石颗粒和纯度为99.99wt%,粒度300目的MoO3。按金刚石:MoO3=1:4(wt%)置于玛瑙研钵中混合均匀,装于氧化铝坩埚中,置于通有氢气气氛的管式炉中加热。管式炉加热温度为1000℃,保温时间4h。氩气的纯度为99.99%,流量为220ml/min。样品随炉冷却取出后,对金刚石颗粒进行超声波清洗并烘干(形貌见图6)。烘干温度为120℃。按镀钼后的金刚石:Cu=60:40(体积%)配比称量。然后,将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀。球磨机转速为300r/min,球磨时间为120min。最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。放电等离子烧结真空度为10Pa,烧结压力为70MPa,保压时间9min,烧结温度为970℃,烧结后随炉冷却,得到的复合材料直径为15mm,厚度为3mm。复合材料的热导率为586W/(m·K)。

Claims (8)

1.一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:将金刚石:MoO3=1:2~1:4(wt%)置于玛瑙研钵中混合均匀,将其装于氧化铝坩埚中,分别置于通有氢气、氩气气氛的管式炉中加热,温度为900~1050℃,保温时间2~4h,完成镀钼过程;镀钼后的金刚石颗粒随炉冷却取出后,对镀钼后的金刚石颗粒进行超声波清洗并烘干;根据镀钼后的金刚石和Cu的密度及体积百分比计算出所需镀钼后的金刚石颗粒与Cu的质量,将二者配比称量;再将混合均匀的镀钼后的金刚石颗粒和Cu粉末置于行星球磨机中混合均匀;最后,将球磨后的混合物置于石墨模具中,采用放电等离子烧结法制备金刚石/铜复合材料。
2.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:所述金刚石品级为MBD-12,粒度为80~100目;MoO3纯度为99.99wt%,粒度为300目;铜粉纯度为99.99wt%,粒度为400目。
3.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:氢气和氩气的纯度为99.99%,流量为180~220ml/min;管式炉加热温度为900~1050℃,保温时间为2~4h。
4.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:烘干温度为120℃。
5.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于镀钼后的金刚石颗粒和Cu粉末按照体积分数比60:40~40:60混合。
6.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:所述球磨机转速为300r/min,球磨时间为120min。
7.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:所述放电等离子烧结真空度为10Pa,烧结压力为50~70MPa,保压时间5~10min,烧结温度为950~970℃。
8.根据权利要求1所述的一种对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法,其特征在于:所述复合材料直径为10或15mm,厚度为3mm。
CN201510037123.7A 2015-01-26 2015-01-26 对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法 Active CN104674208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510037123.7A CN104674208B (zh) 2015-01-26 2015-01-26 对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510037123.7A CN104674208B (zh) 2015-01-26 2015-01-26 对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104674208A true CN104674208A (zh) 2015-06-03
CN104674208B CN104674208B (zh) 2018-01-16

Family

ID=53309774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510037123.7A Active CN104674208B (zh) 2015-01-26 2015-01-26 对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104674208B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838954A (zh) * 2016-06-22 2016-08-10 东北大学 一种搅拌喷吹制备铜基金刚石热沉材料的方法
CN107916356A (zh) * 2017-11-10 2018-04-17 郑州大学 一种高导热的金刚石/铜复合材料的制备方法
CN107937783A (zh) * 2017-11-17 2018-04-20 湖南大学 增加金刚石与金属基体之间结合性能的方法
CN109468619A (zh) * 2018-12-29 2019-03-15 苏州第元素纳米技术有限公司 碳纳米管表面镀覆方法
CN110779799A (zh) * 2019-11-20 2020-02-11 青岛滨海学院 一种热管理复合材料拉伸测试样品及其制备方法
CN111590080A (zh) * 2020-05-21 2020-08-28 南京航空航天大学 一种sps快速制备镀钛金刚石铜复合材料的方法
CN113235020A (zh) * 2021-02-09 2021-08-10 南京航空航天大学 一种梯度金刚石/铜复合材料及其制备方法
CN115213409A (zh) * 2022-07-11 2022-10-21 哈尔滨工业大学 一种利用微波等离子体快速成型金刚石/金属基复合材料构件的方法
CN117512384A (zh) * 2023-10-31 2024-02-06 北京市计量检测科学研究院 一种金刚石/铜复合材料及其电弧成形方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098121A1 (en) * 2008-04-17 2010-04-22 Prabhu Thiagarajan Liquid cooled laser bar arrays incorporating diamond/copper expansion matched materials
CN102407335A (zh) * 2011-12-02 2012-04-11 华南师范大学 一种高导热led封装材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098121A1 (en) * 2008-04-17 2010-04-22 Prabhu Thiagarajan Liquid cooled laser bar arrays incorporating diamond/copper expansion matched materials
CN102407335A (zh) * 2011-12-02 2012-04-11 华南师范大学 一种高导热led封装材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIPING KANG ET AL.: ""Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond composites"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
XIAO-YU SHEN ET AL.: ""Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites"", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105838954A (zh) * 2016-06-22 2016-08-10 东北大学 一种搅拌喷吹制备铜基金刚石热沉材料的方法
CN107916356A (zh) * 2017-11-10 2018-04-17 郑州大学 一种高导热的金刚石/铜复合材料的制备方法
CN107916356B (zh) * 2017-11-10 2020-06-12 郑州大学 一种高导热的金刚石/铜复合材料的制备方法
CN107937783A (zh) * 2017-11-17 2018-04-20 湖南大学 增加金刚石与金属基体之间结合性能的方法
CN109468619A (zh) * 2018-12-29 2019-03-15 苏州第元素纳米技术有限公司 碳纳米管表面镀覆方法
CN109468619B (zh) * 2018-12-29 2020-11-10 苏州第一元素纳米技术有限公司 碳纳米管表面镀覆方法
CN110779799B (zh) * 2019-11-20 2022-08-19 青岛滨海学院 一种热管理复合材料拉伸测试样品及其制备方法
CN110779799A (zh) * 2019-11-20 2020-02-11 青岛滨海学院 一种热管理复合材料拉伸测试样品及其制备方法
CN111590080A (zh) * 2020-05-21 2020-08-28 南京航空航天大学 一种sps快速制备镀钛金刚石铜复合材料的方法
CN113235020B (zh) * 2021-02-09 2022-04-12 南京航空航天大学 一种梯度金刚石/铜复合材料及其制备方法
CN113235020A (zh) * 2021-02-09 2021-08-10 南京航空航天大学 一种梯度金刚石/铜复合材料及其制备方法
CN115213409A (zh) * 2022-07-11 2022-10-21 哈尔滨工业大学 一种利用微波等离子体快速成型金刚石/金属基复合材料构件的方法
CN115213409B (zh) * 2022-07-11 2024-02-20 哈尔滨工业大学 一种利用微波等离子体快速成型金刚石/金属基复合材料构件的方法
CN117512384A (zh) * 2023-10-31 2024-02-06 北京市计量检测科学研究院 一种金刚石/铜复合材料及其电弧成形方法
CN117512384B (zh) * 2023-10-31 2024-05-14 北京市计量检测科学研究院 一种金刚石/铜复合材料及其电弧成形方法

Also Published As

Publication number Publication date
CN104674208B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
CN104674208A (zh) 对金刚石表面镀Mo及金刚石/Cu复合材料的制备方法
CN104674053A (zh) 一种高热导率金刚石/Cu电子封装复合材料的制备方法
CN106893923B (zh) 一种刀具用多主元合金及其制备方法
CN101215663B (zh) 高熵合金基复合材料及其制备方法
CN101545057B (zh) 一种制备高导热金刚石/Cu复合材料方法
CN105506345B (zh) 高导热金刚石/铜复合封装材料及其制备方法
CN102586703B (zh) 一种石墨晶须增强铝基复合材料的制备方法
CN101728279B (zh) 一种高性能金刚石强化Al基电子封装复合材料的制备方法
CN101615600B (zh) 一种高导热电子封装材料及其制备方法
CN105695774A (zh) Mg3Sb2基热电材料的制备方法
CN103171207B (zh) 一种热沉材料及其制备方法
CN108746637A (zh) 铝硅/铝碳化硅梯度复合材料及其制备方法
CN102628149B (zh) 一种石墨晶须增强铜基复合材料的制备方法
CN105836717B (zh) 氮化铝电子陶瓷粉末的制备方法
CN104120297A (zh) 具优异耐热性的铜-金刚石系固相烧结体及其制法、使用该烧结体的散热板、及电子用装置
CN112935249B (zh) 一种金刚石/金属基复合材料的高效制备方法
CN110423922A (zh) 一种用于电子封装的硅铝合金及其制备方法和应用
CN103302294B (zh) 一种粉末冶金法制备纳米Cu@SiC/Cu基复合材料的方法
CN102492884A (zh) 一种新型钨铜锌合金材料的制备方法
Zhou et al. The fabrication of functional gradient hypereutectic Al-Si composites by liquid-solid separation technology
CN108950347B (zh) 一种MgAgSb系热电材料的制备方法
CN107841669B (zh) 一种高导热活性复合封装材料及其制备方法
CN101898240A (zh) 一种电子封装用SiC/Al复合材料的制备方法
CN108091755A (zh) TiCoSb基高熵热电材料及其制备方法与热电器件
CN108048725A (zh) ZrNiSn基高熵热电材料及其制备方法与热电器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant