CN104635727A - 一种基于红外引导的机器人自主充电系统及其充电方法 - Google Patents

一种基于红外引导的机器人自主充电系统及其充电方法 Download PDF

Info

Publication number
CN104635727A
CN104635727A CN201310562847.4A CN201310562847A CN104635727A CN 104635727 A CN104635727 A CN 104635727A CN 201310562847 A CN201310562847 A CN 201310562847A CN 104635727 A CN104635727 A CN 104635727A
Authority
CN
China
Prior art keywords
robot
infrared
frequency
signal
remote receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310562847.4A
Other languages
English (en)
Inventor
邹风山
王宇卓
徐方
杨奇峰
褚明杰
刘世昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Siasun Robot and Automation Co Ltd
Original Assignee
Shenyang Siasun Robot and Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Siasun Robot and Automation Co Ltd filed Critical Shenyang Siasun Robot and Automation Co Ltd
Priority to CN201310562847.4A priority Critical patent/CN104635727A/zh
Publication of CN104635727A publication Critical patent/CN104635727A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种基于红外引导的机器人自主充电方法,包括驱动模块控制机器人进入红外区域;任意一个红外接收器接收到充电站上的红外发射管发出的红外信号后,判断模块判断接收到红外信号区域的调制频率是否大于当前所处位置的调制频率;如果小于当前位置的调制频率,机器人停止运动,移动控制模块驱动机器人按照反方向继续进行红外信号搜索;如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域;直到机器人寻找到频率最高的调制信号后,调整机器人方向,完成与充电器的对接。本发明通过红外区域频率逐级递增的方式逐步引导机器人将其运动限制在充电站中心线附近范围内,有效解决传统红外引导机器人需要多次调整角度才能找到充电站的问题。

Description

一种基于红外引导的机器人自主充电系统及其充电方法
技术领域
本发明属于机器人自主充电领域,尤其涉及一种基于红外引导的机器人自主充电系统及其充电方法。
背景技术
移动机器人自动充电功能可以延长机器人的自治时间,增加其活动范围,实现连续任务动作。自动充电技术要求机器人能快速寻找充电站,机器人与充电站之间有较高的传输电能效率并且充电安全、快速。
传统的接触式充电方式存在以下问题:
从物理方面:充电连接部件为金属导体暴露在外部,电连接时容易产生火花,这对于易燃易爆场合危险性很大;如果出现污物会导致接触不良或电连接失败。
从机械方面看,传统的充电连接部件采取直插方式完成对接充电,多次插拔对接头的机械损伤会引起接触松动从而导致接触不良或电能传输下降。
并且,传统的接触式红外引导充电需要多次调整机器人的角度才能准确的找到充电站的位置,其耗费时间长,效率低。
发明内容
本发明的主要目的在于提供一种基于红外引导的机器人自主充电系统及其充电方法,其可克服现有技术的缺陷,减少了充电站定位于电极对接所需的时间和算法,提高了对接效率。
为实现上述目的,本发明采用如下技术方案:
一种基于红外引导的机器人自主充电方法,包括如下步骤:
驱动模块控制机器人进入红外区域;
任意一个红外接收器接收到充电站上的红外发射管发出的红外信号后,判断模块判断接收到红外信号区域的调制频率是否大于当前所处位置的调制频率;
如果小于当前位置的调制频率,机器人停止运动,移动控制模块驱动机器人按照反方向继续进行红外信号搜索;
如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域;
直到机器人寻找到频率最高的调制信号后,调整机器人方向,完成与充电器的对接。
优选地,驱动模块控制机器人进入红外区域之前,还包括:
电池监控模块对机器人的电量进行实时监控,当检测到电池电量低于一预设的参考电量时,向驱动模块发送一充电请求信号。
优选地,所述如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域,具体为:任意一个红外接收器接收到频率更高的信号,则调整机器人的前进方向,使位于机器人左前端第一红外接收器和右前端第二红外接收器均能接收到这个频率的信号并继续前进,进入新的频率区域。
一种基于红外引导的机器人自主充电系统,包括机器人和充电站,所述机器人包括:第一红外接收器、第二红外接收器、驱动模块、判断模块及移动控制模块;
驱动模块,用于接收到充电请求信号后,控制机器人进入红外区域;
第一红外接收器,位于机器人的左前方,用于接收红外信号;
第二红外发射管,位于机器人的右前方,用于接收红外信号;
判断模块,用于判断所述红外接收器接收到的红外信号所属区域的调制频率是否大于当前所处位置的调制频率;
移动控制模块,用于当判断小于当前位置的调制频率,控制机器人停止运动,并驱动机器人按照反方向继续进行红外信号搜索。以及如果大于当前位置的调整频率,则改变机器人行走方向,直到机器人寻找到频率最高的调制信号后,完成与充电站的对接。
优选地,所述机器人还包括电池监控模块,用于对机器人的电量进行实时监控,当检测到电池电量低于一预设的参考电量时,向驱动模块发送一充电请求信号。
优选地,所述充电站包括:第一红外发射管、第二红外发射管、第三红外发射管和第四红外发射管,所述四个红外发射管所发出的红外光覆盖范围依次减弱,相位相同,调制频率成倍数依次增加。
优选地,所述第四红外发射管的频率最高,发射的红外光近似一条直线。
本发明通过红外区域频率逐级递增的方式逐步引导机器人将其运动限制在充电站中心线附近一定范围内,有效解决传统红外引导机器人需要多次调整角度才能找到充电站的问题,并利用红外点对点发送和接收方式克服了传动红外引导指向性不够精确导致电极对接失败的问题。进一步减少了充电站定位于电极对接所需的时间和算法,提高了对接效率。
附图说明
图1是本发明充电方法第一实施例流程图。
图2是本发明充电方法第二实施例流程图。
图3是本发明充电系统结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参考图1所示,为本发明提供的基于红外引导的机器人自主充电方法第一实施例流程示意图,如图1所示,该方法包括:
S101:驱动模块16控制机器人10进入红外区域。
S102:任意一个红外接收器接收到充电站20上的红外发射管发出的红外信号后,判断模块17判断接收到红外信号区域的调制频率是否大于当前所处位置的调制频率。
S103:如果小于当前位置的调制频率,机器人停止运动,移动控制模块18驱动机器人10按照反方向继续进行红外信号搜索。
S104:如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域。
S105:直到机器人寻找到频率最高的调制信号后,完成与充电器的对接。
参见图2,为本发明提供的基于红外引导的机器人自主充电方法第二实施例流程示意图,在本实施例中,将更为详细的描述该充电方法的具体步骤及优选方式。如图所示,该充电方法包括:
S201:电池监控模块19对机器人的电量进行实时监控,当检测到电池电量低于一预设的参考电量时,向驱动模块16发送一充电请求信号。
S202:驱动模块16控制机器人进入红外区域。
S203:任意一个红外接收器接收到充电站上的红外发射管发出的红外信号后,判断模块17判断接收到红外信号区域的调制频率是否大于当前所处位置的调制频率。
充电站上摆放着四个红外发射管,分别为第一红外发射管21、第二红外发射管22、第三红外发射管23和第四红外发射管24,这四个红外发射管所发出的红外光覆盖范围依次减弱,相位相同,调制频率成倍数依次增加,即,f21=FHz、f22=2FHz、f23=3FHz和f24=4FHz。其中,调制频率最高的第四红外发射管发射形状近似一条直线。这样,红外高频红外可以覆盖低频红外,保证红外接收器不会因接收到叠加脉冲而产生频率漂移情况。所述机器人10上的左前、右前、左后和右后方向设置有四个红外接收器,分别为第一红外接收器11、第二红外接收器12、第三红外接收器13和第四红外接收器14,每个接收器可以接收到90度范围内的红外信号,这样,机器人可以接收周围360度范围的红外信号。同时,在第一红外接收器11和第二红外接收器12之间,即机器人10中心线处装有第五红外接收器15,用于准确调整机器人10与充电站20电极之间的角度。
机器人进入红外区域后,任意一个红外接收器搜索到充电站20发出的红外信号后,调整机器人的方向,总是使第一红外接收器11和第二红外接收器12可以同时接收到红外信号并前进。前进过程中,判断模块不断判断接收到红外信号区域的调制频率是否大于当前所处位置的调制频率。如果小于当前位置的调制频率,则执行步骤S204,如果大于当前位置的调制频率,则执行步骤S205。
S204:如果小于当前位置的调制频率,机器人停止运动,移动控制模块18驱动机器人10按照反方向继续进行红外信号搜索。
S205:如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域。
具体为:任意一个红外接收器接收到频率更高的信号,则调整机器人10的前进方向,使第一红外接收器和第二红外接收器均能接收到这个频率的信号并继续前进,进入新的频率区域。
S206:直到机器人寻找到频率最高的调制信号后,调整机器人方向,完成与充电站的对接。
具体为:在新的区域中,反复按照S204至S206的路径策略行走,直到寻找到最高的频率信号f24=4FHz,调整机器人的方向,使第五红外接收器15能够接收到第四红外发射管24发出的近似直线的红外光,此时机器人10与充电站20之间会存在着非常小的偏差,保持第五红外接收器15始终能够接收到第四红外发射管24发出的信号直到完成与充电站的对接。
对应的,参见图3,为本发明提供的基于红外引导的机器人自主充电系统第一实施例结构示意图。如图所示,该系统包括:机器人10和充电站20,
机器人10还包括:第一红外接收器11、第二红外接收器12、第三红外接收器13、第四红外接收器14和第五红外接收器15,驱动模块16、判断模块17、移动控制模块18和电池监控模块19。
充电站20还包括:第一红外发射管21、第二红外发射管22、第三红外发射管23和第四红外发射管24。
电池监控模块19,用于对机器人的电量进行实时监控,当检测到电池电量低于一预设的参考电量时,向驱动模块16发送一充电请求信号。
驱动模块16,用于接收到充电请求信号后,控制机器人进入红外区域。
红外接收器11-14,用于接收红外发射管发出的红外信号。
判断模块17,用于判断红外接收器接收到的红外信号所属区域的调制频率是否大于当前所处位置的调制频率。
移动控制模块18,用于当判断小于当前位置的调制频率时,控制机器人停止运动,并驱动机器人10按照反方向继续进行红外信号搜索。以及如果大于当前位置的调整频率,则改变机器人行走方向,直到机器人寻找到频率最高的调制信号后,完成与充电站的对接。
本发明所提供的基于红外引导的机器人自主充电方法和系统,通过红外区域频率逐级递增的方式逐步引导机器人将其运动限制在充电站中心线附近一定范围内,有效解决传统红外引导机器人需要多次调整角度才能找到充电站的问题,并利用红外点对点发送和接收方式克服了传动红外引导指向性不够精确导致电极对接失败的问题。进一步减少了充电站定位于电极对接所需的时间和算法,提高了对接效率。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种基于红外引导的机器人自主充电方法,其特征在于,包括如下步骤:
驱动模块控制机器人进入红外区域;
任意一个红外接收器接收到充电站上的红外发射管发出的红外信号后,判断模块判断接收到红外信号区域的调制频率是否大于当前所处位置的调制频率;
如果小于当前位置的调制频率,机器人停止运动,移动控制模块驱动机器人按照反方向继续进行红外信号搜索;
如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域;
直到机器人寻找到频率最高的调制信号后,调整机器人方向,完成与充电器的对接。
2.如权利要求1所述的自主充电方法,其特征在于,所述驱动模块控制机器人进入红外区域之前,还包括:
电池监控模块对机器人的电量进行实时监控,当检测到电池电量低于一预设的参考电量时,向驱动模块发送一充电请求信号。
3.如权利要求1所述的自主充电方法,其特征在于,所述如果大于当前位置的调整频率,则改变机器人行走方向,进入新的频率区域,具体为:任意一个红外接收器接收到频率更高的信号,则调整机器人的前进方向,使位于机器人做前端第一红外接收器和右前端第二红外接收器均能接收到这个频率的信号并继续前进,进入新的频率区域。
4.一种基于红外引导的机器人自主充电系统,包括机器人和充电站,其特征在于,所述机器人包括:第一红外接收器、第二红外接收器、驱动模块、判断模块及移动控制模块;
驱动模块,用于接收到充电请求信号后,控制机器人进入红外区域;
第一红外接收器,位于机器人的左前方,用于接收红外信号;
第二红外发射管,位于机器人的右前方,用于接收红外信号;
判断模块,用于判断所述红外接收器接收到的红外信号所属区域的调制频率是否大于当前所处位置的调制频率;
移动控制模块,用于当判断小于当前位置的调制频率,控制机器人停止运动,并驱动机器人按照反方向继续进行红外信号搜索。以及如果大于当前位置的调整频率,则改变机器人行走方向,直到机器人寻找到频率最高的调制信号后,完成与充电站的对接。
5.如权利要求4所述的自主充电系统,其特征在于,所述机器人还包括电池监控模块,用于对机器人的电量进行实时监控,当检测到电池电量低于一预设的参考电量时,向驱动模块发送一充电请求信号。
6.如权利要求4所述的自主充电系统,其特征在于,所述充电站包括:第一红外发射管、第二红外发射管、第三红外发射管和第四红外发射管,所述四个红外发射管所发出的红外光覆盖范围依次减弱,相位相同,调制频率成倍数依次增加。
7.如权利要求6所述的自主充电系统,其特征在于,所述第四红外发射管的频率最高,发射的红外光近似一条直线。
CN201310562847.4A 2013-11-12 2013-11-12 一种基于红外引导的机器人自主充电系统及其充电方法 Pending CN104635727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310562847.4A CN104635727A (zh) 2013-11-12 2013-11-12 一种基于红外引导的机器人自主充电系统及其充电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310562847.4A CN104635727A (zh) 2013-11-12 2013-11-12 一种基于红外引导的机器人自主充电系统及其充电方法

Publications (1)

Publication Number Publication Date
CN104635727A true CN104635727A (zh) 2015-05-20

Family

ID=53214596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310562847.4A Pending CN104635727A (zh) 2013-11-12 2013-11-12 一种基于红外引导的机器人自主充电系统及其充电方法

Country Status (1)

Country Link
CN (1) CN104635727A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106406316A (zh) * 2016-10-26 2017-02-15 山东大学 家庭智能陪护机器人的自主充电系统及其充电方法
CN106611985A (zh) * 2015-10-20 2017-05-03 沈阳新松机器人自动化股份有限公司 基于无尾服务机器人的无线充电系统
CN106774295A (zh) * 2015-11-24 2017-05-31 沈阳新松机器人自动化股份有限公司 一种分布式引导机器人自主充电系统
CN107272745A (zh) * 2017-06-20 2017-10-20 深圳市艾特智能科技有限公司 机器人回充控制方法
CN107462869A (zh) * 2017-06-27 2017-12-12 深圳市优必选科技有限公司 机器人回充的对准方法及机器人、系统和存储介质
CN107802472A (zh) * 2017-11-22 2018-03-16 佛山市海科云筹信息技术有限公司 一种具有路口警示功能的盲杖及其方法
CN108062098A (zh) * 2017-12-11 2018-05-22 子歌教育机器人(深圳)有限公司 智能机器人的地图构建方法和系统
CN108897323A (zh) * 2018-07-23 2018-11-27 福建(泉州)哈工大工程技术研究院 移动机器人自主对准充电基座的控制方法
CN110113978A (zh) * 2016-12-30 2019-08-09 Lg电子株式会社 包括充电站的机器人清洁器系统
CN111917192A (zh) * 2020-06-22 2020-11-10 济南浪潮高新科技投资发展有限公司 一种室外机器人的无线充电方法及系统
CN113162256A (zh) * 2021-04-28 2021-07-23 福建汉特云智能科技有限公司 一种机器人无线充电对位方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087273A1 (en) * 2004-10-27 2006-04-27 Samsung Gwangju Electronics Co., Ltd Robot cleaner system and a method for returning to external recharging apparatus
CN100999078A (zh) * 2006-01-09 2007-07-18 田角峰 一种机器人自动充电方法及其自动充电装置
CN102012705A (zh) * 2009-09-04 2011-04-13 和硕联合科技股份有限公司 自动清洁装置及其充电方法
US20120116588A1 (en) * 2010-11-09 2012-05-10 Samsung Electronics Co., Ltd. Robot system and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087273A1 (en) * 2004-10-27 2006-04-27 Samsung Gwangju Electronics Co., Ltd Robot cleaner system and a method for returning to external recharging apparatus
CN100999078A (zh) * 2006-01-09 2007-07-18 田角峰 一种机器人自动充电方法及其自动充电装置
CN102012705A (zh) * 2009-09-04 2011-04-13 和硕联合科技股份有限公司 自动清洁装置及其充电方法
US20120116588A1 (en) * 2010-11-09 2012-05-10 Samsung Electronics Co., Ltd. Robot system and control method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611985A (zh) * 2015-10-20 2017-05-03 沈阳新松机器人自动化股份有限公司 基于无尾服务机器人的无线充电系统
CN106774295A (zh) * 2015-11-24 2017-05-31 沈阳新松机器人自动化股份有限公司 一种分布式引导机器人自主充电系统
CN106774295B (zh) * 2015-11-24 2020-01-21 沈阳新松机器人自动化股份有限公司 一种分布式引导机器人自主充电系统
CN106406316A (zh) * 2016-10-26 2017-02-15 山东大学 家庭智能陪护机器人的自主充电系统及其充电方法
CN106406316B (zh) * 2016-10-26 2023-07-11 山东大学 家庭智能陪护机器人的自主充电系统及其充电方法
CN110113978A (zh) * 2016-12-30 2019-08-09 Lg电子株式会社 包括充电站的机器人清洁器系统
CN107272745A (zh) * 2017-06-20 2017-10-20 深圳市艾特智能科技有限公司 机器人回充控制方法
CN107462869A (zh) * 2017-06-27 2017-12-12 深圳市优必选科技有限公司 机器人回充的对准方法及机器人、系统和存储介质
CN107802472A (zh) * 2017-11-22 2018-03-16 佛山市海科云筹信息技术有限公司 一种具有路口警示功能的盲杖及其方法
CN108062098A (zh) * 2017-12-11 2018-05-22 子歌教育机器人(深圳)有限公司 智能机器人的地图构建方法和系统
CN108897323A (zh) * 2018-07-23 2018-11-27 福建(泉州)哈工大工程技术研究院 移动机器人自主对准充电基座的控制方法
CN108897323B (zh) * 2018-07-23 2021-06-29 福建(泉州)哈工大工程技术研究院 移动机器人自主对准充电基座的控制方法
CN111917192A (zh) * 2020-06-22 2020-11-10 济南浪潮高新科技投资发展有限公司 一种室外机器人的无线充电方法及系统
CN113162256A (zh) * 2021-04-28 2021-07-23 福建汉特云智能科技有限公司 一种机器人无线充电对位方法及系统

Similar Documents

Publication Publication Date Title
CN104635727A (zh) 一种基于红外引导的机器人自主充电系统及其充电方法
CN104298234A (zh) 一种双引导式机器人自主充电方法
CN101375781B (zh) 地面处理系统及地面处理装置与充电座的对接方法
CN103948354B (zh) 一种地面清洁机器人及其控制方法
US9067497B2 (en) Power transmitting device and power transfer system
CN101524257B (zh) 智能吸尘器的自动充电实现方法
US20150371771A1 (en) Wireless power transfer systems and methods
US11027626B2 (en) Method for controlling electrical power transmission to a vehicle
CN105356562A (zh) 一种分段发射式电动汽车在线动态无线供电系统
CN101862166A (zh) 自动吸尘器定位充电座的电子控制装置
CN110138073B (zh) 电力巡检机器人用太阳能在线自主混合充电装置及方法
CN103022586A (zh) 一种agv自动充电方法及系统
CN104298233A (zh) 移动机器人自主充电系统
JP2010193657A (ja) 移動車両給電システム
CN109733215B (zh) 一种基于太阳能光储一体的公路动态无线充电系统
CN111509801B (zh) 自动设备的控制方法、系统、自动设备及可读存储介质
WO2014015788A1 (zh) 自移动处理机器人工作系统及其无线充电方法
CN203707884U (zh) 基于本地取电的电动汽车无线供电系统控制电路
CN105172613A (zh) 一种电动汽车的充电方法
CN104979885A (zh) 一种输电线路巡线无人机无线续航方法
CN111873822A (zh) 一种无人机无线充电系统及充电方法
CN104868552A (zh) 一种无线充电方法、装置及系统
CN112072750A (zh) 一种基于自动行走设备位置的对接充电系统及方法
CN204192511U (zh) 吸尘器
CN105071512A (zh) 一种智能居家机器人的自动充电控制系统及控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520