CN111205495B - 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法 - Google Patents

掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法 Download PDF

Info

Publication number
CN111205495B
CN111205495B CN202010028566.0A CN202010028566A CN111205495B CN 111205495 B CN111205495 B CN 111205495B CN 202010028566 A CN202010028566 A CN 202010028566A CN 111205495 B CN111205495 B CN 111205495B
Authority
CN
China
Prior art keywords
poly
diphosphophosphazene
proton exchange
exchange membrane
polybenzimidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010028566.0A
Other languages
English (en)
Other versions
CN111205495A (zh
Inventor
李忠芳
王传刚
孙鹏
郭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202010028566.0A priority Critical patent/CN111205495B/zh
Publication of CN111205495A publication Critical patent/CN111205495A/zh
Application granted granted Critical
Publication of CN111205495B publication Critical patent/CN111205495B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/025Polyphosphazenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2385/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers
    • C08J2385/02Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2485/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers
    • C08J2485/02Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Derivatives of such polymers containing phosphorus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

本发明报道了一种不溶性的聚(二磷酸盐磷腈)(MPDPP)(其中金属离子M为:Zr4+、Ce4+,Fe3+、La3+或Y3+等)作为质子导体掺杂到聚苯并咪唑(PBI)(PBI可以选用带有吡啶基团的、吡嗪基团的、咪唑基团的等)中制备了高温低湿度下使用的质子交换膜的制备方法,其特征在于,首先通过三步反应制备不溶性的聚(二磷酸盐磷腈)(MPDPP),研究其工艺条件,得到产品的离子交换容量(IEC)及产率。用其作为质子导体掺杂到新型PBI中,通过交联制备复合膜,该复合膜用于高温低湿度下的质子交换膜。

Description

掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换 膜的制备方法
技术领域
本发明涉及一种高温低湿度燃料电池中质子交换膜的制备方法,可用于固体酸催化剂、催化膜分离反应装置,燃料电池质子交换膜、电解膜、渗透膜、传感器材料等领域。
技术背景:
随着环境污染及资源短缺问题加剧,燃料电池作为高效、环保、发电单元模块化、可靠性高、组装和维修都很方便、工作时没有噪音等优点成为人们的研究热点。质子交换膜燃料电池作为燃料电池的一种,质子交换膜作为质子交换膜燃料电池的核心部件,它的性能好坏直接影响着电池的性能好坏及寿命,因此对质子交换膜的研究就显得尤为重要。
为了实现质子交换膜燃料电池的稳定高效运转,质子交换膜必须满足高质子传导率,足够的机械强度、化学稳定性,低反应物渗透性及低成本等特性。研究发现,提高电池的操作温度不但可以提升电池的性能,而且可以改善其对氢气纯度的要求,对于直接甲醇燃料电池而言,电池温度的提高可以降低透醇的影响。因此,大家一致认为电池的操作温度应该在120~300℃,此时的相对湿度最好是低于50%。因此,高温、低湿度质子交换膜的研究成为重要的研究课题。由于聚苯并咪唑(PBI)耐温性能好,所以,PBI被认为最具开发潜力的一种。但是,本身属于碱性膜,本身并不导电,PBI膜需要掺杂质子导体使其具有一定的质子传导率。一般掺杂的质子导体为液态酸(磷酸),但此类质子导体会随着生成的水而流失,从而影响膜自身的使用寿命;而掺杂非水溶性无机固态酸虽然可以避免流失,但与PBI相容性较差,容易造成分相,从而影响膜的性能。因此对不溶性有机-无机复合质子导体的研究就显得尤为重要。
聚磷腈是一类磷、氮键交替排列形成的化合物,通过化学修饰的聚磷腈可以得到多种高分子材料。由于聚磷腈通过聚合反应合成功能更为广泛的有机-无机高分子材料,可用于催化材料、耐高温橡胶、高分子电解质、光导高分子材料、非线性光学材料、生物医用高分子材料、高分子液晶、分离膜、医药、军工等。例如专利文献CN 201610893595.7刘妍等公开了一种磺化聚磷腈/聚醚醚酮质子交换膜材料的制备方法,具有制备成本低、电导率高、阻醇性能、抗氧化性能和耐热性好等特点。
发明内容:
本发明是利用聚(二氯磷腈)高分子中P-Cl之间的强极性键,与亚磷酸酯反应得到聚(二磷酸酯磷腈),在浓盐酸中水解得到聚(二磷酸磷腈),与水溶性的高价过渡金属离子反应得到不溶性的聚(二磷酸盐磷腈)聚合物。
(1)聚(二磷酸盐磷腈)质子导体制备
在氮气保护下,向装搅拌器,冷凝管的的三口烧瓶中分别加入氨基磺酸(0.52mmol,0.05g)、六氯环三磷腈(HCCP)(14.4mmol,5g)、溶剂二苯醚(15~30mL),通氮气20~40min后,搅拌、升温至210~250℃下进行开环聚合反应,当溶液变粘稠时,停止加热,冷却,倒入盛有40~60mL石油醚烧杯中,以除去未反应的原料HCCP,用石油醚洗涤三次,抽滤将得到的固体产物在真空干燥箱中,70~90℃下干燥4~8h得到聚(二氯磷腈)(PDCP);将得到的聚(二氯磷腈)与过量的(50~60mL)亚磷酸三乙酯,在100~120℃下反应5~7h,冷却,用适量石油醚洗涤3~4次,以除去过量的未反应的亚磷酸三乙酯,抽滤,固体在真空干燥箱内60~100℃干燥,得到聚(双(二乙氧基磷酸酯基)磷腈)(PBPP);将得到的聚(双(二乙氧基磷酸酯基)磷腈)(PBPP)加入60~90mL浓盐酸,在搅拌下,110~150℃下水解至溶液变澄清,在110~140℃下,浓缩至近干,以除去反应产物和过量的浓盐酸,用30~50mL的乙酸乙酯萃取3~4次,以除去未水解完全的PBPP,剩余的液体放入真空干燥箱110~130℃烘干,得到聚(双磷酸基磷腈)(PDPP),其反应过程的方程式如下。
Figure GDA0003690330290000021
PDCP的合成
Figure GDA0003690330290000022
PDPP的合成
将得到的聚(双磷酸基磷腈)(PDPP)白色固体2.07g溶于一定的去离子水中,并将1.61g的氧氯化锆溶于稀盐酸中,待两者各自溶解完全,边搅拌边把氧氯化锆溶液逐滴加入到聚(双磷酸基磷腈)(PDPP)水溶液中,滴加完毕,搅拌24h,抽滤水洗至中性后,放入真空干燥箱中80~90℃烘干,得到白色固体ZrPDPP(1:2)1.93g,产率为76.44%。按此方法可得到不同比例的ZrPDPP。
Figure GDA0003690330290000031
如果用其它金属离子代替锆离子可以得到其它过渡金属离子形成的盐MPDPP,其中Mn+=Zr4+、Ce4+、Fe3+、Co3+、La3+或Y3+
聚(二磷酸磷腈盐)(MPDPP)的特点:
MPDPP属于聚磷腈无机高分子中的多磷酸基团与高价金属离子形成的体型聚合物型的磷酸盐,当金属离子的量占到一定比例时其盐可以是不溶性的,但是分子中多余的磷酸基团或磷酸基团中剩余的羟基可以电离出质子,因此,其盐为酸性的质子导体,由于该盐具有耐高温(400℃不分解),所以,该盐具有广泛用途:如,可以作为固体酸用于酸催化反应,如,酯化反应、酯交换反应等,可用于酯化反应、水解反应和生物柴油的制备等领域;该盐耐高温,且高温、低湿度下质子导电性能优良,可用于质子导体添加剂制备高温质子交换膜;用于高温、低湿度下工作的燃料电池的膜电极(MEA)中质子导体添加剂,可以防止其被生成的水带走、流失,从而可以大大提高质子交换膜和膜电极的质子导电的耐久性。聚磷腈虽然是无机高分子材料,但是可以溶于有机溶剂,可以与有机高分子材料有很好的相容性,所以,添加到有机高分子材料中有很好的相容性,不会出现分相现象。
(2)聚(磷腈二磷酸盐)质子导体聚苯并咪唑类质子交换膜的制备
将2,5-PyPBI(1.00g)加入到10mL的N,N-二甲基乙酰胺(DMAc)中并在110~140℃下,磁力搅,4~6h使其全部溶解,冷却至50~70℃,加入0.0526g环氧树脂(TGDDM)搅拌0.5~1h后,加入1.2082g ZrPDPP搅拌1~3h使其分散均匀,超声震荡除去气泡并转移到平铺的玻璃板(四面有高出的边沿)上,在真空干燥箱中升温至50~70℃流延6~9h,升温至150~170℃保温5~8h,使其充分交联,降温至110~130℃保持4~5h烘干,冷却至室温,在水浸泡结膜。制备的膜标记为:2,5-PyPBI-TGDDM(5%)/ZrPDPP(50%)。
用同样的方法,改变TGDDM和ZrPDPP的质量可获得一系列2,5-PyPBI-TGDDM(x)/ZrPDPP(y)交联膜,其中x和y分别是TGDDM和ZrPDPP的重量百分比。
用同样的方法,用其它PBI代替2,5-PyPBI可以得到其它PBI-TGDDM(x)/ZrPDPP(y)交联膜。
用同样的方法,用其它交联剂替代TGDDM,可以得到其它交联剂交联的复合质子交换膜。
复合膜的结构如下:
Figure GDA0003690330290000041
(3)膜电极的制备及单电池组装、性能测试
用传统方法和工艺制备膜电极,只是用本发明的复合膜替代Nafion膜。制备的膜电极组装单电池,把制备的膜电极组装成单电池并且连接到燃料电池测试系统进行测试,阳极用相对湿度为30%的氢气为燃料,流速40mL/min,电池的工作温度250℃,阴极用氧气流速20mL/min,背压0.2MPa。电池性能测试前首先进行活化,再测试其性能,不同膜和不同量的质子导体ZrPDPP添加量的MEA测试。
本发明的创新点:
1)选用聚磷腈类材料,属于无机高分子材料,其具有很好的有机溶剂的相容性,可以与有机高分子材料很好互溶,掺杂到聚苯并咪唑等高分子材料中不会出现分相现象,掺杂量可以很高,可以高达60%。MPDPP盐300℃不分解,具有很好的耐高温性能,掺杂得到复合膜的耐高温性能好。
2)其中间体PDPP为多磷酸基团的高分子,由于其磷酸基团的含量非常高,所以,其高价过渡金属的不溶性盐分子中可以有很多剩余的磷酸基团或磷酸基团中的羟基;分子可以电离出质子,具有酸性,即使在低湿度或干燥情况下同样可以起到质子传导的作用。因此,可用于高温、低湿度下使用的质子交换膜。
3)所用的新型聚苯并咪唑类高分子材料是含有吡嗪、吡啶或咪唑类碱性基团的聚苯并咪唑,这些新型PBI有更多的碱性基团,掺杂质子导体的量会增加,制备的复合膜的质子电导率会更高;优选其PBI分子中含有多个2,6-吡啶基团、2,3-吡啶基团、2,4-吡啶基团,2,5-吡啶基团;2,6-吡嗪基团、2,3-吡嗪基团、2,4-吡嗪基团,2,5-吡嗪基团;2,3-咪唑基团、2,5-咪唑基团。
4)交联剂是高交联度的(其氯甲基化聚苯并咪唑类,聚二氯磷腈等属于新型的),其交联剂加入很少的情况下,其具有很好的交联修改,度复合膜的机械性能、干湿变形性能、抗氧化性能和阻醇性能均有很大改善。
具体实施方式
[实施例1]:聚(二氯磷腈)的制备
在氮气保护下,向装搅拌器,冷凝管的的三口烧瓶中分别加入氨基磺酸(0.52mmol,0.05g)、六氯环三磷腈(HCCP)(14.4mmol,5g)、溶剂二苯醚(15~30mL),通氮气20~40min后,搅拌、升温至210~250℃下进行开环聚合反应,当溶液变粘稠时,停止加热,冷却,倒入盛有40~60mL石油醚烧杯中,以除去未反应的原料HCCP,用石油醚洗涤三次,抽滤将得到的固体产物在真空干燥箱中,70~90℃下干燥4~8h得到聚(二氯磷腈)(PDCP),得到的PDCP产率70%,粘均分子量6~8万。
采用上述方法只是把二苯醚换成其它溶剂(芳烃溶剂油,环丁砜,三乙酸甘油酯,季戊四醇四乙酸酯,多聚乙二醇二乙酸酯,液体石蜡,甲基萘油中的一种或几种的混合液),也可以控制温度在210~250℃,有的甚至可以控制更高的反应温度,也可以得到开环聚合的产物,只是去除溶剂时要用对该溶剂溶解性能更好低沸点的溶剂清洗。
用不同溶剂进行开环聚合反应的产率在40%~80%范围内,粘均分子量在4~10万范围内。
[实施例2]:聚(双(二烷氧基磷酸酯基)磷腈)(PBPP)的制备
将得到的聚(二氯磷腈)20g与过量的(50~60mL)亚磷酸三乙酯,在100~120℃下反应5~7h,冷却,用适量石油醚洗涤3~4次,以除去过量的未反应的亚磷酸三乙酯,抽滤,固体在真空干燥箱内60~100℃干燥,得到聚(双(二乙氧基磷酸酯基)磷腈)(PBPP);将得到的聚(双(二乙氧基磷酸酯基)磷腈)(PBPP)产率83%。
采用相同反应步骤,以不同亚磷酸酯或在不同条件进行反应的产率汇总均高于73%。
[实施例3]:聚(双磷酸基磷腈)的制备
将25g的PBPP加入60~90mL浓盐酸,在搅拌下,110~150℃下水解至溶液变澄清,在110~140℃下,浓缩至近干,以除去反应产物和过量的浓盐酸,用30~50mL的乙酸乙酯萃取3~4次,以除去未水解完全的PBPP,剩余的液体放入真空干燥箱110~130℃烘干,得到聚(双磷酸基磷腈)(PDPP),产率89%
采用相同反应步骤,只是用二氯甲烷、苯、甲苯或石油醚萃取,产率分别为87%,83%,81%和85%。
采用相同的反应步骤,在浓盐酸中回流24h,在70℃下减压蒸馏,用乙酸乙酯萃取,产率为84%。
[实施例4]:ZrPDPP(0.78)的制备
将得到的聚(双磷酸基磷腈)(PDPP)白色固体2.07g溶于一定的去离子水中,并将1.61g的氧氯化锆溶于稀盐酸中,待两者各自溶解完全,边搅拌边把氧氯化锆溶液逐滴加入到聚(双磷酸基磷腈)(PDPP)水溶液中,滴加完毕,室温下搅拌反应24h,抽滤、水洗至中性后,放入真空干燥箱中80~90℃烘干,得到白色固体ZrPDPP(0.78)1.93g,产率为76.44%。
氯氧化锆与PDPP质量比为0.78,所以,记为ZrPDPP(0.78)。
其它不同摩尔配比的ZrPDPP的制备方法同上,只是氯氧化锆与PDPP的质量比,其结果见表1所示。
采用其它高价金属离子的可溶性盐替代氧氯化锆,按此方法可得到不同质量比的MPDPP制备工艺条件和性能见表1所示。
[实施例5]:ZrPDPP的质子导电性能测试。
以ZrPDPP(0.78)作为质子导体,在180℃,100%相对湿度下质子电导率达0.159S/cm;在180℃,50%相对湿度下质子电导率达0.081S/cm;在180℃,干燥条件下质子电导率达0.00467S/cm。采用其它高价金属离子的可溶性盐替代氯氧化锆所制备的MPDPP盐,其压片所测定的不同温度、不同相对湿度下的电导率如表2所示。
[实施例6]:以ZrPDPP(0.78)作为质子导体用于高温质子交换膜的制备。
(1)含有吡嗪基团的聚苯并咪唑(PzPBI)的制备:用2,6-吡嗪二甲酸与3,3’-二氨基联苯胺(DABz)反应制备,具体反应步骤为:在装有电动搅拌和氮气保护的三口烧瓶中加入多聚磷酸(PPA)(100g),氮气保护下160℃搅拌1h以除去多余的水分及空气。将DABz(4.00g,18.7mmol)以及2,6-吡嗪二甲酸(3.14g,18.7mmol)混合均匀,慢慢加入到三口烧瓶中。控制氮气流速,防止DABz被氧化,同时将反应温度提升到200℃并继续保温、搅拌反应5~8h。随着反应时间的增加,聚合体系逐渐变得粘稠。待粘度合适时停止反应,反应混合液慢慢转移到大量去离子水中抽丝,洗净、烘干,粉碎,去离子水多次洗涤以除去多聚磷酸和未反应的反应物,即得到PzPBI,用乌氏粘度计测定PzPBI的分子量。其粘均分子量为4.5万到5.5万。
(2)其它带吡嗪基团的PBI的制备方法:同(1)的方法,只是将2,6-吡嗪二甲酸分别换成2,5-吡嗪二甲酸或2,3-吡嗪二甲酸即可,其它操作同(1),即可得到含有不同吡啶基团的PzPBI,产品分别记为:3,5-PzPBI或2,3-PzPBI。
(3)ZrPDPP(0.78)掺杂到聚苯并咪唑(PzPBI)的复合质子交换膜的制备:以ZrPDPP(0.78)掺杂40%为例。取1.0g PzPBI加入10mL N,N’-二甲基乙酰胺(DMAc)中,在80℃下磁力搅拌24h使其充分溶解,抽滤除去不溶物。在50℃下向滤液中加入交联剂0.05g TGIC,继续搅拌2.5h使其充分溶解。再加入0.70g ZrPDPP(0.78),继续搅拌3h使其充分分散在铸膜液中。超声振荡1h以除去气泡,而后将其浇铸在玻璃板上,在60℃下流延12h,120℃下加热12h除去溶剂,而后在160℃下加热6h使PBI和TGIC进行充分交联。将得到的膜在0.1mol L- 1H2SO4水溶液中室温下浸泡24h,使掺杂到膜充分酸化,而后在去离子水中浸泡24h(每6h换水一次)以洗去膜中的硫酸,得到PzPBI-TGIC(5%)/ZrPDPP(0.78)(40%)复合膜。
(4)其他PBI制备方法同实施例6中的(1)部分。只是将2,6-吡嗪二羧酸改为其他二羧酸(如,间苯二甲酸、2,6-吡啶二羧酸、1,8-萘二羧酸,1,5-咪唑二羧酸或4,4’-联苯二甲酸等)
(5)其他交联剂交联,其他ZrPDPP(0.78)掺杂量的PBI复合膜的制备方法同实施例6中实验(3)部分,只是把交联剂TGIC改为其他交联剂,ZrPDPP(0.78)的用量0.7g改为其他量即可。其复合膜的测试结果与表3所示。
不同温度下测试复合膜的电导率如表4所示
[实施例7]:膜电极的制备及单电池组装、性能测试
用传统方法和工艺制备膜电极,只是用本发明的复合膜替代Nafion膜。制备的膜电极组装单电池,把制备的膜电极组装成单电池并且连接到燃料电池测试系统进行测试,阳极用相对湿度为50%的氢气为燃料,流速40mL/min,电池的工作温度150℃,阴极用氧气流速20mL/min,背压0.2MPa。电池性能测试前首先进行活化,再测试其性能,不同膜和不同量的质子导体MPDPP添加量的MEA测试结果如表5所示。
[实施例8]:采用实施例4相同的方法,只是把氯氧锆分别换成硝酸铈铵、三氯化铁、硝酸钇或硝酸镧,按照不同的摩尔配比,即可分别得到不同配比的锆盐、铁盐、钇盐或镧盐。分别采用实施例5、实施例6和实施例7的方法研究这些盐的性能,其制备工艺和性能如表1,表2、表3、表4和表5所示。
表1 MPDPP类质子导体的制备工艺条件及性能对比
Figure GDA0003690330290000091
注:IEC的单位为meq.g-1
表2 MPDPP类质子导体在180℃下不同性低湿度下的质子电导率(S/cm)
Figure GDA0003690330290000092
表3 MPDPP掺杂到PBI制备的复合膜在的质子电导率(S/cm)
Figure GDA0003690330290000101
注:2,6-PzPBI:2,6-吡嗪二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
2,5-TpPBI:2,5-噻吩二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
2,6-PyPBI:2,6-吡啶二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
多官能度的交联剂缩写及中文全称:
TGIC:1,3,5-三(环氧乙烷-2-基甲基)-1,3,5-三嗪-2,4,6-三酮
TGDDM:N,N,N’,N’-四环氧丙基-4,4’-二氨基二苯甲烷
CMPSU:氯甲基化聚醚砜
CMPBI:氯甲基化聚苯并咪唑
PDCP:聚二氯磷腈
表4 MPDPP掺杂PBI复合膜在RH50%不同温度下的质子电导率(S/cm)
Figure GDA0003690330290000111
注:2,6-PzPBI:2,6-吡嗪二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
2,5-TpPBI:2,5-噻吩二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
2,6-PyPBI:2,6-吡啶二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
多官能度的交联剂缩写及中文全称:
TGIC:1,3,5-三(环氧乙烷-2-基甲基)-1,3,5-三嗪-2,4,6-三酮
TGDDM:N,N,N’,N’-四环氧丙基-4,4’-二氨基二苯甲烷
CMPSU:氯甲基化聚醚砜
CMPBI:氯甲基化聚苯并咪唑
PDCP:聚二氯磷腈
表5 MPDPP掺杂PBI复合膜制备的膜电极性能测试结果
Figure GDA0003690330290000121
注:2,6-PzPBI:2,6-吡嗪二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
2,6-PyPBI:2,6-吡啶二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
2,3-PzPBI:2,3-吡嗪二甲酸与3,3’-二氨基联苯胺缩合得到的新型PBI
多官能度的交联剂缩写及中文全称:
TGIC:1,3,5-三(环氧乙烷-2-基甲基)-1,3,5-三嗪-2,4,6-三酮
TGDDM:N,N,N’,N’-四环氧丙基-4,4’-二氨基二苯甲烷
CMPSU:氯甲基化聚醚砜
PDCP:聚二氯磷腈。

Claims (7)

1.掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,其特征在于:聚(二磷酸盐磷腈)是不溶性体型聚合物,耐300℃高温,聚(二磷酸盐磷腈)作为质子导体掺杂到的聚苯并咪唑(PBI)通过交联制备高温、低湿度下使用的质子交换膜,其制备过程包括:
(1)以六氯环三磷腈为原料,在高沸点的溶剂中,加热开环聚合得到聚(二氯磷腈),聚(二氯磷腈)与亚磷酸三酯反应,得到聚(双(二烷氧基磷酸酯基)磷腈);聚(双(二烷氧基磷酸酯基)磷腈)在浓盐酸中水解得到聚(双磷酸基磷腈),聚(双磷酸基磷腈)与高价金属离子中的一种或多种发生聚合而得到不溶于水的聚(二磷酸盐磷腈):六氯环三磷腈210~250℃下开环聚合得到聚(二氯磷腈);聚(二氯磷腈)与亚磷酸三酯在100~120℃下反应得到聚(双(二烷氧基磷酸酯基)磷腈);将聚(双(二烷氧基磷酸酯基)磷腈)在浓盐酸中水解得到聚(双磷酸基磷腈);聚(双磷酸基磷腈)与高价金属离子溶液反应得到不同配比的聚(二磷酸盐磷腈);
(2)聚苯并咪唑的制备是用3,3’-二氨基联苯胺(DABz)与含有碱性基团的芳香二酸为原料,在多聚磷酸(PPA)中,惰性气体保护下,200℃,反应3~8h,得到聚苯并咪唑,其粘均分子量为4.5~5万;
(3)采用流延成膜法制备复合膜,按照质子导体掺杂量20wt%~60wt%,用多官能度的交联剂进行交联制备复合膜;制备的复合质子交换膜在-15℃~300℃,相对湿度0~50%下使用;
(4)复合质子交换膜用于高温、低湿度质子交换膜燃料电池膜电极制备过程中用与制备复合膜相同,也可以不同的聚(二磷酸盐磷腈)作为质子添加剂,用于高温氢-空气燃料电池、直接甲醇燃料电池或甲醇重整的燃料电池;由于电池的操作温度的升高,燃料电池对氢气或氧气的纯度要求降低。
2.根据权利要求1所述的掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,高沸点的溶剂选用:芳烃溶剂油,二苯醚,环丁砜,三乙酸甘油酯,季戊四醇四乙酸酯,多聚乙二醇二乙酸酯,液体石蜡,甲基萘油中的一种或几种的混合液,其特征在于:高沸点的溶剂是沸点高于220℃且对六氯环三磷腈和聚(二氯磷腈)稳定的溶剂。
3.根据权利要求1所述的掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,其亚磷酸三酯选用:亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三丙酯或亚磷酸三异丙酯中的一种或几种的混合物,其特征在于:水解反应生成的醇沸点低,容易被蒸发去除。
4.权利要求1所述的掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,其特征在于:聚(二磷酸盐磷腈)是不溶性体型聚合物,是聚(双磷酸基磷腈)与高价金属离子Zr4+,Fe3+,La3+或Y3+中的一种或几种的混合物形成的盐;聚(二磷酸盐磷腈)虽然是无机聚合物材料,但是,其分子中的聚磷腈部分与有机高分子材料有很好的相容性,该盐300℃不分解,有很好的耐高温性能,分子中未反应的磷酸基团或磷酸基团上未参与反应的羟基表现出酸性,用于不溶性的耐高温的质子导体。
5.根据权利要求1所述的掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,其特征在于:其高价金属盐与聚(双磷酸基磷腈)的质量比为2:5~3:2。
6.权利要求1所述的掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,其特征在于:所用的新型聚苯并咪唑类高分子材料是含有吡嗪、吡啶或咪唑类碱性基团的聚苯并咪唑,这些PBI有更多的碱性基团,掺杂质子导体的量会增加,制备的复合膜的质子电导率会更高;选用其PBI分子中含有多个2,6-吡啶基团、2,3-吡啶基团、2,4-吡啶基团,2,5-吡啶基团;2,6-吡嗪基团、2,3-吡嗪基团、2,4-吡嗪基团,2,5-吡嗪基团;2,3-咪唑基团、2,5-咪唑基团的PBI。
7.权利要求1所述的掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法,其特征在于:交联剂选用多官能度的交联剂,多官能度以在同等交联的情况下所用交联剂最少,对复合膜的电导率影响最小;交联剂选用三或四环氧值的环氧树脂、高氯含量的氯甲基化聚醚砜、氯甲基化聚苯并咪唑或聚二氯磷腈。
CN202010028566.0A 2020-01-11 2020-01-11 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法 Expired - Fee Related CN111205495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010028566.0A CN111205495B (zh) 2020-01-11 2020-01-11 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010028566.0A CN111205495B (zh) 2020-01-11 2020-01-11 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN111205495A CN111205495A (zh) 2020-05-29
CN111205495B true CN111205495B (zh) 2022-07-26

Family

ID=70786926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010028566.0A Expired - Fee Related CN111205495B (zh) 2020-01-11 2020-01-11 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN111205495B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091416A2 (en) * 2004-03-15 2005-09-29 Cabot Corporation Modified carbon products, their use in fluid/gas diffusion layers and similar devices and methods relating to the same
CN1848504A (zh) * 2005-04-05 2006-10-18 中国科学院大连化学物理研究所 一种高温燃料电池用复合质子交换膜及其制备方法
CN104592454A (zh) * 2014-12-29 2015-05-06 徐虎林 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036113A (ja) * 2003-07-16 2005-02-10 Honda Motor Co Ltd スルホン化ポリフォスファゼン誘導体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091416A2 (en) * 2004-03-15 2005-09-29 Cabot Corporation Modified carbon products, their use in fluid/gas diffusion layers and similar devices and methods relating to the same
CN1848504A (zh) * 2005-04-05 2006-10-18 中国科学院大连化学物理研究所 一种高温燃料电池用复合质子交换膜及其制备方法
CN104592454A (zh) * 2014-12-29 2015-05-06 徐虎林 一种磺化聚磷腈共聚物质子交换膜材料及其膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于膦酸基的高温质子交换膜的研究进展;韩帅元等;《物理化学学报》;20140115(第01期);第8-21页 *

Also Published As

Publication number Publication date
CN111205495A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
Park et al. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
Li et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
EP2062891B1 (en) Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
JP7523808B2 (ja) レドックスフロー電池膜を形成する方法
KR101195910B1 (ko) 화학적으로 결합된 인산기를 가지는 고분자 전해질, 그의 제조 방법, 및 그를 이용한 막―전극 어셈블리와 이를 포함하는 연료전지
CA2439686A1 (en) Method for producing a membrane made of bridged polymer and a fuel cell
Xu et al. Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly (ether ketone sulfone) for proton exchange membrane fuel cells
CN102017264A (zh) 包含离子性液体的催化剂油墨及其在生产电极、ccm、gde和mea中的用途
Guo et al. Enhancing proton conductivity and durability of crosslinked PBI-based high-temperature PEM: effectively doping a novel cerium triphosphonic-isocyanurate
KR100570745B1 (ko) 폴리(2,5-벤즈이미다졸)의 제조방법
US8586259B2 (en) Proton exchange membranes based on heterocycles and acids through an organic-inorganic hybrid process
CN100388552C (zh) 质子导电电解质薄膜、制造方法及其在燃料电池中的用途
JP4445553B2 (ja) 分岐マルチブロックポリベンゾイミダゾール−ベンズアミド共重合体及びこれの製造方法、それから製造された電解質膜、硬粘性電解質ペースト/ゲル
CN101346314A (zh) 新的金属(ⅲ)-铬-磷酸盐配合物及其用途
CN111082112B (zh) 质子交换膜及其制备方法和燃料电池
Wang et al. High-performance proton exchange membranes based on block polybenzimidazole and organic–inorganic fillers with a low acid doping level
CN111205641B (zh) 含三聚氰环的三膦酸盐掺杂pbi高温质子交换膜的制备方法
CN111205640B (zh) 环三磷腈六磷酸盐掺杂的聚苯并咪唑类质子交换膜制备方法
CN111205495B (zh) 掺杂聚(二磷酸盐磷腈)聚苯并咪唑类高温、低湿度质子交换膜的制备方法
KR20120061156A (ko) 폴리벤즈이미다졸계 고분자, 그 제조 방법, 이를 이용한 전해질막 및 연료전지
CN111416140B (zh) 2,4,6-三氧代-1,3,5-三嗪-三磷酸盐掺杂pbi质子交换膜的制备方法
CN111205465B (zh) 聚(二磷酸盐磷腈)高温质子导体的制备方法及应用
CN111223585B (zh) 一种环三磷腈基六磷酸盐类耐高温质子导体的制备方法
EP2221303B1 (en) Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220726