CN104592454A - 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法 - Google Patents

一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法 Download PDF

Info

Publication number
CN104592454A
CN104592454A CN201410839947.1A CN201410839947A CN104592454A CN 104592454 A CN104592454 A CN 104592454A CN 201410839947 A CN201410839947 A CN 201410839947A CN 104592454 A CN104592454 A CN 104592454A
Authority
CN
China
Prior art keywords
styrene
proton exchange
residue
poly
phosphonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410839947.1A
Other languages
English (en)
Inventor
徐虎林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410839947.1A priority Critical patent/CN104592454A/zh
Priority to US15/033,829 priority patent/US9951170B2/en
Priority to PCT/CN2015/074660 priority patent/WO2016106979A1/zh
Publication of CN104592454A publication Critical patent/CN104592454A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/025Polyphosphazenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2268Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds, and by reactions not involving this type of bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/26Use as polymer for film forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2385/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers
    • C08J2385/02Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法,是将含有溴代聚磷腈的大分子引发剂与苯乙烯、4-乙酰氧基苯乙烯的原子转移自由基反应得到接枝共聚物,然后共聚物用水合肼肼解得到含有羟基的共聚物,最后用1,4-丁磺酸内酯反应得到磺化的共聚物。在甲基磺酸作用下用2,6-二(羟甲基)-4-甲基苯酚(BHMP)做交联剂与聚合物发生交联反应,得到交联的质子交换膜。这类交联的接枝共聚膜质子传导率较高,阻醇性较低,成本较低,其作为质子交换膜材料在燃料电池的应用方面具有理想效果。

Description

一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法
技术领域
本发明涉及高分子化学,材料化学领域,具体是涉及到一类新的聚磷腈-接枝-磺化聚苯乙烯质子交换膜材料及其质子交换膜的制备方法。
背景技术
质子交换膜在燃料电池中起着关键的作用,它隔离氧化剂和燃料,提供质子传输通道。目前商业化的质子交换膜是以杜邦公司的Nafion为代表的全氟磺酸膜。其具有较高的质子传导率,比较好的化学稳定性和抗氧化性。然而,全氟磺酸膜的缺陷如低阻醇性、不耐高温和高成本,限制了其作为质子交换膜的广泛商业化应用。
过去几年,人们一直在开发全氟磺酸的替代材料用于制备质子交换膜。它们包括许多酸性芳基碳氢聚合物如磺化的聚芳基醚酮、磺化的聚酰亚胺和磺化的聚芳基醚砜质子交换膜材料。这些膜材料通常具有高温稳定性、低燃料渗透率和低成本。然而,这些磺化的芳香类聚合物膜由于其芳基磺酸的低酸度,质子传导率通常较低。一种提高质子交换膜性能的方法是设计聚合物材料的结构组成,使其具有明细的离子传输通道而实现高效的质子传导。基于上述背景,本发明设计并制备了新型的具有聚磷腈接枝共聚苯乙烯骨架和柔性脂肪磺酸基分支侧链的共聚物材料,并对共聚物进行交联制得具有不同质子交换容量(IECs)的质子交联膜。
发明内容
本发明的目的在于提供一种质子传导率较高、甲醇渗透性较低、成本较低的聚磷腈类质子交换膜材料及其膜的制备方法。并对所制备的质子交换膜的质子传导率、阻醇性、热稳定性、抗氧化性、溶胀度和吸水率等进行实验测定,证明了本发明的材料及其作为质子交换膜在燃料电池的应用方面具有潜在条件。
本发明的第一个方面提供了如下结构式的磺化聚磷腈聚苯乙烯接枝共聚物材料的结构。
其中,R1为-OCH3或-F;R2为Na或H;n为磷腈残基单元的数量即聚磷腈链的长度;x为苯乙烯残基单元的数量,其范围为0-100;y为对-(4-磺酸丁氧)基苯乙烯残基单元的数量,其范围为1-100;m为苯乙烯残基和对-(4-磺酸丁氧)基苯乙烯残基组合为单元的数量,其范围为1-100;r表示苯乙烯残基和对-(4-磺酸丁氧)基苯乙烯残基的共聚物为无规共聚物。
本发明的第二个方面,提供了具有上述结构的磺化聚磷腈聚苯乙烯接枝共聚物材料的制备方法,包括步骤:
(1)将聚二氯磷腈(a)溶于1,4-二氧六环,加入对甲氧基苯酚钠盐或对氟苯酚钠盐,加热回流24小时进行反应,然后再加入对甲基苯酚钠盐继续进行反应至取代反应完成,由此得到产物(b)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈。反应式中,R为-OCH3或-F;n为磷腈残基单元的数量即聚磷腈链的长度。
(2)以四氯化碳为溶剂,以过氧化苯甲酰(BPO)为引发剂,将上述得到的化合物b与N-溴代琥珀酰亚胺(NBS)加热回流进行溴化反应,得到化合物(c)即溴代聚磷腈。反应式中,R为-OCH3或-F;n为磷腈残基单元的数量即聚磷腈链的长度。
(3)以上述得到的化合物c、苯乙烯和4-乙酰氧基苯乙烯为原料,以CuBr及其相应配体2,2-联吡啶为催化剂,在甲苯或1,4-二氧六环溶剂中回流、进行三组份的原子转移自由基聚合反应,得到苯乙烯残基单元数量(x)和4-乙酰氧基苯乙烯残基单元数量(y)比例不同的接枝共聚化合物(d)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-乙酰氧基)苯乙烯](M-PSx-PASy)或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-乙酰氧基)苯乙烯](F-PSx-PASy)。最后所得产物的苯乙烯和4-乙酰氧基苯乙烯的最终摩尔比是从1H NMR中分析得出。
(4)将上述得到的化合物d和水合肼在四氢呋喃溶剂中进行反应,得到含酚羟基的高分子化合物(e)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-羟基)苯乙烯](M-PSx-PHSy)或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-羟基)苯乙烯](F-PSx-PHSy)。
(5)将上述得到的化合物e和1,4-丁磺酸内酯在二甲基亚砜(DMSO)溶剂中进行反应,得到的化合物为权利要求书中的聚磷腈类质子交换膜材料(f)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)x-共聚-[4-(4-磺酸丁氧基)苯乙烯]y}(M-PSx-PSBOSy)或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)x-共聚-[4-(4-磺酸丁氧基)苯乙烯]y}(F-PSx-PSBOSy)。
其中,R1、R2、n、x、y、m、r的定义如上中所述。
本发明的第三个方面,提供了一种磺化聚磷腈聚苯乙烯接枝共聚物质子交换膜的制备方法。将上述磺化聚磷腈聚苯乙烯接枝共聚物材料在交联试剂如2,6-二(羟甲基)-4-甲基苯酚(BHMP)和甲磺酸存在的条件下进行交联反应。然后通过溶液浇铸等膜化方法制备得到磺化聚磷腈共聚物质子交换膜。该膜具有良好的热稳定性和抗氧化性,良好的质子传导性,甲醇渗透性远低于Nafion117膜。
本发明的优点在于:
设计和制备了含有脂肪磺酸基分支侧链的聚磷腈接枝聚苯乙烯共聚物系列材料M-PSx-PSBOSy和F-PSx-PSBOSy,并对其交联得到质子交换膜。膜的质子传导率大都高于Nafion。在湿度为100%,80℃的条件下质子传导率范围分别为,M-PSx-PSBOSy:0.184-0.266S/cm;F-PSx-PSBOSy:0.147-0.284S/cm。膜的甲醇渗透系数范围为1.60-10.4×10-7cm2/s,低于Nafion 117。芬顿实验得出质子交换膜具有较高的抗氧化能力。以上优点说明本发明的磺化聚磷腈接枝聚苯乙烯共聚物材料及由此制备的质子交换膜具有良好的质子导电性、阻醇性和抗氧化性,这些性质使其具备用于制造燃料电池质子交换膜的用途。
附图说明
1、图1a和b分别是本申请的聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈](PMMPP)和聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[(4-乙酰氧基)苯乙烯]17}(M-PS10-PAS17)的核磁共振氢谱。
2、图2a和图2b分别为本申请的聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[(4-羟基)苯乙烯]17}(M-PS10-PHS17)和聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[4-(4-磺酸丁氧基)苯乙烯]17}(M-PS10-PSBOS17)的核磁共振氢谱。
3、图3为本申请的交联的聚磷腈类质子交换膜的红外光谱。其中图中的(a)-(h)分别为:M-PS10-PSBOS11;M-PS10-PSBOS17;M-PS10-PSBOS26;M-PS8-PSBOS30;M-PSBOS40;F-PS12-PSBOS11;F-PS12-PSBOS17;F-PSBOS26
4、图4为本申请的交联的聚磷腈类质子交换膜的热分析曲线。
5、图5为本申请的交联的聚磷腈类质子交换膜的水合数(λ)随质子交换容量(IEC)的变化曲线。
6、图6为本申请的交联的聚磷腈类质子交换膜的质子传导率随质子交换容量(IEC)的变化。
7、图7为本申请的交联的聚磷腈类质子交换膜的质子传导率随着温度的变化。
8、图8为本申请的交联的聚磷腈类质子交换膜的相对质子传导率和相对甲醇渗透率的平衡图。
9、图9a和9b分别为本申请的聚[(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[4-(4-磺酸丁氧基)苯乙烯]26(F-PSBOS26)和聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)8-共聚-[4-(4-磺酸丁氧基)苯乙烯]30}(M-PS8-PSBOS30)聚磷腈类质子交换膜透射电镜图。
具体实施方式
以下将用实施例进一步说明本发明。这些实施例仅用于举例说明本发明,但不可以任何方式限制本发明。实施例中的所有参数及说明,除另外说明外,都是以质量为依据。实施例中未注明具体条件的试验方法,通常按照常规条件,或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。
为使本发明的上述目的、优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[4-(4-磺酸丁氧基)苯乙烯]17}(M-PS10-PSBOS17)。
六氯环三磷腈在250℃条件下开环聚合得到聚二氯磷腈(PDCP)。将聚二氯磷腈(5g,43mmol)溶解在80mL 1,4-二氧六环中;将4-甲氧基苯酚(5.33g,43mmol)溶解在60mL 1,4-二氧六环中,加入氢化钠(1.72g,43mmol)和正丁基溴化铵(0.33g,1mmol),得到的反应物过夜回流形成钠盐。将得到的盐溶液逐滴加入搅拌的聚二氯磷腈溶液中,反应物在氩气保护下加热回流24小时。然后逐滴加入含有4-甲基苯酚钠盐的1,4-二氧六环溶液。4-甲基苯酚钠盐是通过将4-甲基苯酚(9.29g,86mmol)溶解在1,4-二氧六环中,加入氢化钠(3.44g,86mmol)后加热回流得到的。反应混合物在温度115℃条件下加热回流36小时。反应液加水析出沉淀,沉淀真空干燥24小时,所得产物溶解在四氢呋喃中,加水沉淀,最后将产物溶解在四氢呋喃加入正己烷沉淀,得到白色纤维状高分子化合物聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈](PMMPP)。产率为50%。得到的高分子化合物的核磁共振氢谱如附图1a。1H MNR(400MHz,CDCl3;ppm):δ:6.6-6.8(m,-OC6H4CH3),6.28(m,-OC6H4OCH3),3.48(s,-OCH3),2.08(s,CH3)。
将聚合物PMMPP(1.0g,3.6mmol),N-溴代琥珀酰亚胺(0.128g,0.72mmol),过氧化苯甲酰(0.017g,0.072mmol)和四氯化碳(100mL)加入200mL的圆底烧瓶中,在氮气保护下在80℃回流3小时。然后,将混合物冷却并过滤。将滤液在正己烷中沉淀,得到产物,然后在真空下50℃干燥24小时。得到大分子引发剂溴代聚磷腈PMMPP-Br。产率90%。1H MNR(400MHz,CDCl3;ppm):δ:6.6-6.8(m,-OC6H4CH3),6.28(m,-OC6H4OCH3),4.2(s,-CH2Br),3.48(s,-OCH3),2.08(s,CH3)。
大分子引发剂PMMPP-Br(0.5g,0.26mmol),苯乙烯(1.083g,10.4mmol),4-乙酰氧基苯乙烯(1.68g,10.4mmol),2,2-联吡啶(0.24g,1.56mmol)和溴化铜(0.52mmol)加入到装有活塞和磁搅拌棒的干燥的反应管中。聚合反应在115℃下反应24小时。然后,将所得的混合物通过柱层析纯化,真空干燥。得到接枝共聚物聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[(4-乙酰氧基)苯乙烯]17}(M-PS10-PAS17)。得到的化合物的核磁共振氢谱如附图1b。1H MNR(400MHz,CDCl3;ppm):δ:7.08-7.26(m,-OC6H4),6.6-6.8(m,-OC6H4CH3),6.28(m,-OC6H4OCH3),3.48(s,-OCH3),2.26(s,-OOCCH3),2.08(s,CH3),1.2-1.9(m,CH2,CH)。
将聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[(4-乙酰氧基)苯乙烯]17}(M-PS10-PAS17)(1.0g,3.6mmol)溶解在四氢呋喃中,然后加入2.0mL水合肼。将反应混合物在氮气下室温搅拌5小时。反应完成后将得到的混合物在水中沉淀,然后在60℃下真空干燥24小时,得到产物聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[(4-羟基)苯乙烯]17}(M-PS10-PHS17)。产率:80%。得到的化合物的核磁共振氢谱如附图2a。1H MNR(400MHz,DMSO-d6,ppm):δ:9.04(s,-OH),7.08-7.26(m,-OC6H4),6.28-6.8(m,-OC6H4CH3,-OC6H4OCH3),3.60(s,-OCH3),2.02(s,CH3),1.2-1.9(m,CH2,CH)。
将聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[(4-羟基)苯乙烯]17}(M-PS10-PHS17)(0.5g,1.8mmol)溶于DMSO溶液中,然后加入NaH(0.052g,2.16mmol)。将反应混合物在40℃条件下搅拌24小时,然后将1,4-丁磺酸内酯(0.25g,0.18mL)加入到反应体系中。将所得混合物在100℃搅拌24小时,然后倒入异丙醇中沉淀。将分离的聚合物在80℃真空中干燥10小时,得到产物聚[(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)10-共聚-[4-(4-磺酸丁氧基)苯乙烯]17}(M-PS10-PSBOS17)。产率:90%。得到的化合物的核磁共振氢谱如附图2b。
实施例2聚[(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)x-共聚-[4-(4-磺酸丁氧基)苯乙烯]y}(F-PSx-PSBOSy)。
用4-氟苯酚钠代替实施例1中的4-甲氧基苯酚钠,按照实施例1中所述方法制备。
表1是实施例1和实施例2得到的两个系列的接枝共聚高分子化合物的分子量,GPC的结果(表1)表明得到了高分子量的聚合物。
表1 M-PSx-PASy和F-PSx-PASy接枝共聚物的组成及分子量
a.苯乙烯单元在接枝共聚物中的平均数量,由核磁共振氢谱计算得出。
b.凝胶渗透色谱法(GPC)由聚苯乙烯作为标准。
实施例3将实施例1和实施例2中得到的磺化聚磷腈接枝共聚物进行了交联反应,制得磺化聚磷腈共聚物质子交换膜。具体制备过程如下:含有脂肪磺酸基分支侧链的聚磷腈类接枝共聚物和适量交联试剂溶解在DMSO中,形成10w/v%的溶液。将溶液浇铸在聚四氟乙烯模具上,在120℃下干燥1小时,然后70℃下干燥24小时。将所得的膜浸入2mol/L的稀硫酸溶液中浸泡48小时,然后用去离子水洗涤,得到H+形式的膜。如附图3为实施例3中所得到的膜的FT-IR谱。由图3可得出两个特征吸收在大约1238和1040cm-1分别为磺酸基的对称和不对称伸缩振动。
实施例4对实施例3得到的磺化聚磷腈共聚物质子交换膜进行了热分析测试。
聚合物的热失重分析是利用TGA-Q500热分析仪测试,测量条件为:在氮气氛围下,以10℃/min升温,测试范围:40℃-700℃。如附图4为膜的热重曲线。在用TGA表征之前,所有的样品在100℃下加热20分钟以除去样品中残留的水分。如附图4所示,所有的样品出现了三个热失重区间。第一个热失重区间在150-250℃是磺酸基团分解的温度,在一系列膜中磺酸基团的分解温度随苯乙烯含量的增加,表明随着苯乙烯含量的增加,膜的热稳定性逐渐增大。第二和第三步的热失重温度分别始于约250℃和350℃,分别归因于聚苯乙烯链段和聚磷腈骨架的分解温度。
实施例5对实施例3得到的磺化聚磷腈共聚物质子交换膜进行了抗氧化性实验。
抗氧化能力测试:将膜样品在80℃温度下浸泡在芬顿试剂中(芬顿试剂是含有2ppm FeSO4的3%H2O2溶液)1小时,然后观测该样品在浸泡后的重量变化和理化性质的变化。抗氧化测试的结果于表2中,分析数据表明,对比其它的磺化聚合物,本发明所得到的磺化聚磷腈共聚物质子交换膜表现出更好的抗氧化稳定性。
实施例6测定了实施例3得到的磺化聚磷腈共聚物质子交换膜的质子交换容量(IEC),吸水率和溶胀度。
质子交换容量(IEC)的测定方法:质子交换容量(IEC)是通过中和滴定法测定。以质子形式存在的质子交换膜在室温下在50mL 2mol/L的NaCl溶液中浸泡24小时,使磺酸基团上的H+与氯化钠中的Na+进行充分交换,然后再在溶液中以酚酞作为PH指示剂用0.02mol/L的NaOH溶液对所得溶液进行滴定。IEC是从使用下式的滴定数据来计算:
IEC = C NaOH × V NaOH W
CNaOH是NaOH溶液的浓度,VNaOH是消耗的NaOH溶液的体积,W是膜样品的质量。
吸水率(WU)的测定方法:将质子交换膜在室温下在去离子水中浸泡24小时以上以保证膜充分吸水,然后将膜取出,用滤纸将表面的水擦干净,然后迅速称量膜的重量Wwet;然后将膜烘干,之后迅速称量此时膜的重量Wdry;计算膜的吸水率的计算公式如下:
Water uptake ( % ) = W wet - W dry W dry × 100 %
膜的溶胀度(SW)的测定方法:膜在室温下在去离子水中浸泡24小时以上以保证膜充分溶胀,测量其长度Lwet,然后将该膜干燥,测量其长度Ldry;溶胀度由膜吸水后的长度变化确定,其计算公式如下:
SW ( % ) = L wet - L dry L dry × 100 %
水合数是指每个离子交换位点对应的吸收的平均的水分子([H2O]/[SO3 -]),通常被称为λ值,计算公式如下:
λ = [ H 2 O ] [ SO 3 - ] = WU ( % ) × 10 18 × IEC ( mmol / g )
磺化聚磷腈共聚物质子交换膜的IEC值、吸水率、溶胀度和水合数结果见表2。
由表2中可以看出,所有质子交换膜的IEC值的范围为1.04-2.30mequiv/g。质子交换膜的IEC值与吸水率和溶胀度有紧密的关系。IEC值较高的的膜通常具有较高的吸水率。交联的聚磷腈类接枝共聚物膜M-PSX-PSBOSy和F-PSX-PSBOSy的水合数([H2O]/[SO3 -]或λ)的值随IEC值的增大而增大。附图5表示的是磺化聚磷腈共聚物质子交换膜的水合数(λ)随质子交换容量(IEC)的变化曲线。相比Nafion117,交联的聚磷腈接枝共聚物膜具有较少的水吸收特性。
表2 交联的聚磷腈类质子交换膜和Nafion膜的质子交换容量(IEC),吸水率(WU),溶胀度(SW),水合数(λ)
a通过滴定的方法测得。
b通过在80℃条件下把膜放入芬顿试剂(3%H2O2,2ppm FeSO4)中1小时后测得剩余的质量分数。
实施例7对实施例3得到的磺化聚磷腈共聚物质子交换膜的质子传导率测定实验。
质子传导率的测试是用CHI 660D电化学工作站(100Hz~105Hz)来完成的。计算公式如下:
σ=l/RS
其中l为电极间的距离,单位为(cm);R为利用交流阻抗法所测得膜电阻,单位为(Ω);S为质子交换膜的横截面积,单位为(cm2);σ为质子传导率,单位为(S/cm)。
膜的质子传导率如表3所示。附图6为室温下磺化聚磷腈共聚物质子交换膜的质子传导率随实施例6中实验得出的膜的质子交换容量(IEC)的变化。由图6可看出在室温下磺化聚磷腈共聚物质子交换膜M-PSX-PSBOSy和F-PSX-PSBOSy的质子传导率随IEC的增大而增大,在IEC值为1.2~1.5mequiv/g范围内的膜质子传导率在大幅增加,这表明膜的IEC值对膜的质子传导率有很大的影响。当IEC值较高时,质子交换膜F-PSX-PSBOSy比M-PSX-PSBOSy具有更高的质子传导率。
表3 交联的聚磷腈类质子交换膜的质子传导率和甲醇渗透性
a选择性=质子传导率/甲醇渗透系数。
附图7为本实施例实验得到的磺化聚磷腈共聚物质子交换膜质子传导率随着温度的变化。由图7可看出所有膜的质子传导率随温度的升高而增加。当IEC的值大于1.32mequiv/g时本发明得到的磺化聚磷腈共聚物质子交换膜的质子传导率大于Nafion 117。
实施例8实施例3得到的磺化聚磷腈共聚物质子交换膜的阻醇性实验。
膜的甲醇渗透测试:膜的甲醇渗透池为自行设计的甲醇扩散池;该装置由两个储液槽A和B组成;其中A(VA=50mL)装满1mol/L的甲醇水溶液,B(VB=50mL)中装满去离子水,将膜垂直固定在两个储液槽中间,将两种溶液隔离开来,由于不同种类的流体会相互扩散,故A中的甲醇溶液会缓慢扩散至B中,然后每隔一段时间取B中的溶液利用气象色谱测量其甲醇含量,通过B的甲醇含量变化率来计算质子交换膜的甲醇渗透系数,其计算公式如下:
P = K × V B × h A × C A
其中P为甲醇渗透系数,单位为(cm2/s);K为B溶液中甲醇浓度随时间的变化率,通过气相色谱检测。VB为B溶液的体积,单位为(mL);A为扩散的有效面积,单位为(cm2);CA为A中甲醇浓度,单位为(mol/L);h为膜的厚度,单位为(cm)。
适用于甲醇燃料电池的质子交换膜不但要有较高的质子传导率,还要有较低的甲醇渗透系数。如表3所示,本发明得到的磺化聚磷腈共聚物质子交换膜的甲醇渗透系数在1.60×10-7~10.4×10-7cm2/s的范围内。本发明中得到的磺化聚磷腈共聚物质子交换膜的选择性都高于Nafion膜,选择性是质子传导率与甲醇渗透系数的比值,是通常用来评估甲醇燃料电池的膜性能的参数。附图8为本实施例中的相对质子传导率与相对甲醇渗透率的平衡图。如图8所示,所有的膜位于左上角区域,尤其是M-PS10-PSBOS26和M-PS8-PSBOS30这两个膜显示出最好的选择性,可以达到应用于甲醇燃料电池的质子交换膜的潜力。
实施例9实施例3得到的磺化聚磷腈共聚物质子交换膜的微观形貌分析。
透射电子显微镜(TEM)测试:为了测试膜的拓扑结构和离子团簇的大小,先将膜在硝酸铅水溶液中浸泡3天,然后将其嵌入环氧树脂中切片至70nm厚度,利用JEOL JEM-2010透射电镜进行观测。
膜的质子传导率与膜的形貌密切相关。由亲水区域形成的质子传导通道有利于质子的传输。图9a和图9b分别是F-PSBOS26和M-PS8-PSBOS30膜的透射电镜照片,由于膜样品在测试前用Pb(NO3)2溶液浸泡,聚合物中的氢质子被置换成Pb2+离子,故透射电镜图片中颜色较深的部分为亲水相,颜色较浅的部分为疏水相,我们可以通过两种颜色的分布情况来确定整个膜的亲水/疏水相分布。透射电镜图片表明,狭窄而相互连接的离子通道可以提供质子的迁移路径,这将有助于本发明的聚磷腈类质子交换膜的质子传导。
以上对本发明所提供的磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法及用途进行了详细介绍,本文中用具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;此外应理解,在阅读了本发明的上述讲述内容之后,本领域技术人员可以对本发明做各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (3)

1.一种磺化聚磷腈共聚物质子交换膜材料,其特征在于:是一种聚磷腈-接枝-磺化聚苯乙烯共聚物,即在聚磷腈侧链上接枝具有不同脂肪磺酸基含量的聚苯乙烯共聚物,结构式为
其中,R1为-OCH3或-F;R2为Na或H;n为磷腈残基单元的数量即聚磷腈链的长度;x为苯乙烯残基单元的数量,其范围为0-100;y为对-(4-磺酸丁氧)基苯乙烯残基单元的数量,其范围为1-100;m为苯乙烯残基和对-(4-磺酸丁氧)基苯乙烯残基组合为单元的数量,其范围为1-100;r表示苯乙烯残基和对-(4-磺酸丁氧)基苯乙烯残基的共聚物为无规共聚物。
2.一种磺化聚磷腈共聚物质子交换膜材料制备方法,其特征在于:
2.1首先制备聚磷腈大分子引物,然后通过原子转移自由基聚合反应,在聚磷腈侧链上接入苯乙烯与磺化苯乙烯的共聚物接枝链。
2.2制备方法通过如下步骤实现
2.2.1将聚二氯磷腈(a)溶于1,4-二氧六环,加入对甲氧基苯酚钠盐或对氟苯酚钠盐,加热回流24小时进行反应,然后再加入对甲基苯酚钠盐继续进行反应至取代反应完成,由此得到产物(b)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈。
反应式中,R为-OCH3或-F;n为磷腈残基单元的数量即聚磷腈链的长度。
2.2.2以四氯化碳为溶剂,以过氧化苯甲酰(BPO)为引发剂,将上述得到的化合物b与N-溴代琥珀酰亚胺(NBS)加热回流进行溴化反应,得到化合物(c)即溴代聚磷腈。反应式中,R为-OCH3或-F;n为磷腈残基单元的数量即聚磷腈链的长度。
2.2.3以上述得到的化合物c、苯乙烯和4-乙酰氧基苯乙烯为原料,以金属溴化物及其相应配体如联萘和2,2-联吡啶等为催化剂,在甲苯或1,4-二氧六环溶剂中回流、进行三组份的原子转移自由基聚合反应,得到苯乙烯残基单元数量(x)和4-乙酰氧基苯乙烯残基单元数量(y)比例不同的接枝共聚化合物(d)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-乙酰氧基)苯乙烯](M-PSx-PASy)或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-乙酰氧基)苯乙烯](F-PSx-PASy)。
其中,R为-OCH3或-F;n为磷腈残基单元的数量即聚磷腈链的长度;x为苯乙烯残基单元的数量,其范围为0-100;y为4-乙酰氧基苯乙烯残基单元的数量,其范围为1-100;m为苯乙烯残基和4-乙酰氧基苯乙烯残基组合为单元的数量,其范围为1-100;r表示苯乙烯残基和4-乙酰氧基苯乙烯残基的共聚物为无规共聚物。
2.2.4将上述得到的化合物d和水合肼在四氢呋喃溶剂中进行反应,得到酚含羟基的化合物(e)即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-羟基)苯乙烯]或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚[苯乙烯-共聚-(4-羟基)苯乙烯]。
产物e结构式中,R为-OCH3或-F;n为磷腈残基单元的数量即聚磷腈链的长度;x为苯乙烯残基单元的数量,其范围为0-100;y为4-羟基苯乙烯残基单元的数量,其范围为1-100;m为苯乙烯残基和4-羟基苯乙烯残基组合为单元的数量,其范围为1-100;r表示苯乙烯残基和4-羟基苯乙烯残基的共聚物为无规共聚物。
2.2.5将上述得到的化合物e和1,4-丁磺酸内酯在二甲基亚砜(DMSO)溶剂中进行反应,得到的化合物(f)为上述权利要求1中的磺化聚磷腈共聚物质子交换膜材料即聚(4-甲氧基苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)x-共聚-[4-(4-磺酸丁氧基)苯乙烯]y}(M-PSx-PSBOSy)或聚(4-氟苯氧基)(4-甲基苯氧基)磷腈-接枝-聚{(苯乙烯)x-共聚-[4-(4-磺酸丁氧基)苯乙烯]y}(F-PSx-PSBOSy)。
化合物f结构式中,R1为-OCH3或-F;R2为Na或H;n为磷腈残基单元的数量即聚磷腈链的长度;x为苯乙烯残基单元的数量,其范围为0-100;y为对-(4-磺酸丁氧)基苯乙烯残基单元的数量,其范围为1-100;m为苯乙烯残基和对-(4-磺酸丁氧)基苯乙烯残基组合为单元的数量,其范围为1-100;r表示苯乙烯残基和对-(4-磺酸丁氧)基苯乙烯残基的共聚物为无规共聚物。
3.一种磺化聚磷腈共聚物质子交换膜的制备方法,其特征在于:将上述权利要求1中的磺化聚磷腈共聚物质子交换膜材料即权利要求2中制备的化合物(f),在2,6-二(羟甲基)-4-甲基苯酚(BHMP)等交联剂和甲磺酸存在的条件下进行交联反应。然后通过溶液浇铸等膜化方法制备得到磺化聚磷腈共聚物质子交换膜。
CN201410839947.1A 2014-12-29 2014-12-29 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法 Pending CN104592454A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410839947.1A CN104592454A (zh) 2014-12-29 2014-12-29 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法
US15/033,829 US9951170B2 (en) 2014-12-29 2015-03-20 Sulfonated polyphosphazene copolymer proton exchange membrane material and method for preparing such membrane
PCT/CN2015/074660 WO2016106979A1 (zh) 2014-12-29 2015-03-20 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410839947.1A CN104592454A (zh) 2014-12-29 2014-12-29 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法

Publications (1)

Publication Number Publication Date
CN104592454A true CN104592454A (zh) 2015-05-06

Family

ID=53118541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410839947.1A Pending CN104592454A (zh) 2014-12-29 2014-12-29 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法

Country Status (3)

Country Link
US (1) US9951170B2 (zh)
CN (1) CN104592454A (zh)
WO (1) WO2016106979A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134115A (zh) * 2017-12-26 2018-06-08 成都新柯力化工科技有限公司 一种燃料电池用改性聚膦腈质子交换膜及制备方法
CN110898820A (zh) * 2019-12-10 2020-03-24 西南石油大学 一种油水分离用含氟超疏水多孔材料及其制备方法
CN111205465A (zh) * 2020-01-11 2020-05-29 山东理工大学 聚(二磷酸盐磷腈)新型高温质子导体的制备方法及应用
CN111205495A (zh) * 2020-01-11 2020-05-29 山东理工大学 掺杂聚(二磷酸盐磷腈)新型聚苯并咪唑类高温、低湿度质子交换膜的制备
CN112708157A (zh) * 2021-02-01 2021-04-27 安徽知凸凸科技服务有限公司 一种燃料电池用碱性阴离子交换膜及制备方法
CN113488688A (zh) * 2020-05-09 2021-10-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202007701D0 (en) * 2020-05-22 2020-07-08 Univ Manchester Antiviral polymers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796423A (zh) * 2004-12-21 2006-07-05 比亚迪股份有限公司 一种聚合物及含有该聚合物的质子交换膜
CN1951969A (zh) * 2005-10-21 2007-04-25 比亚迪股份有限公司 聚合物、含有该聚合物的质子膜以及它们的制备方法
CN1990511A (zh) * 2005-12-30 2007-07-04 三星Sdi株式会社 聚合物电解质膜、及使用其的燃料电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2954275B2 (ja) * 1990-05-10 1999-09-27 日本原子力研究所 アミノ酸を有する複合機能▲ろ▼過膜の製造方法
US6365294B1 (en) * 1999-04-30 2002-04-02 The Administrators Of The Tulane Educational Fund Sulfonated polyphosphazenes for proton-exchange membrane fuel cells
CN1295256C (zh) 2004-12-17 2007-01-17 华中科技大学 含全氟烷基磺酰亚胺侧链的高分子聚合物及其合成方法
US20100227247A1 (en) * 2008-10-07 2010-09-09 Peter Pintauro Nanocapillary networks and methods of forming same
JP5460651B2 (ja) * 2010-07-28 2014-04-02 ローム アンド ハース カンパニー クロマトグラフィー媒体性能を向上させるグラフト化方法
KR101344686B1 (ko) * 2011-03-18 2013-12-26 한국과학기술연구원 술폰화도가 상이한 고분자의 블렌드를 포함하는 연료전지 전해질막 및 이를 포함하는 막-전극 접합체 및 연료전지
WO2013147520A1 (ko) 2012-03-29 2013-10-03 코오롱인더스트리 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
CN103642235B (zh) * 2013-09-22 2016-03-30 上海大学 聚磷腈衍生物掺杂改性磺化聚苯硫醚质子交换膜材料及其制备方法
CN103626923B (zh) 2013-11-29 2016-01-13 内蒙古科技大学 一种改性聚偏氟乙烯一步接枝苯乙烯磺酸质子交换膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1796423A (zh) * 2004-12-21 2006-07-05 比亚迪股份有限公司 一种聚合物及含有该聚合物的质子交换膜
CN1951969A (zh) * 2005-10-21 2007-04-25 比亚迪股份有限公司 聚合物、含有该聚合物的质子膜以及它们的制备方法
CN1990511A (zh) * 2005-12-30 2007-07-04 三星Sdi株式会社 聚合物电解质膜、及使用其的燃料电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI SHENG ET AL.: "Polystyrenes containing flexible alkylsulfonated side chains as a proton exchange membrane for fuel cell application", 《POLYMER CHEMISTRY》 *
MIN-LAN HE ET AL.: "Synthesis and characterization of sulfonated polyphosphazene-graft-polystyrene copolymers for proton exchange membranes", 《CHINESE JOURNAL OF POLYMER SCIENCE》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134115A (zh) * 2017-12-26 2018-06-08 成都新柯力化工科技有限公司 一种燃料电池用改性聚膦腈质子交换膜及制备方法
CN108134115B (zh) * 2017-12-26 2020-04-07 成都新柯力化工科技有限公司 一种燃料电池用改性聚膦腈质子交换膜及制备方法
CN110898820A (zh) * 2019-12-10 2020-03-24 西南石油大学 一种油水分离用含氟超疏水多孔材料及其制备方法
CN111205465A (zh) * 2020-01-11 2020-05-29 山东理工大学 聚(二磷酸盐磷腈)新型高温质子导体的制备方法及应用
CN111205495A (zh) * 2020-01-11 2020-05-29 山东理工大学 掺杂聚(二磷酸盐磷腈)新型聚苯并咪唑类高温、低湿度质子交换膜的制备
CN111205495B (zh) * 2020-01-11 2022-07-26 山东理工大学 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法
CN113488688A (zh) * 2020-05-09 2021-10-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法
CN113488688B (zh) * 2020-05-09 2022-07-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法
CN112708157A (zh) * 2021-02-01 2021-04-27 安徽知凸凸科技服务有限公司 一种燃料电池用碱性阴离子交换膜及制备方法
CN112708157B (zh) * 2021-02-01 2023-09-01 安徽知凸凸科技服务有限公司 一种燃料电池用碱性阴离子交换膜及制备方法

Also Published As

Publication number Publication date
US9951170B2 (en) 2018-04-24
US20160340460A1 (en) 2016-11-24
WO2016106979A1 (zh) 2016-07-07

Similar Documents

Publication Publication Date Title
CN104592454A (zh) 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法
Zhou et al. Crosslinked, epoxy-based anion conductive membranes for alkaline membrane fuel cells
Lufrano et al. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells
Wootthikanokkhan et al. Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends
Wang et al. Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity
Tripathi et al. Organic-inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications
Katzfuß et al. The application of covalently cross-linked BrPPO as AEM in alkaline DMFC
Sangeetha Conductivity and solvent uptake of proton exchange membrane based on polystyrene (ethylene–butylene) polystyrene triblock polymer
Wang et al. Highly compatible acid–base blend membranes based on sulfonated poly (ether ether ketone) and poly (ether ether ketone-alt-benzimidazole) for fuel cells application
Gu et al. Synthesis and characteristics of sulfonated poly (phthalazinone ether sulfone ketone)(SPPESK) for direct methanol fuel cell (DMFC)
Won et al. High performance blend membranes based on sulfonated poly (arylene ether sulfone) and poly (p-benzimidazole) for PEMFC applications
Zhang et al. Preparation and properties of epoxy-based cross-linked sulfonated poly (arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications
Fu et al. Design of polyphosphazene-based graft copolystyrenes with alkylsulfonate branch chains for proton exchange membranes
Mohanty et al. Synthesis and characterization of novel fluorinated poly (arylene ether sulfone) s containing pendant sulfonic acid groups for proton exchange membrane materials
Zhu et al. Hybrid proton conducting membranes based on sulfonated cross-linked polysiloxane network for direct methanol fuel cell
Wang et al. Synthesis and characterization of a novel poly (arylene ether sulfone) containing pendent imidazole groups for high temperature proton exchange membranes
Liang et al. Sulfonated polyaryletherketone with pendant benzimidazole groups for proton exchange membranes
CN107417942B (zh) 丁基咪唑鎓类共聚物材料及制备方法
Katzfuß et al. Partially fluorinated sulfonated poly (arylene sulfone) s blended with polybenzimidazole
Tamura et al. Polymer electrolyte membranes based on polystyrenes with phosphonic acid via long alkyl side chains
Zhang et al. Synthesis and characterization of sulfonated poly (aryl ether sulfone) containing pendent quaternary ammonium groups for proton exchange membranes
Mandal et al. Sulfonated copolyimides containing trifluoromethyl and phosphine oxide moieties: synergistic effect towards proton exchange membrane properties
Chen et al. Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells
Li et al. Intermolecular ionic cross-linked sulfonated poly (ether ether ketone) membranes with excellent mechanical properties and selectivity for direct methanol fuel cells
Lee et al. Synthesis and proton conductivity of sulfonated, multi‐phenylated poly (arylene ether) s

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150506

WD01 Invention patent application deemed withdrawn after publication