CN104629151A - 一种结构可控的多孔乙烯基树脂薄膜及其制备方法 - Google Patents

一种结构可控的多孔乙烯基树脂薄膜及其制备方法 Download PDF

Info

Publication number
CN104629151A
CN104629151A CN201510083524.6A CN201510083524A CN104629151A CN 104629151 A CN104629151 A CN 104629151A CN 201510083524 A CN201510083524 A CN 201510083524A CN 104629151 A CN104629151 A CN 104629151A
Authority
CN
China
Prior art keywords
film
calcium carbonate
porous
controllable
vinylite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510083524.6A
Other languages
English (en)
Other versions
CN104629151B (zh
Inventor
浦鸿汀
李亚捷
杜江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201510083524.6A priority Critical patent/CN104629151B/zh
Publication of CN104629151A publication Critical patent/CN104629151A/zh
Application granted granted Critical
Publication of CN104629151B publication Critical patent/CN104629151B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/758Odour absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明属于高分子材料技术领域,具体涉及一种结构可控的多孔乙烯基树脂薄膜及其制备方法。利用微纳叠层共挤出成型技术制备了具有交替层状结构的乙烯基树脂(碳酸钙)-分隔树脂薄膜,通过层间分离、酸处理等过程得到孔结构及膜厚度均匀可控的多孔乙烯基树脂薄膜。本发明容易做到向聚合物基体内添加其他材料的要求,制备出的薄膜厚度均匀并可通过调节层数及成膜模具出口厚度进行调节。孔结构可由碳酸钙颗粒的粒径、含量及刻蚀时间来控制。本发明提出的方法简易可行、成本低廉、孔结构稳定可控、厚度可控、吸附效果好,利于大规模生产。用这种方法制备的聚合物多孔膜在环境、能源、吸附分离、传感器、催化剂、微电子器件、微反应器和生物技术等领域中有着潜在的应用。

Description

一种结构可控的多孔乙烯基树脂薄膜及其制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及一种结构可控的多孔乙烯基树脂薄膜及其制备方法。
背景技术
近年来,具有微米及亚微米级孔径的有序多孔薄膜因其具有均匀的孔形、孔径及排列有序等特点使其在环境、能源、吸附分离、传感器、催化剂、微电子器件、微反应器和生物技术等领域中得到广泛应用。相对无机多孔材料而言,有机多孔材料抗水防潮性能好,微孔与空气间的表面张力很低,使得孔结构的环境稳定性更好,并且容易通过现有的技术方法对有机多孔材料进行功能化改性,这在为拓展孔材料在功能材料领域的应用范围提供了有利条件。
目前制备有序多孔薄膜的方法主要有:模板法、静电喷涂法、光刻法、相分离法、气息图案法和拉伸法等(Chang H H, Yao L C, Lin D J, et al. Preparation of microporous poly(VDF-co-HFP) membranes by template-leaching method. Separation and Purification Technology, 2010,72:156-166),其中,模板法由于制备工艺过程相对简单,且所制备的孔形状、大小和形态易于控制等特点,受到更多研究者的关注(Imhof A, Pine D J. Ordered macroporous materials by emulsion templating. Nature, 1997,389:948-951)。模板法是一种被广泛使用的制备多孔材料的重要方法,尤其适用于制备不溶于普通溶剂的聚合物多孔膜(Makphon P, Ratanatongchai W, Chongkum A, et al. Polycarbonate microfilters by nuclear tacking and chemical etching(track-etching)technique: Preparation and characterization. Journal of Applied Polymer Science, 2006,101:982-990.)。这种技术的原理是通过膜基体材料和一种可浸出组分的混合物制备出均匀薄膜,然后将可溶性组分浸出(Lim J I, Park H K. Fabrication of macroporous chitosan/poly(L-lactide)hybrid scaffolds by sodium acetate particulate-leaching method. Journal of Porous Material, 2012,19:383-387),从而在基体上留下孔洞,形成多孔结构(Sanguanruksa J, Rujiravanit R, Supaphol P, et al. Porous polyethylene membranes by template-leaching technique:Preparation and characterization. Polymer Testing, 2004,23:91-99),可溶性浸出物如淀粉、碳酸钙、二氧化硅、金属氧化物、表面活性剂乃至细菌等均可作为模板,而制备聚合物多孔膜的膜材料主要有纤维素衍生物类、聚砜类、聚酰胺类、聚烯烃类、乙烯类聚合物等(薛萌萌.多孔聚苯乙烯薄膜的研究.天津:天津工业大学,2013.2)。
微层共挤出技术的核心部分是层倍增模具,层倍增模具的结构设计直接决定了制备交替多层复合材料的分层效率及分层效果,高效的层倍增模具结构设计可实现纳层共挤出。利用新型的微纳层共挤出系统可以得到具有几十层到几千层的薄膜或薄片,并且可以通过控制分层单元数来控制层的数量和厚度(在保持总厚度不变的情况下,层数的增加将使层厚减小),并可通过控制喂料比来改变不同组分层的厚度比。本发明以微层共挤出方法制备苯乙烯基树脂(碳酸钙)-分隔树脂交替复合薄膜,并通过剥离法或溶蚀法得到苯乙烯基树脂(碳酸钙)薄膜。此方法加工成本低,工艺简单易行,膜层数及厚度可控。
本发明以乙烯基树脂为基体材料,多孔有序薄膜拥有乙烯基树脂的诸多优良性能,如良好的弹性模量,抗拉强度和冲击强度以及较大的断裂伸长率,此外还具有优越的抗水、防潮性,同时微孔与空气间的表面张力低,孔结构更加稳定,而且比较容易进行功能化改性。为拓展孔材料在功能材料领域的应用范围提供了有利条件。以亚微米级碳酸钙为浸出物,采用酸处理,便可得到聚合物的多孔膜,这是由于酸与乙烯基树脂薄膜中的碳酸钙发生复分解反应,从而刻蚀掉薄膜中的碳酸钙颗粒,通过控制薄膜的层数,采用不同粒径的碳酸钙颗粒做模板,酸刻蚀的时间等来调控多孔膜的厚度,微米级孔隙的的数目和大小等。
本发明选用乙烯基树脂(如苯乙烯基树脂)作为膜基体,采用微层共挤出、碳酸钙模板法及盐酸刻蚀法得到孔结构均匀可控的多孔膜。所制成的薄膜采用稀释的无机酸进行处理,刻蚀掉膜中的碳酸钙颗粒,从而得到具有大小均匀、分布有序的微米级多孔结构的高分子薄膜。对多孔膜进行扫描电子显微镜、偏光显微镜、热失重及多环芳烃吸附性能测试,结果显示膜中的多孔结构受很多实验因素的影响。其中主要影响因素有薄膜层数厚度,碳酸钙的含量及酸的刻蚀时间的影响。研究发现当将薄膜浸于盐酸中时,刻蚀时间越长,刻蚀效果越好,所得薄膜的孔径基本介于微米级大小,且孔径分布较窄。
发明内容
本发明的目的在于提出一种安全可行、工艺简单且原料成本低廉可以大规模生产的结构可控的多孔乙烯基树脂薄膜及其制备方法。由此制备的多孔薄膜可应用于多环芳烃的吸附、催化剂载体等领域。
本发明提出的结构可控的多孔乙烯基树脂薄膜,首先以碳酸钙颗粒为模板制备乙烯基树脂/碳酸钙母料,然后利用微纳叠层共挤出成型设备制备含碳酸钙的乙烯基树脂和分隔树脂的具有交替层状结构的薄膜,通过层间分离、酸处理等过程得到孔结构及膜厚度均匀可控的多孔乙烯基树脂薄膜,其原料组成包括:
乙烯基树脂                                        100份,以质量数计
碳酸钙颗粒                                        10-50份,以质量数计
分散剂                                            1-5份,以质量数计。
本发明中,所述的乙烯基树脂为重复单元中含乙烯基结构的聚合物,如聚乙烯、聚偏氟乙烯、聚丙烯、苯乙烯基聚合物或共聚物,等等。
本发明中,所述碳酸钙颗粒为亚微米级,粒径为0.1-1 μm。
本发明中,所述分散剂为钛酸酯偶联剂TMC-101。
本发明中,所述的分隔树脂是与乙烯基树脂不相容的热塑性树脂,如聚乙烯、聚丙烯、聚氧化乙烯等,但不仅限于此。
本发明提出的结构可控的多孔乙烯基树脂薄膜的制备方法,具体步骤如下:
(1)乙烯基树脂/碳酸钙母料的制备
(1.1)将1-5份分散剂溶在乙醇溶液中,备用;
(1.2)将10-50份碳酸钙微球放入高速搅拌机,升温至70-80 ℃,逐滴滴入上述分散剂溶液,低速搅拌10-20 min,然后高速搅拌10-20 min;
(1.3)在上述原料中加入100份乙烯基树脂,升温至100-120℃,低速搅拌20-30 min后,高速搅拌20-30 min;
(1.4)将步骤(1.3)制备的乙烯基树脂和碳酸钙混合料放入造粒机造粒,进料口温度为130-150℃,出料口温度为200-220℃;
(2)具有交替层状结构且厚度可控的乙烯基树脂/碳酸钙-分隔树脂薄膜的制备
采用微纳叠层共挤出成型设备,第一进料口加入步骤(1)得到的乙烯基树脂/碳酸钙母料,第二进料口加入分隔树脂,调节转速及温度,制备出乙烯基树脂/碳酸钙-分隔树脂薄膜交替叠加的4-2048层薄膜,厚度均匀可控,每层厚度为0.1 - 50μm;
(3)酸处理过程得到孔结构均匀可控的乙烯基树脂多孔薄膜
(3.1) 配置质量分数为10%-30%的酸溶液500 mL;
(3.2) 称取10-30 g步骤(2)得到的乙烯基树脂薄膜浸入上述酸溶液中;
(3.3)放入超声池超声24-96 h,恒温20-30 ℃;
(3.4)更换如步骤(3.1)所述的酸溶液,再次放入超声池超声处理24-96 h,恒温20-30 ℃;
(3.5)将刻蚀后的乙烯基树脂薄膜先后浸泡于去离子水和乙醇溶液中,各超声处理2 h;
(3.6)将上述乙烯基树脂薄膜取出,置于恒温烘箱中70 ℃下干燥24-72 h。
本发明中,制备出的乙烯基树脂(碳酸钙)-分隔树脂交替叠加的4-2048层薄膜,通过剥离法或溶蚀法分离出乙烯基树脂的薄膜,薄膜的完整性很高,厚度均匀,表面平整无划痕。
本发明中,所述剥离法是指利用机械剥离法分离乙烯基树脂层和分隔树脂层。
本发明中,所述的溶蚀法是指利用两种树脂在同一溶剂中的溶解性的差异来分离乙烯基树脂层和分隔树脂层。
本发明中,步骤(3.1)所述的酸是一种或一种以上的强酸或中强酸的混合物,具体为盐酸、硫酸、硝酸、磷酸及其混合物,但不仅限于此。
所得的多孔膜表面平整连续、厚度均匀且具备一定的机械强度。膜厚度可以通过调节层数及成膜模具出口厚度进行调节。
孔径大小、孔隙率、孔径分布等可以通过改变碳酸钙颗粒粒径、含量以及酸刻蚀时间等因素进行控制。
通过对上述多孔乙烯基树脂薄膜对多环芳烃吸附性能的测试发现,相对于无孔乙烯基树脂薄膜,其吸附速率更高,最低残留浓度约为无孔薄膜的25%,这也证明了孔结构对吸附性能的影响。
本发明使用微纳层共挤出技术、碳酸钙模板法及酸刻蚀法制备出孔结构及膜厚可控的多孔乙烯基树脂薄膜,多孔材料的孔结构有序且可控,热稳定性高,吸附性能好,加工成本低,工艺简单易行。具有很强的可设计性,在多孔材料、微层共挤出领域、吸附应用领域、及功能高分子领域有广阔的应用前景和使用价值。本发明具体优点如下:
(1)本发明容易做到向聚合物基体内添加其他材料的要求。如本发明中选择的聚合物基体为乙烯基树脂,添加的材料为亚微米级碳酸钙颗粒,通过加入分散剂高速搅拌及双螺杆造粒的处理,两种组分混合均匀,且两组分比例可按实际需求做调整;
(2)本发明采用实验室自行制造的微纳叠层共挤出成型设备制备了具有交替层状结构的乙烯基树脂(碳酸钙)-分隔树脂薄膜,采用流道结构合理的层倍增模具,分层效率高。通过串联10个以上的层倍增模具,就可以在l mm的成型口模内获得单层厚度为纳米级的复合薄膜。制备出的薄膜厚度均匀,表面平整连续且具备很高的机械强度,层与层之间界限分明且层厚均匀,膜厚度可以通过调节层数及成膜模具出口厚度进行调节;
(3)本发明采用亚微米级无机碳酸钙颗粒作为模板制备多孔材料,孔结构可由碳酸钙颗粒的粒径、含量及刻蚀时间来控制,本发明所得薄膜的孔径基本介于微米级大小,且孔径分布较窄;
(4)传统的对多环芳烃等水中污染物的吸附材料普遍制备过程复杂,成本较高,难以大规模生产和应用,用本发明提出的这种方法制备的多孔薄膜,制备过程方便快捷,孔结构稳定可控,吸附效果较好,可大批量连续生产,例如,用本发明提出的这种方法制备的苯乙烯基聚合物多孔薄膜,原料成本低廉,对多环芳烃等水中污染物的吸附性能优良,适于大规模生产和应用。
附图说明
图1为双组分微纳层共挤出系统与碳酸钙模板法相结合制备多孔薄膜的原理图。
图2为聚苯乙烯(碳酸钙)/聚乙烯交替叠加的16层薄膜断层的偏光显微镜照片。
图3 为聚苯乙烯(碳酸钙)薄膜盐酸刻蚀前后表面的偏光显微镜照片(a为刻蚀前,b为刻蚀后)。
图4为聚苯乙烯(碳酸钙)薄膜盐酸刻蚀前后表面不同放大倍数的扫描电镜照片(a,c为刻蚀前;b,d为刻蚀后)。
图5为聚苯乙烯(碳酸钙)薄膜盐酸刻蚀前后断面的扫描电镜照片(a为刻蚀前;b为刻蚀后)。
图6为聚苯乙烯(碳酸钙)薄膜盐酸刻蚀前后的热失重照片。
图7为经过不同吸附时间后芘的水溶液的荧光光谱图(1g/L;a为多孔聚苯乙烯薄膜;b为无孔聚苯乙烯薄膜)。
图8为经过不同吸附时间由芘的水溶液在波长为370nm荧光强度得到的吸附动力学折线图(1g/L;a为多孔聚苯乙烯薄膜;b为无孔聚苯乙烯薄膜)。
具体实施方式
以下实施例是仅为更进一步具体说明本发明,在不违反本发明的主旨下,本发明应不限于以下实例具体明示的内容。
所用原料如下:
聚苯乙烯树脂(PG-22),苏州浩宇鑫塑化有限公司;
聚乙烯树脂(2426K),上海繁塑国际贸易有限公司;           
聚丙烯树脂(J740),扬子石化公司;           
聚偏氟乙烯树脂(6010),Solvay化学公司;           
碳酸钙颗粒(0.8μm电子级),阿拉丁;
碳酸钙颗粒(0.1μm),苏州名匠精细化工有限公司;
分散剂-钛酸酯偶联剂TMC-101,天长市绿色化工助剂厂;                                
盐酸,国药集团化学试剂有限公司。
实施例1: (1)以亚微米级碳酸钙(0.8μm电子级)为模板制备聚苯乙烯-碳酸钙复合材料,作为母料。
所用原料的配比如下:
聚苯乙烯树脂                                        100份,以质量数计
碳酸钙颗粒(0.8μm电子级)                  10-50份,以质量数计
分散剂                                                 1-5份,以质量数计
(1.1)将1-5份分散剂溶在乙醇溶液中,备用;
(1.2)将10-30份碳酸钙颗粒放入高速搅拌机,升温至70-80℃,逐滴滴入上述分散剂溶液,低速搅拌10-20min,然后高速搅拌10-20min;
(1.3)在上述原料中加入100份聚苯乙烯树脂,升温至100-120℃,低速搅拌20-30min,然后高速搅拌20-30min;
(1.4)将如上述方法制备的聚苯乙烯-碳酸钙母料放入造粒机造粒,进料口温度为130-150℃,出料口温度为200-220℃。
(2)用微层共挤出方法制备聚苯乙烯/聚乙烯交替多层复合薄膜,通过进行层间剥离,分离出聚苯乙烯膜(无孔)。
交替层状结构的薄膜的制备采用实验室自行制造的微纳叠层共挤出成型设备。两台挤出机A、B分别加入聚乙烯和聚苯乙烯,对于聚乙烯,四段进料口温度依次为120℃、150 ℃、180℃和220℃;对于聚苯乙烯,四段进料口温度依次为100℃、140℃、180 ℃和220 ℃。层倍增模具段温度为210-230 ℃,机头温度为190-210℃,实验加工原理如图1所示。
制备出聚苯乙烯/聚乙烯薄膜交替叠加的16层薄膜,厚度均匀可控,每层约为20μm。
制备出的聚苯乙烯/聚乙烯为交替叠加的16层薄膜,通过剥离法分理出聚苯乙烯薄膜,膜的完整性很高,厚度均匀,表面平整无划痕。
实施例4: 用微层共挤出方法制备聚苯乙烯(碳酸钙)/聚乙烯交替多层复合薄膜,通过进行层间剥离,分离出聚苯乙烯(碳酸钙)膜。
交替层状结构的薄膜的制备采用实验室自行制造的微纳叠层共挤出成型设备。两台挤出机A、B分别加入聚乙烯和聚苯乙烯,对于聚乙烯,四段进料口温度依次为120 oC、150 ℃、180 ℃和220℃;对于聚苯乙烯,四段进料口温度依次为100℃、140℃、180 ℃和220℃。层倍增模具段温度为210-230℃,机头温度为190-210℃。
制备出聚苯乙烯(碳酸钙)/聚乙烯薄膜交替叠加的16层薄膜,厚度均匀可控,每层约为20μm,聚苯乙烯(碳酸钙)/聚乙烯交替叠加的16层薄膜断层的偏光显微镜照片如图2所示,透明层为聚苯乙烯,深色层为聚乙烯。
制备出的聚苯乙烯(碳酸钙)/聚乙烯为交替叠加的16层薄膜,通过剥离法分理出聚苯乙烯(碳酸钙)的薄膜,膜的完整性很高,厚度均匀,表面平整无划痕,实验加工原理如图1所示。
(3)盐酸刻蚀法去除聚苯乙烯(碳酸钙)膜中的模板-碳酸钙颗粒。
本发明提出由盐酸溶液刻蚀法制备聚苯乙烯多孔薄膜,具体实验步骤如下:
(3.1) 配置质量分数为10%-30%的盐酸溶液500mL;
(3.2) 称取10-30g聚苯乙烯薄膜浸入上述盐酸溶液;
(3.3)放入超声池超声24-96h,恒温20-30℃;
(3.4)更换如(1)所述的盐酸溶液,再次放入超声池超声24-96h,恒温20-30℃;
(3.5)将刻蚀后的聚苯乙烯薄膜先后浸泡于去离子水和乙醇溶液中,各超声2h;
(3.6)将上述聚苯乙烯薄膜取出,置于恒温烘箱中70℃干燥24-72h。
 对盐酸刻蚀前后的薄膜在偏光显微镜下进行观察,结果如图3所示。(a)为盐酸刻蚀前的薄膜表面,由图可见表面没有明显的孔洞,刻蚀后的多孔膜如(b)所示,相较于刻蚀前,表面出现大量均匀的孔洞。这说明通过盐酸浸泡,膜的制孔模板碳酸钙被刻蚀,使得膜中出现了大量孔洞。碳酸钙模板-刻蚀法的实验原理如图1所示。
盐酸刻蚀前后薄膜表面的场发射环境扫描电子显微镜照片如图4所示。(a)、(c)为盐酸刻蚀前的薄膜表面,由图可见表面有很多突起的白色颗粒,由实验分析,这些白色颗粒为碳酸钙粒子,粒径约为0.5-1μm。刻蚀后的多孔膜表面如(b)、(d)所示,相较于刻蚀前,原本出现突起的地方被孔洞所取代,表面出现大量均匀的孔结构。这进一步说明盐酸浸泡能够刻蚀掉膜的制孔模板-碳酸钙,从而制备出孔径及孔结构可控的多孔聚苯乙烯膜。
盐酸刻蚀前后薄膜断面的场发射环境扫描电子显微镜照片如图5所示。(a)为盐酸刻蚀前的薄膜断面,由图可见表面比较平整,同时存在突起的碳酸钙颗粒。刻蚀后的多孔膜如(b)所示,相较于刻蚀前,出现明显的多孔结构,原本平整的表面由紧密排布的孔结构所取代,有的孔中还残留碳酸钙颗粒,经分析这可能是由于盐酸浸泡时间不足造成的,这一方面证实了盐酸刻蚀碳酸钙致孔法的可行性,一方面为以后对盐酸刻蚀法的完善提供了依据。
对盐酸刻蚀前后的薄膜的热分解情况进行测试,热失重曲线如图6所示,黑色曲线为刻蚀后的聚苯乙烯多孔薄膜的热失重情况,红色曲线为刻蚀前聚苯乙烯-碳酸钙薄膜的热失重情况。从图中可以看出,两条曲线的共同之处在于都在240-430℃及600-700℃处出现了明显的下降,分别代表聚苯乙烯和碳酸钙的分解。第二个平台出现在440-600℃,此时的纵坐标数值代表材料中碳酸钙的含量,从图中可见,刻蚀后的材料平台更低,说明碳酸钙含量更低,进一步佐证了通过盐酸浸泡成功的刻蚀了聚苯乙烯薄膜中的碳酸钙颗粒。
实施例2:
(1)以亚微米级碳酸钙(0.1μm)为模板制备聚苯乙烯-碳酸钙复合材料,作为母料。
所用原料的配比如下:
聚苯乙烯树脂                                        100份,以质量数计
碳酸钙颗粒(0.1μm电子级)                    30-50份,以质量数计
分散剂                                                 1-5份,以质量数计
(1.1)将1-5份分散剂溶在乙醇溶液中,备用;
(1.2)将10-30份碳酸钙颗粒放入高速搅拌机,升温至70-80℃,逐滴滴入上述分散剂溶液,低速搅拌10-20min,然后高速搅拌10-20min;
(1.3)在上述原料中加入100份聚苯乙烯树脂,升温至100-120℃,低速搅拌20-30min,然后高速搅拌20-30min;
(1.4)将如上述方法制备的聚苯乙烯-碳酸钙母料放入造粒机造粒,进料口温度为130-150 oC,出料口温度为200-220℃。
(2)用微层共挤出方法制备聚苯乙烯(碳酸钙)/聚乙烯交替多层复合薄膜,通过进行层间剥离,分离出聚苯乙烯(碳酸钙)膜。
交替层状结构的薄膜的制备采用实验室自行制造的微纳叠层共挤出成型设备。两台挤出机A、B分别加入聚乙烯和聚苯乙烯,对于聚乙烯,四段进料口温度依次为120℃、150 ℃、180℃和220℃;对于聚苯乙烯,四段进料口温度依次为100℃、140℃、180℃和220 ℃。层倍增模具段温度为210-230℃,机头温度为190-210℃。
制备出聚苯乙烯(碳酸钙)/聚乙烯薄膜交替叠加的16层薄膜,厚度均匀可控,每层约为20μm,聚苯乙烯(碳酸钙)/聚乙烯交替叠加的16层薄膜断层的偏光显微镜照片如图2所示,透明层为聚苯乙烯,深色层为聚乙烯。
制备出的聚苯乙烯(碳酸钙)/聚乙烯为交替叠加的16层薄膜,通过剥离法分理出聚苯乙烯(碳酸钙)的薄膜,膜的完整性很高,厚度均匀,表面平整无划痕,实验加工原理如图1所示。
(3)荧光光谱法检测多孔及无孔聚苯乙烯薄膜对芘的吸附性能。
本发明提出由盐酸溶液刻蚀法制备聚苯乙烯多孔薄膜,具体实验步骤如下:
(3.1) 配置浓度为130ppb的芘的水溶液1000mL两份;
(3.2) 称取0.5-2g多孔及无孔聚苯乙烯薄膜分别浸入上述两份芘的水溶液;
(3.3)静置12h,每隔4-60 min取出少许上清液进行荧光光谱扫描,得到横坐标为时间的荧光光谱图;
(3.4)将上述扫描所得的荧光强度在标准曲线中转换为芘的浓度,绘制吸附动力学曲线;
图7为多孔聚苯乙烯薄膜(a)和无孔聚苯乙烯薄膜(b)的荧光光谱图,图中显示了加入多孔聚苯乙烯膜和无孔聚苯乙烯薄膜后芘的荧光强度的下降趋势,我们可以清楚地看到它们之间的异同。它们的荧光光谱均随时间而下降,这表明它们都能吸附水溶液中的芘。另一方面,多孔聚苯乙烯的下降趋势比无孔聚苯乙烯更快更明显,这表明吸附性能更好。
多孔聚苯乙烯薄膜(a)和无孔聚苯乙烯薄膜(b)吸附的完成只需要7h,所以它们的吸附平衡时间为7h。相对于无孔聚苯乙烯薄膜,多孔聚苯乙烯吸附速度更快,且荧光强度随时间下降的更多,因为多环芳烃和多孔聚苯乙烯的苯环结构,所以根据相似相容原理,多环芳烃是更容易通过多孔聚苯乙烯吸附。此外,多孔聚苯乙烯具有稳定的三维多孔结构,赋予了它巨大的表面积,所以多孔聚苯乙烯和水的接触面积远大于无孔材料,使芘溶液在多孔聚苯乙烯膜中更容易传播,这有助于多环芳烃的吸附。
图8是多孔聚苯乙烯薄膜(a)和无孔聚苯乙烯薄膜(b)对芘的吸附动力学,在前2h吸附量分别占各种吸附总量的50%和42%。两个h后,吸附速率变慢,随后的2-7h,吸附量分别占各种吸附总量的20%和41%。7h后,吸附率趋于平缓,达到吸附平衡。多孔聚苯乙烯薄膜吸附后的最低残留浓度为19%,无孔聚苯乙烯薄膜吸附后的最低残留浓度为86%,在质量、吸附时间等各项条件一致的情况下,多孔材料的吸附残留量远低于无孔材料,再次证明多孔结构对于吸附性能的积极影响。
实施例3
(1)以亚微米级碳酸钙(0.1μm)为模板制备聚丙烯-碳酸钙复合材料,作为母料。
所用原料的配比如下:
聚丙烯树脂                                        100份,以质量数计
碳酸钙颗粒(0.1μm电子级)                30-50份,以质量数计
分散剂                                               1-5份,以质量数计
(1.1)将1-5份分散剂溶在乙醇溶液中,备用;
(1.2)将10-30份碳酸钙颗粒放入高速搅拌机,升温至70-80℃,逐滴滴入上述分散剂溶液,低速搅拌10-20min,然后高速搅拌10-20min;
(1.3)在上述原料中加入100份聚丙烯树脂,升温至100-120℃,低速搅拌20-30min,然后高速搅拌20-30min;
(1.4)将如上述方法制备的聚丙烯-碳酸钙母料放入造粒机造粒,进料口温度为130-150℃,出料口温度为200-220℃。
(2)用微层共挤出方法制备聚丙烯(碳酸钙)/聚乙烯交替多层复合薄膜,通过进行层间剥离,分离出聚丙烯(碳酸钙)膜。
交替层状结构的薄膜的制备采用实验室自行制造的微纳叠层共挤出成型设备。两台挤出机A、B分别加入聚乙烯和聚丙烯,对于聚乙烯,四段进料口温度依次为120℃、150 ℃、180℃和220℃;对于聚丙烯,四段进料口温度依次为120℃、150℃、190 ℃和230 ℃。层倍增模具段温度为210-230℃,机头温度为190-210℃。
制备出聚丙烯(碳酸钙)/聚乙烯薄膜交替叠加的64层薄膜,厚度均匀可控,每层约为5 μm,聚丙烯(碳酸钙)/聚乙烯交替叠加的64层薄膜。
制备出的聚丙烯(碳酸钙)/聚乙烯为交替叠加的64层薄膜,通过剥离法分离出聚丙烯(碳酸钙)的薄膜,膜的完整性很高,厚度均匀,表面平整无划痕,实验加工原理如图1所示。聚丙烯膜中碳酸钙的刻蚀方法及多孔膜的表征方法与实施例1和实施例2类似。
实施例4
(1)以亚微米级碳酸钙(0.1μm)为模板制备聚偏氟乙烯-碳酸钙复合材料,作为母料。
所用原料的配比如下:
聚偏氟乙烯树脂                                        100份,以质量数计
碳酸钙颗粒(0.1μm电子级)                        30-50份,以质量数计
分散剂                                                    1-5份,以质量数计
(1.1)将1-5份分散剂溶在乙醇溶液中,备用;
(1.2)将10-30份碳酸钙颗粒放入高速搅拌机,升温至70-80℃,逐滴滴入上述分散剂溶液,低速搅拌10-20min,然后高速搅拌10-20min;
(1.3)在上述原料中加入100份聚偏氟乙烯树脂,升温至100-120℃,低速搅拌20-30min,然后高速搅拌20-30min;
(1.4)将如上述方法制备的聚偏氟乙烯-碳酸钙母料放入造粒机造粒,进料口温度为130-150℃,出料口温度为200-220℃。
(2)用微层共挤出方法制备聚偏氟乙烯(碳酸钙)/聚乙烯交替多层复合薄膜,通过进行层间剥离,分离出聚偏氟乙烯(碳酸钙)膜。
交替层状结构的薄膜的制备采用实验室自行制造的微纳叠层共挤出成型设备。两台挤出机A、B分别加入聚乙烯和聚偏氟乙烯,对于聚乙烯,四段进料口温度依次为120℃、150℃、180℃和220℃;对于聚偏氟乙烯,四段进料口温度依次为130℃、160℃、190℃和230 ℃。层倍增模具段温度为210-230℃,机头温度为190-210℃。
制备出聚偏氟乙烯(碳酸钙)/聚乙烯薄膜交替叠加的32层薄膜,厚度均匀可控,每层约为10μm。
制备出的聚偏氟乙烯(碳酸钙)/聚乙烯为交替叠加的32层薄膜,通过剥离法分理出聚偏氟乙烯(碳酸钙)的薄膜,膜的完整性很高,厚度均匀,表面平整无划痕,实验加工原理如图1所示。聚偏氟乙烯中碳酸钙的刻蚀方法及多孔膜的表征方法与实施例1和实施例2类似。

Claims (10)

1.一种结构可控的多孔乙烯基树脂薄膜,其特征在于首先以碳酸钙颗粒为模板制备乙烯基树脂/碳酸钙母料,然后利用微纳叠层共挤出成型设备制备含碳酸钙的乙烯基树脂和分隔树脂的具有交替层状结构的薄膜,通过层间分离、酸处理过程得到孔结构及膜厚度均匀可控的多孔乙烯基树脂薄膜,其原料组成包括:
乙烯基树脂                                        100份,以质量数计
碳酸钙颗粒                                        10-50份,以质量数计
分散剂                                            1-5份,以质量数计。
2.根据权利要求1所述的结构可控的多孔乙烯基树脂薄膜,其特征在于所述的乙烯基树脂为重复单元中含乙烯结构的聚合物。
3.根据权利要求1所述的结构可控的多孔乙烯基树脂薄膜,其特征在于所述碳酸钙颗粒为亚微米级,粒径为0.1-1 μm。
4.根据权利要求1所述的结构可控的多孔乙烯基树脂薄膜,其特征在于所述分散剂为钛酸酯偶联剂TMC-101。
5.根据权利要求1所述的结构可控的多孔乙烯基树脂薄膜,其特征在于所述的分隔树脂是与苯乙烯基树脂不相容的热塑性树脂,。
6.一种如权利要求1所述的结构可控的多孔乙烯基树脂薄膜的制备方法,其特征在于具体步骤如下:
(1)乙烯基树脂/碳酸钙母料的制备
(1.1)将1-5份分散剂溶在乙醇溶液中,备用;
(1.2)将10-50份碳酸钙微球放入高速搅拌机,升温至70-80 ℃,逐滴滴入上述分散剂溶液,低速搅拌10-20 min,然后高速搅拌10-20 min;
(1.3)在上述原料中加入100份乙烯基树脂,升温至100-120℃,低速搅拌20-30 min后,高速搅拌20-30 min;
(1.4)将步骤(1.3)制备的乙烯基树脂和碳酸钙混合料放入造粒机造粒,进料口温度为130-150℃,出料口温度为200-220℃;
(2)具有交替层状结构且厚度可控的乙烯基树脂/碳酸钙-分隔树脂薄膜的制备
采用微纳叠层共挤出成型设备,第一进料口加入步骤(1)得到的乙烯基树脂/碳酸钙母料,第二进料口加入分隔树脂,调节转速及温度,制备出乙烯基树脂/碳酸钙-分隔树脂薄膜交替叠加的4-2048层薄膜,厚度均匀可控,每层厚度为0.1 - 50μm;
(3)酸处理过程得到孔结构均匀可控的乙烯基树脂多孔薄膜
(3.1) 配置质量分数为10%-30%的酸溶液500 mL;
(3.2) 称取10-30 g步骤(2)得到的乙烯基树脂薄膜浸入上述酸溶液中;
(3.3)放入超声池超声24-96 h,恒温20-30 ℃;
(3.4)更换如步骤(3.1)所述的酸溶液,再次放入超声池超声处理24-96 h,恒温20-30 ℃;
(3.5)将刻蚀后的乙烯基树脂薄膜先后浸泡于去离子水和乙醇溶液中,各超声处理2 h;
(3.6)将上述乙烯基树脂薄膜取出,置于恒温烘箱中70 ℃下干燥24-72 h。
7.根据权利要求6所述的结构可控的聚合物多孔膜的制备方法,其特征在于制备出的乙烯基树脂/碳酸钙-分隔树脂交替叠加的4-2048层薄膜,通过剥离法或溶蚀法分离出乙烯基树脂的薄膜,薄膜的完整性很高,厚度均匀,表面平整无划痕。
8.根据权利要求7所述的结构可控的聚合物多孔膜的制备方法,其特征在于所述剥离法是指利用机械剥离法分离乙烯基树脂层和分隔树脂层。
9.根据权利要求7所述的结构可控的聚合物多孔膜的制备方法,其特征在于所述的溶蚀法是指利用两种树脂在同一溶剂中的溶解性的差异来分离乙烯基树脂层和分隔树脂层。
10.根据权利要求6所述的结构可控的聚合物多孔膜的制备方法,其特征在于步骤(3.1)所述的酸是一种或一种以上的强酸或中强酸的混合物,具体为盐酸、硫酸、硝酸、磷酸及其混合物,但不仅限于此。
CN201510083524.6A 2015-02-16 2015-02-16 一种结构可控的多孔乙烯基树脂薄膜及其制备方法 Expired - Fee Related CN104629151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510083524.6A CN104629151B (zh) 2015-02-16 2015-02-16 一种结构可控的多孔乙烯基树脂薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510083524.6A CN104629151B (zh) 2015-02-16 2015-02-16 一种结构可控的多孔乙烯基树脂薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN104629151A true CN104629151A (zh) 2015-05-20
CN104629151B CN104629151B (zh) 2017-01-18

Family

ID=53208418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510083524.6A Expired - Fee Related CN104629151B (zh) 2015-02-16 2015-02-16 一种结构可控的多孔乙烯基树脂薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN104629151B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489916A (zh) * 2015-11-26 2016-04-13 同济大学 一种锂离子电池用聚合物多孔薄膜及其制备方法和应用
CN106867017A (zh) * 2015-12-11 2017-06-20 东丽纤维研究所(中国)有限公司 一种孔径可控的微多孔膜及其制备方法
CN108311119A (zh) * 2018-01-10 2018-07-24 同济大学 可吸附多环芳烃的苯乙烯基树脂微纳米纤维毡及其制备方法
CN110176421A (zh) * 2018-11-07 2019-08-27 北京市塑料研究所 一种疏水快干型硅片承载器及其制备方法
CN111533942A (zh) * 2020-05-15 2020-08-14 浙江清华柔性电子技术研究院 氟树脂海绵及其制备方法
CN112659694A (zh) * 2020-12-21 2021-04-16 浙江清华柔性电子技术研究院 柔性致动器及其制作方法
CN115232418A (zh) * 2022-06-27 2022-10-25 上海交通大学 一种酸洗颗粒制备多孔辐射制冷涂层的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735474A (zh) * 2009-12-23 2010-06-16 中国石油天然气股份有限公司 一种亲水性聚乙烯微孔膜及其制备方法
CN102501504A (zh) * 2011-10-20 2012-06-20 四川大学 低密度高分子基隔声降噪材料及其制备方法
CN103333394A (zh) * 2013-07-15 2013-10-02 四川大学 一种可设计聚合物基功能膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735474A (zh) * 2009-12-23 2010-06-16 中国石油天然气股份有限公司 一种亲水性聚乙烯微孔膜及其制备方法
CN102501504A (zh) * 2011-10-20 2012-06-20 四川大学 低密度高分子基隔声降噪材料及其制备方法
CN103333394A (zh) * 2013-07-15 2013-10-02 四川大学 一种可设计聚合物基功能膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
薛萌萌等: "模板浸出法制备多孔聚苯乙烯膜的研究", 《天津工业大学学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489916A (zh) * 2015-11-26 2016-04-13 同济大学 一种锂离子电池用聚合物多孔薄膜及其制备方法和应用
CN105489916B (zh) * 2015-11-26 2018-07-27 同济大学 一种锂离子电池用聚合物多孔薄膜及其制备方法和应用
CN106867017A (zh) * 2015-12-11 2017-06-20 东丽纤维研究所(中国)有限公司 一种孔径可控的微多孔膜及其制备方法
CN106867017B (zh) * 2015-12-11 2021-02-19 东丽纤维研究所(中国)有限公司 一种孔径可控的微多孔膜及其制备方法
CN108311119A (zh) * 2018-01-10 2018-07-24 同济大学 可吸附多环芳烃的苯乙烯基树脂微纳米纤维毡及其制备方法
CN108311119B (zh) * 2018-01-10 2020-10-27 同济大学 可吸附多环芳烃的苯乙烯基树脂微纳米纤维毡及其制备方法
CN110176421A (zh) * 2018-11-07 2019-08-27 北京市塑料研究所 一种疏水快干型硅片承载器及其制备方法
CN110176421B (zh) * 2018-11-07 2021-07-02 北京市塑料研究所 一种疏水快干型硅片承载器及其制备方法
CN111533942A (zh) * 2020-05-15 2020-08-14 浙江清华柔性电子技术研究院 氟树脂海绵及其制备方法
CN112659694A (zh) * 2020-12-21 2021-04-16 浙江清华柔性电子技术研究院 柔性致动器及其制作方法
CN115232418A (zh) * 2022-06-27 2022-10-25 上海交通大学 一种酸洗颗粒制备多孔辐射制冷涂层的方法

Also Published As

Publication number Publication date
CN104629151B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104629151A (zh) 一种结构可控的多孔乙烯基树脂薄膜及其制备方法
Nunes et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes
Wang et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration
Song et al. Intrinsic nanoscale structure of thin film composite polyamide membranes: Connectivity, defects, and structure–property correlation
Chen et al. A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications
Lim et al. Polymer-based membranes for solvent-resistant nanofiltration: A review
Liao et al. Electrospun superhydrophobic membranes with unique structures for membrane distillation
US9233518B2 (en) Hybrid porous structure, method of preparing hybrid porous structure, separation membrane including hybrid porous structure, and water treatment device including membrane
US8695811B2 (en) Hybrid porous structured material, membrane including the same, and method of preparing hybrid porous structure material
Mirqasemi et al. Zeolitic imidazolate framework membranes for gas and water purification
Guo et al. Enhanced ammonia recovery from wastewater by Nafion membrane with highly porous honeycomb nanostructure and its mechanism in membrane distillation
Song et al. Optimization of morphology and perf ormance of PVDF hollow fiber for direct contact membrane distillation using experimental design
Stucki et al. Porous polymer membranes by hard templating–a review
Moon et al. Can self-assembly address the permeability/selectivity trade-offs in polymer membranes?
CN103394297B (zh) 一种亲水性聚四氟乙烯中空纤维膜的制备方法
Xu et al. Facile ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency separation of water‐in‐oil emulsions
WO2013077418A1 (ja) ガス分離膜、その製造方法、それを用いたガス分離膜モジュール
Majumder et al. 1.14-Carbon nanotube membranes: A new frontier in membrane science
CN101195082A (zh) 一种改性聚氯乙烯中空纤维微孔膜及其制备方法
CN102836644A (zh) 浸没沉淀相转化/界面交联同步制备中空纤维复合纳滤膜的方法
US20190022595A1 (en) A method of forming a thin film through-hole membrane
Li et al. Vapor‐phase polymerization of high‐performance thin‐film composite membranes for nanofiltration
Sun et al. Novel thin-film composite pervaporation membrane with controllable crosslinking degree for enhanced water/alcohol separation performance
CN105482139A (zh) 一种具有均匀孔径的聚苯乙烯多孔薄膜材料的制备方法
Wang et al. A review of nano-confined composite membranes fabricated inside the porous support

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118

CF01 Termination of patent right due to non-payment of annual fee