CN104535836A - 电力信号的基波频率测量方法和系统 - Google Patents

电力信号的基波频率测量方法和系统 Download PDF

Info

Publication number
CN104535836A
CN104535836A CN201410851359.XA CN201410851359A CN104535836A CN 104535836 A CN104535836 A CN 104535836A CN 201410851359 A CN201410851359 A CN 201410851359A CN 104535836 A CN104535836 A CN 104535836A
Authority
CN
China
Prior art keywords
sequence
frequency
wave
vector
real number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410851359.XA
Other languages
English (en)
Other versions
CN104535836B (zh
Inventor
李军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority to CN201410851359.XA priority Critical patent/CN104535836B/zh
Publication of CN104535836A publication Critical patent/CN104535836A/zh
Application granted granted Critical
Publication of CN104535836B publication Critical patent/CN104535836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种电力信号的基波频率测量方法和系统,所述方法包括:通过对虚数向量序列和实数向量序列数字滤波,生成虚数向量滤波序列和实数向量滤波序列,分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;依次对实数向量滤波前段序列和虚数向量滤波前段序列、以及实数向量滤波后段序列和虚数向量滤波后段序列进行积分、求相位、相位差;将所述相位差和所述参考频率转换为所述电力信号的基波频率。实施本发明,可抑制虚数向量序列和实数向量序列中的混频干扰成分生成高精度的基波频率。

Description

电力信号的基波频率测量方法和系统
【技术领域】
本发明涉及电力技术领域,特别是涉及电力信号的基波频率测量方法和系统。
【背景技术】
电力系统的频率测量、谐波测量、功率测量等在本质上均为正弦参数的测量。傅里叶变换等是实现正弦参数测量的基本方法,在电力系统有广泛的应用。但随着正弦测量技术的发展,傅里叶变换存在的问题也越显突出,难以进一步满足正弦参数高精度计算的要求。
电力系统功率计算首先是电压电流幅值和相位的计算,而电压电流幅值和相位的计算又首先是频率的计算,可认为频率测量是正弦参数计算的基础。在电力系统频率测量方面,有形式各样的频率测量或计算方法,如零交法、基于滤波的算法、基于小波变换算法、基于神经网络的算法、基于DFT变换的频率算法、基于相位差的频率算法等。
但是,电网运行额定工频为50Hz,属于较低的频率,以上所述的频率测量方法对低频信号的频率测量精度不高,且抗噪声干扰性差。
【发明内容】
基于此,有必要针对以上所述的频率测量方法对低频信号的频率测量精度不高,且抗噪声干扰性差的问题,提供一种电力信号的基波频率测量方法和系统。
一种电力信号的基波频率测量方法,包括以下步骤:
根据预设时间长度和预设采样频率,对电力信号进行采样获得采样数据序列;
对所述采样数据序列的基波频率进行初测,获得初步基波频率,并以初步基波频率为参考频率;
将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列;
对所述实数向量序列进行数字滤波,获得实数向量滤波序列;
将所述参考频率的正弦函数与所述采样数据序列相乘,生成虚数向量序列;
对所述虚数向量序列进行数字滤波,生成虚数向量滤波序列;
分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;
对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值;
根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位;
对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值;
根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位;
将所述第二相位减去所述第一相位,生成相位差;
根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率。
一种电力信号的基波频率测量系统,包括:
采样模块,用于根据预设时间长度和预设采样频率,对电力信号进行采样获得采样数据序列;
初测模块,用于对所述采样数据序列的基波频率进行初测,获得初步基波频率,并以初步基波频率为参考频率;
实数向量序列模块,用于将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列;
实数向量滤波模块,用于对所述实数向量序列进行数字滤波,获得实数向量滤波序列;
虚数向量序列模块,用于将所述参考频率的正弦函数与所述采样数据序列相乘,生成虚数向量序列;
虚数向量滤波模块,用于对所述虚数向量序列进行数字滤波,生成虚数向量滤波序列;
序列等分模块,用于分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;
前段序列积分模块,用于对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值;
第一相位模块,用于根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位;
后段序列积分模块,用于对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值;
第二相位模块,用于根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位;
相位差模块,用于将所述第二相位减去所述第一相位,生成相位差;
基波频率模块,用于根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率。
上述电力信号的基波频率测量方法和系统,通过对虚数向量序列和实数向量序列数字滤波,生成虚数向量滤波序列和实数向量滤波序列,数字滤波可抑制虚数向量序列和实数向量序列中的混频干扰成分,得到高精度的虚数向量滤波序列和实数向量滤波序列,分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;依次对滤波前段序列和虚数向量滤波前段序列、以及实数向量滤波后段序列和虚数向量滤波后段序列进行积分、求相位、相位差;将所述相位差和所述参考频率转换为所述电力信号的基波频率。将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,目的是根据两端序列的相位差生成高精度的基波频率。
【附图说明】
图1是本发明电力信号的基波频率测量方法的流程示意图;
图2是本发明电力信号的基波频率测量系统的结构示意图;
图3是本发明电力信号的基波频率测量方法中基波频率相对误差随基波频率变化示意图。
【具体实施方式】
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明中的步骤虽然用标号进行了排列,但并不用于限定步骤的先后次序,除非明确说明了步骤的次序或者某步骤的执行需要其他步骤作为基础,否则步骤的相对次序是可以调整的。
请参阅图1,图1是本发明电力信号的基波频率测量方法的流程示意图。
本实施方式的所述电力信号的基波频率测量方法,可包括以下步骤:
步骤S101,根据预设时间长度和预设采样频率,对电力信号进行采样获得采样数据序列。
步骤S102,对所述采样数据序列的基波频率进行初测,获得初步基波频率,并以初步基波频率为参考频率。
步骤S103,将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列。
步骤S104,对所述实数向量序列进行数字滤波,获得实数向量滤波序列。
步骤S105,将所述参考频率的正弦函数与所述采样数据序列相乘,生成虚数向量序列。
步骤S106,对所述虚数向量序列进行数字滤波,生成虚数向量滤波序列。
步骤S107,分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列。
步骤S108,对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值。
步骤S109,根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位。
步骤S110,对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值。
步骤S111,根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位。
步骤S112,将所述第二相位减去所述第一相位,生成相位差。
步骤S113,根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率。
本实施方式,通过对虚数向量序列和实数向量序列数字滤波,生成虚数向量滤波序列和实数向量滤波序列,数字滤波可抑制虚数向量序列和实数向量序列中的混频干扰成分,得到高精度的虚数向量滤波序列和实数向量滤波序列,分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;依次对滤波前段序列和虚数向量滤波前段序列、以及实数向量滤波后段序列和虚数向量滤波后段序列进行积分、求相位、相位差;将所述相位差和所述参考频率转换为所述电力信号的基波频率。将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,目的是根据两端序列的相位差生成高精度的基波频率。
其中,对于步骤S101,所述电力信号包括正弦基波信号、正弦1/2谐波成分、正弦2次谐波成分、正弦3次谐波成分、正弦4次谐波成分和正弦5次谐波成分。优选地可通过电网领域的采样设备对所述电力信号进行采样,获得采样数据序列。
优选地,可根据在额定频率50Hz,采样频率远大于电力系统额定频率的原则设置预设数的采样频率。
进一步地,为了保证一定的频率测量实时性,可取信号时间长度等于0.20s。
更进一步地,电力系统额定频率50Hz,为了提高性能,采样频率应远大于50Hz,优选地,设置采样频率等于fn=10000Hz,采样间隔表达为式(1):
T n = 1 f n - - - ( 1 ) ;
式中,Tn为采样间隔,单位s;fn为所述预设采样频率,单位Hz。
在一个实施例中,采样数据序列为式(2):
式(2)中,ω为信号基波频率,单位rad/s;Tn为采样间隔,单位s;为初相位,单位rad。
采样数据序列的基波频率与参考频率的率差为式(3):
Ω=ω-ωs  (3);
式,Ω为频率差,单位rad/s;ωs为参考频率,单位rad/s。
对于步骤S102,可通过零交法对所述采样数据序列进行频率初测,获取所述初步频率。还可通过本领域技术人员惯用的其他频率测量方法对所述采样数据序列进行频率初测。
对于步骤S103,优选地,可通过乘法器将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列。所述乘法器是一种混频器。
在一个实施例中,在不考虑混频干扰时,所述实数向量序列如式(4)所示:
式中,XR(n)为实数向量序列。
对于步骤S104,可通过数字滤波器对所述实数向量序列进行多级数字滤波,生成实数向量滤波序列,滤除混频干扰成分。
在一个实施例中,数字滤波对所述实数向量序列中NT个连续离散值相加,然后取其算术平均值作为滤波输出。
在NT取值为二分之一参考频率的单位周期序列长度时,可以对1/2分次谐波和次谐波影响进行抑制。为了提高混频干扰的抑制性能,数字滤波由参数完全相同的四级数字滤波组成。
优选地,四级数字滤波的滤波公式为式(5):
X L ( n ) = 1 N T Σ n N T - 1 1 N T Σ n N T - 1 1 N T Σ n N T - 1 1 N T Σ n N T - 1 X R / I ( n ) n = 0,1,2,3 , . . . . , N - 1 - - - ( 5 ) ;
式(5)中,XL(n)为数字滤波输出序列,N为序列长度、单位无量纲;XR/I(n)代表实数向量序列或虚数向量序列。
进一步地,若NT为参考频率的单位周期序列长度的2倍,可以对1/2分次谐波和次谐波影响进行抑制。数字滤波输出序列长度相对输入信号序列长度N减小了4NT
在另一个实施例中,所述(有效的)实数向量滤波序列为式(6):
式中,XRL(n)为实数向量滤波序列,K(Ω)为数字滤波在频差Ω的增益,单位无量纲,其中K(0)=1;β(Ω)为数字滤波在频差Ω的移相,单位rad,其中β(0)=0。
对于步骤S105,可通过乘法器将所述参考频率的正弦函数与所述采样数据序列相乘,获得虚数向量序列。所述乘法器为一种混频器。
在一个实施例中,在不考虑混频干扰时,所述虚数向量序列如式(7)所示:
式中,XI(n)为虚数向量序列。
对于步骤S106,可通过数字滤波器对所述虚数向量序列进行多级数字滤波,生成虚数向量滤波序列,滤除混频干扰成分。
在一个实施例中,数字滤波对所述虚数向量序列中NT个连续离散值相加,然后取其算术平均值作为滤波输出。
在NT取值为二分之一参考频率的单位周期序列长度时,可以对1/2分次谐波和次谐波影响进行抑制。为了提高混频干扰的抑制性能,数字滤波由参数完全相同的四级数字滤波组成,参见式(5)。
在另一个实施例中,所述(有效的)虚数向量滤波序列为式(8):
式中,XIL(n)为虚数向量滤波序列,K(Ω)为数字滤波在频差Ω的增益,单位无量纲,其中K(0)=1;β(Ω)为数字滤波在频差Ω的移相,单位rad,其中β(0)=0。
对于步骤S107,在分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列之前,可先测量所述实数向量滤波序列或所述虚数向量滤波序列的序列长度,然后进行序列等分。
在一个实施例中,所述实数向量滤波前段序列(或所述虚数向量前段序列)与所述实数向量滤波后段序列(或所述虚数向量后段序列长度)的序列长度分别为式(9):
M = N - 4 N T 2 - - - ( 9 ) ;
对于步骤S108,可通过积分器对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值。
在一个实施例中,通过以下公式(10)对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值:
式中,RAs)为前段序列实数积分值,IAs)为前段序列虚数积分值。
对于步骤S109,优选地,所述预设的相位转换规则如公式(11)所示:
其中,PHAs)为所述第一相位,单位rad。
在一个实施例中,根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位的步骤包括以下步骤:
将所述前段序列虚数积分值除以所述前段序列实数积分值,生成第一比值。
获取所述第一比值的反余切函数值的相反数,生成所述第一相位。
对于步骤S110,可通过积分器对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值。
在一个实施例中,通过以下公式(12)对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值:
式中,RBs)为后段序列实数积分值,IBs)为后段序列虚数积分值。
对于步骤S111,优选地,所述预设的相位转换规则如公式(13)所示:
其中,PHBs)为所述第二相位,单位rad。
在一个实施例中,根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位的步骤包括以下步骤:
将所述后段序列虚数积分值除以所述后段序列实数积分值,生成第二比值。
获取所述第二比值的反余切函数值的相反数,生成所述第二相位。
对于步骤S112,优选地,所述相位差如式(14)所示:
ΔPH(ωs)=PHBs)-PHAs)=ΩTnM  (14);
其中,ΔPH(ωs)为所述相位差。
对于步骤S113,优选地,预设的频率转换规则如式(15)所示:
ω = ΔPH ( ω s ) T n M + ω s - - - ( 15 ) ;
其中,ω为基波频率。
在一个实施例中,根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率的步骤包括以下步骤:
检测所述虚数向量滤波序列或所述实数向量滤波序列的序列长度。
获取所述序列长度与采样间隔的乘积。
获取所述相位差与所述乘积的比值的二倍,生成第一频率,数量上等于所述采样数据序列的基波频率与所述参考频率的频率差。
将所述第一频率与所述参考频率相加,生成所述电力信号的基波频率。
请参阅图2,图2是本发明电力信号的基波频率测量系统的结构示意图。
本实施方式的所述电力信号的基波频率测量系统,可包括采样模块1010、初测模块1020、实数向量序列模块1030、实数向量滤波模块1040、虚数向量序列模块1050、虚数向量滤波模块1060、序列等分模块1070、前段序列积分模块1080、第一相位模块1090、后段序列积分模块1100、第二相位模块1110、相位差模块1120和基波频率模块1130,其中:
采样模块1010,用于根据预设时间长度和预设采样频率,对电力信号进行采样获得采样数据序列。
初测模块1020,用于对所述采样数据序列的基波频率进行初测,获得初步基波频率,并以初步基波频率为参考频率。
实数向量序列模块1030,用于将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列。
实数向量滤波模块1040,用于对所述实数向量序列进行数字滤波,获得实数向量滤波序列。
虚数向量序列模块1050,用于将所述参考频率的正弦函数与所述采样数据序列相乘,生成虚数向量序列。
虚数向量滤波模块1060,用于对所述虚数向量序列进行数字滤波,生成虚数向量滤波序列。
序列等分模块1070,用于分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列。
前段序列积分模块1080,用于对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值。
第一相位模块1090,用于根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位。
后段序列积分模块1100,用于对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值。
第二相位模块1110,用于根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位。
相位差模块1120,用于将所述第二相位减去所述第一相位,生成相位差。
基波频率模块1130,用于根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率。
本实施方式,通过对虚数向量序列和实数向量序列数字滤波,生成虚数向量滤波序列和实数向量滤波序列,数字滤波可抑制虚数向量序列和实数向量序列中的混频干扰成分,得到高精度的虚数向量滤波序列和实数向量滤波序列,分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;依次对滤波前段序列和虚数向量滤波前段序列、以及实数向量滤波后段序列和虚数向量滤波后段序列进行积分、求相位、相位差;将所述相位差和所述参考频率转换为所述电力信号的基波频率。将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,目的是根据两端序列的相位差生成高精度的基波频率。
其中,对于采样模块1010,所述电力信号包括正弦基波信号、正弦1/2谐波成分、正弦2次谐波成分、正弦3次谐波成分、正弦4次谐波成分和正弦5次谐波成分。优选地可通过电网领域的采样设备对所述电力信号进行采样,获得采样数据序列。
优选地,可根据在额定频率50Hz,采样频率远大于电力系统额定频率的原则设置预设数的采样频率。
进一步地,为了保证一定的频率测量实时性,可取信号时间长度等于0.20s。
更进一步地,电力系统额定频率50Hz,为了提高性能,采样频率应远大于50Hz,优选地,设置采样频率等于fn=10000Hz,采样间隔表达为式(1):
T n = 1 f n - - - ( 1 ) ;
式中,Tn为采样间隔,单位s;fn为所述预设采样频率,单位Hz。
在一个实施例中,采样数据序列为式(2):
式(2)中,ω为信号基波频率,单位rad/s;Tn为采样间隔,单位s;为初相位,单位rad。
采样数据序列的基波频率与参考频率的频率差为式(3):
Ω=ω-ωs  (3);
式,Ω为频率差,单位rad/s;ωs为参考频率,单位rad/s。
对于初测模块1020,可通过零交法对所述采样数据序列进行频率初测,获取所述初步频率。还可通过本领域技术人员惯用的其他频率测量方法对所述采样数据序列进行频率初测。
对于实数向量序列模块1030,优选地,可通过乘法器将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列。所述乘法器为一种混频器。
在一个实施例中,在不考虑混频干扰时,所述实数向量序列如式(4)所示:
式中,XR(n)为实数向量序列。
对于实数向量滤波模块1040,可通过数字滤波器对所述实数向量序列进行多级数字滤波,生成实数向量滤波序列,滤除混频干扰成分。
在一个实施例中,数字滤波对所述实数向量序列中NT个连续离散值相加,然后取其算术平均值作为滤波输出。
在NT取值为二分之一参考频率的单位周期序列长度时,可以对1/2分次谐波和次谐波影响进行抑制。为了提高混频干扰的抑制性能,数字滤波由参数完全相同的四级数字滤波组成。
优选地,四级数字滤波的滤波公式为式(5):
X L ( n ) = 1 N T Σ n N T - 1 1 N T Σ n N T - 1 1 N T Σ n N T - 1 1 N T Σ n N T - 1 X R / I ( n ) n = 0,1,2,3 , . . . . , N - 1 - - - ( 5 ) ;
式(5)中,XL(n)为数字滤波输出序列,N为序列长度、单位无量纲;XR/I(n)代表实数向量序列或虚数向量序列。
进一步地,若NT为参考频率的单位周期序列长度的2倍,可以对1/2分次谐波和次谐波影响进行抑制。数字滤波输出序列长度相对输入信号序列长度N减小了4NT
在另一个实施例中,所述(有效的)实数向量滤波序列为式(6):
式中,XRL(n)为实数向量滤波序列,K(Ω)为数字滤波在频差Ω的增益,单位无量纲,其中K(0)=1;β(Ω)为数字滤波在频差Ω的移相,单位rad,其中β(0)=0。
对于虚数向量序列模块1050,可通过乘法器将所述参考频率的正弦函数与所述采样数据序列相乘,获得虚数向量序列。所述乘法器为一种混频器。
在一个实施例中,在不考虑混频干扰时,所述虚数向量序列如式(7)所示:
式中,XI(n)为虚数向量序列。
对于虚数向量滤波模块1060,可通过数字滤波器对所述虚数向量序列进行多级数字滤波,生成虚数向量滤波序列,滤除混频干扰成分。
在一个实施例中,数字滤波对所述虚数向量序列中NT个连续离散值相加,然后取其算术平均值作为滤波输出。
在NT取值为二分之一参考频率的单位周期序列长度时,可以对1/2分次谐波和次谐波影响进行抑制。为了提高混频干扰的抑制性能,数字滤波由参数完全相同的四级数字滤波组成,参见式(5)。
在另一个实施例中,所述(有效的)虚数向量滤波序列为式(8):
式中,XIL(n)为虚数向量滤波序列,K(Ω)为数字滤波在频差Ω的增益,单位无量纲,其中K(0)=1;β(Ω)为数字滤波在频差Ω的移相,单位rad,其中β(0)=0。
对于序列等分模块1070,在分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列之前,可先测量所述实数向量滤波序列或所述虚数向量滤波序列的序列长度,然后进行序列等分。
在一个实施例中,所述实数向量滤波前段序列(或所述虚数向量前段序列)与所述实数向量滤波后段序列(或所述虚数向量后段序列长度)的序列长度分别为式(9):
M = N - 4 N T 2 - - - ( 9 ) ;
对于前段序列积分模块1080,可通过积分器对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值。
在一个实施例中,前段序列积分模块1080可通过以下公式(10)对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值:
式中,RAs)为前段序列实数积分值,IAs)为前段序列虚数积分值。
对于第一相位模块1090,优选地,所述预设的相位转换规则如公式(11)所示:
其中,PHAs)为所述第一相位,单位rad。
在一个实施例中,第一相位模块1090还可用于:
将所述前段序列虚数积分值除以所述前段序列实数积分值,生成第一比值。
获取所述第一比值的反余切函数值的相反数,生成所述第一相位。
对于后段序列积分模块1100,可通过积分器对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值。
在一个实施例中,后段序列积分模块1100可通过以下公式(12)对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值:
式中,RBs)为后段序列实数积分值,IBs)为后段序列虚数积分值。
对于第二相位模块1110,优选地,所述预设的相位转换规则如公式(13)所示:
其中,其中,PHBs)为所述第二相位,单位rad。
在一个实施例中,第二相位模块1110还可用于:
将所述后段序列虚数积分值除以所述后段序列实数积分值,生成第二比值。
获取所述第二比值的反余切函数值的相反数,生成所述第二相位。
对于相位差模块1120,优选地,所述相位差如式(14)所示:
ΔPH(ωs)=PHBs)-PHAs)=ΩTnM  (14);
其中,ΔPH(ωs)为所述相位差。
对于基波频率模块1130,优选地,预设的频率转换规则如式(15)所示:
ω = ΔPH ( ω s ) T n M + ω s - - - ( 15 ) ;
其中,ω为基波频率。
在一个实施例中,基波频率模块还包括序列长度检测模块、乘积模块、第一频率模块和相加模块,其中:
所述序列长度检测模块用于检测所述虚数向量滤波序列或所述实数向量滤波序列的序列长度。
所述乘积模块用于获取所述序列长度与采样间隔的乘积。
所述第一频率模块用于获取所述相位差与所述乘积的比值的二倍,生成第一频率,数量上等于所述采样数据序列的基波频率与所述参考频率的频率差。
所述相加模块用于将所述第一频率与所述参考频率相加,生成所述电力信号的基波频率。
请参阅图3,图3是本发明电力信号的基波频率测量方法中基波频率相对误差随基波频率变化示意图。
对50Hz工频条件下的电力信号的基波频率测量方法进行仿真实验,仿真实验条件为:信号基波频率变化范围45Hz-55Hz,信号采样频率10KHz,信号离散数据量化位数24bit,频率初测单元相对误差±0.25%。
在基波频率45Hz-55Hz变化、信号窗口时间0.20s、参考频率误差0.25%,得到频率相对误差随基波频率变化的实验结果如图3所示。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种电力信号的基波频率测量方法,其特征在于,包括以下步骤:
根据预设时间长度和预设采样频率,对电力信号进行采样获得采样数据序列;
对所述采样数据序列的基波频率进行初测,获得初步基波频率,并以初步基波频率为参考频率;
将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列;
对所述实数向量序列进行数字滤波,获得实数向量滤波序列;
将所述参考频率的正弦函数与所述采样数据序列相乘,生成虚数向量序列;
对所述虚数向量序列进行数字滤波,生成虚数向量滤波序列;
分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;
对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值;
根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位;
对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值;
根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位;
将所述第二相位减去所述第一相位,生成相位差;
根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率。
2.根据权利要求1所述的电力信号的基波频率测量方法,其特征在于,所述电力信号包括正弦基波信号、正弦1/2谐波成分、正弦2次谐波成分、正弦3次谐波成分、正弦4次谐波成分和正弦5次谐波成分。
3.根据权利要求1所述的电力信号的基波频率测量方法,其特征在于,根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位的步骤包括以下步骤:
将所述前段序列虚数积分值除以所述前段序列实数积分值,生成第一比值;
获取所述第一比值的反余切函数值的相反数,生成所述第一相位。
4.根据权利要求1所述的电力信号的基波频率测量方法,其特征在于,根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位的步骤包括以下步骤:
将所述后段序列虚数积分值除以所述后段序列实数积分值,生成第二比值;
获取所述第二比值的反余切函数值的相反数,生成所述第二相位。
5.根据权利要求1至4中任意一项所述的电力信号的基波频率测量方法,其特征在于,根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率的步骤包括以下步骤:
检测所述虚数向量滤波序列或所述实数向量滤波序列的序列长度;
获取所述序列长度与采样间隔的乘积;
获取所述相位差与所述乘积的比值的二倍,生成第一频率,数量上等于所述采样数据序列的基波频率与所述参考频率的频率差;
将所述第一频率与所述参考频率相加,生成所述电力信号的基波频率。
6.一种电力信号的基波频率测量系统,其特征在于,包括:
采样模块,用于根据预设时间长度和预设采样频率,对电力信号进行采样获得采样数据序列;
初测模块,用于对所述采样数据序列的基波频率进行初测,获得初步基波频率,并以初步基波频率为参考频率;
实数向量序列模块,用于将所述参考频率的余弦函数与所述采样数据序列相乘,生成实数向量序列;
实数向量滤波模块,用于对所述实数向量序列进行数字滤波,获得实数向量滤波序列;
虚数向量序列模块,用于将所述参考频率的正弦函数与所述采样数据序列相乘,生成虚数向量序列;
虚数向量滤波模块,用于对所述虚数向量序列进行数字滤波,生成虚数向量滤波序列;
序列等分模块,用于分别将所述实数向量滤波序列和所述虚数向量滤波序列等分为两段序列,生成实数向量滤波前段序列、实数向量滤波后段序列、虚数向量滤波前段序列和虚数向量滤波后段序列;
前段序列积分模块,用于对所述实数向量滤波前段序列和所述虚数向量滤波前段序列分别进行积分运算,生成前段序列实数积分值和前段序列虚数积分值;
第一相位模块,用于根据预设的相位转换规则,将所述前段序列实数积分值与所述前段序列虚数积分值转换为第一相位;
后段序列积分模块,用于对所述实数向量滤波后段序列和所述虚数向量滤波后段序列分别进行积分运算,生成后段序列实数积分值和后段序列虚数积分值;
第二相位模块,用于根据所述预设的相位转换规则,将所述后段序列实数积分值和所述后段序列虚数积分值转换为第二相位;
相位差模块,用于将所述第二相位减去所述第一相位,生成相位差;
基波频率模块,用于根据预设的频率转换规则,将所述相位差和所述参考频率转换为所述电力信号的基波频率。
7.根据权利要求6所述的电力信号的基波频率测量系统,其特征在于,所述电力信号包括正弦基波信号、正弦1/2谐波成分、正弦2次谐波成分、正弦3次谐波成分、正弦4次谐波成分和正弦5次谐波成分。
8.根据权利要求6所述的电力信号的基波频率测量系统,其特征在于,所述第一相位模块还用于将所述前段序列虚数积分值除以所述前段序列实数积分值,生成第一比值;获取所述第一比值的反余切函数值的相反数,生成所述第一相位。
9.根据权利要求6所述的电力信号的基波频率测量系统,其特征在于,所述第二相位模块还用于将所述后段序列虚数积分值除以所述后段序列实数积分值,生成第二比值;获取所述第二比值的反余切函数值的相反数,生成所述第二相位。
10.根据权利要求6至9中任意一项所述的电力信号的基波频率测量系统,其特征在于,所述基波频率模块还包括序列长度检测模块、乘积模块、第一频率模块和相加模块,其中:
所述序列长度检测模块用于检测所述虚数向量滤波序列或所述实数向量滤波序列的序列长度;
所述乘积模块用于获取所述序列长度与采样间隔的乘积;
所述第一频率模块用于获取所述相位差与所述乘积的比值的二倍,生成第一频率,数量上等于所述采样数据序列的基波频率与所述参考频率的频率差;
所述相加模块用于将所述第一频率与所述参考频率相加,生成所述电力信号的基波频率。
CN201410851359.XA 2014-12-29 2014-12-29 电力信号的基波频率测量方法和系统 Active CN104535836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410851359.XA CN104535836B (zh) 2014-12-29 2014-12-29 电力信号的基波频率测量方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410851359.XA CN104535836B (zh) 2014-12-29 2014-12-29 电力信号的基波频率测量方法和系统

Publications (2)

Publication Number Publication Date
CN104535836A true CN104535836A (zh) 2015-04-22
CN104535836B CN104535836B (zh) 2017-05-10

Family

ID=52851399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410851359.XA Active CN104535836B (zh) 2014-12-29 2014-12-29 电力信号的基波频率测量方法和系统

Country Status (1)

Country Link
CN (1) CN104535836B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044460A (zh) * 2015-09-18 2015-11-11 广东电网有限责任公司电力科学研究院 对电力信号序列进行零初相位余弦函数调制方法和系统
CN105067880A (zh) * 2015-09-18 2015-11-18 广东电网有限责任公司电力科学研究院 对电力信号进行正交调制的方法和系统
CN105067885A (zh) * 2015-09-18 2015-11-18 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位信号序列的方法和系统
CN105092970A (zh) * 2015-09-18 2015-11-25 广东电网有限责任公司电力科学研究院 获取电力信号序列正弦函数零初相位基准点的方法和系统
CN105116264A (zh) * 2015-09-18 2015-12-02 广东电网有限责任公司电力科学研究院 从电力信号中抽取余弦函数基准信号的方法和系统
CN105137188A (zh) * 2015-09-18 2015-12-09 广东电网有限责任公司电力科学研究院 从电力信号中提取正交信号序列的方法和系统
CN105137172A (zh) * 2015-09-18 2015-12-09 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位余弦信号序列的方法和系统
CN105158559A (zh) * 2015-09-18 2015-12-16 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位正弦信号序列的方法和系统
CN105158560A (zh) * 2015-09-18 2015-12-16 广东电网有限责任公司电力科学研究院 从电力信号中提取正交基准信号序列的方法和系统
CN105182075A (zh) * 2015-09-18 2015-12-23 广东电网有限责任公司电力科学研究院 获取电力信号序列余弦函数零初相位基准点的方法和系统
CN105203840A (zh) * 2015-09-18 2015-12-30 广东电网有限责任公司电力科学研究院 对电力信号序列进行零初相位正弦函数调制的方法和系统
CN106501602A (zh) * 2016-09-28 2017-03-15 西南交通大学 一种基于滑窗频谱分离的基波参数测量方法
CN106885941A (zh) * 2017-03-15 2017-06-23 国网福建省电力有限公司 基于频谱极值点的电网基波频率检测方法
CN107305223A (zh) * 2016-04-19 2017-10-31 天津大学 一种改进的相位差频率估计方法
CN113848384A (zh) * 2021-09-22 2021-12-28 浙江大学 一种基于鉴频鉴相器的高精度反馈式频率测量装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173908A (ja) * 1997-12-15 1999-07-02 Kawasaki Steel Corp 信号波形の処理方法及び装置
JP2005091255A (ja) * 2003-09-19 2005-04-07 Kenwood Corp トーン信号周波数検出装置
CN101311702A (zh) * 2004-08-11 2008-11-26 日本电波工业株式会社 感知装置
CN102387397A (zh) * 2010-08-30 2012-03-21 深圳艾科创新微电子有限公司 视频信号中色副载波频率检测方法及装置
CN102385003A (zh) * 2011-11-07 2012-03-21 清华大学 检测电力系统中电压信号或电流信号频率和相位的方法
JP2012163543A (ja) * 2010-09-30 2012-08-30 Daihen Corp 周波数検出装置
CN102832931A (zh) * 2012-09-18 2012-12-19 浙江昱能光伏科技集成有限公司 基于不完整周期电网电压信号的鉴相方法、装置及锁相环
CN103547328A (zh) * 2012-05-22 2014-01-29 深圳市英威腾电气股份有限公司 谐波检测方法及相关装置
CN104215833A (zh) * 2014-09-01 2014-12-17 广东电网公司电力科学研究院 电力系统频率测量方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173908A (ja) * 1997-12-15 1999-07-02 Kawasaki Steel Corp 信号波形の処理方法及び装置
JP2005091255A (ja) * 2003-09-19 2005-04-07 Kenwood Corp トーン信号周波数検出装置
CN101311702A (zh) * 2004-08-11 2008-11-26 日本电波工业株式会社 感知装置
CN102387397A (zh) * 2010-08-30 2012-03-21 深圳艾科创新微电子有限公司 视频信号中色副载波频率检测方法及装置
JP2012163543A (ja) * 2010-09-30 2012-08-30 Daihen Corp 周波数検出装置
CN102385003A (zh) * 2011-11-07 2012-03-21 清华大学 检测电力系统中电压信号或电流信号频率和相位的方法
CN103547328A (zh) * 2012-05-22 2014-01-29 深圳市英威腾电气股份有限公司 谐波检测方法及相关装置
CN102832931A (zh) * 2012-09-18 2012-12-19 浙江昱能光伏科技集成有限公司 基于不完整周期电网电压信号的鉴相方法、装置及锁相环
CN104215833A (zh) * 2014-09-01 2014-12-17 广东电网公司电力科学研究院 电力系统频率测量方法及装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092970B (zh) * 2015-09-18 2018-01-30 广东电网有限责任公司电力科学研究院 获取电力信号序列正弦函数零初相位基准点的方法和系统
CN105067885A (zh) * 2015-09-18 2015-11-18 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位信号序列的方法和系统
CN105158560B (zh) * 2015-09-18 2018-03-02 广东电网有限责任公司电力科学研究院 从电力信号中提取正交基准信号序列的方法和系统
CN105203840B (zh) * 2015-09-18 2017-11-14 广东电网有限责任公司电力科学研究院 对电力信号序列进行零初相位正弦函数调制的方法和系统
CN105116264A (zh) * 2015-09-18 2015-12-02 广东电网有限责任公司电力科学研究院 从电力信号中抽取余弦函数基准信号的方法和系统
CN105137188A (zh) * 2015-09-18 2015-12-09 广东电网有限责任公司电力科学研究院 从电力信号中提取正交信号序列的方法和系统
CN105137172A (zh) * 2015-09-18 2015-12-09 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位余弦信号序列的方法和系统
CN105158559A (zh) * 2015-09-18 2015-12-16 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位正弦信号序列的方法和系统
CN105158560A (zh) * 2015-09-18 2015-12-16 广东电网有限责任公司电力科学研究院 从电力信号中提取正交基准信号序列的方法和系统
CN105182075A (zh) * 2015-09-18 2015-12-23 广东电网有限责任公司电力科学研究院 获取电力信号序列余弦函数零初相位基准点的方法和系统
CN105203840A (zh) * 2015-09-18 2015-12-30 广东电网有限责任公司电力科学研究院 对电力信号序列进行零初相位正弦函数调制的方法和系统
CN105067880B (zh) * 2015-09-18 2018-02-16 广东电网有限责任公司电力科学研究院 对电力信号进行正交调制的方法和系统
CN105116264B (zh) * 2015-09-18 2018-02-02 广东电网有限责任公司电力科学研究院 从电力信号中抽取余弦函数基准信号的方法和系统
CN105067880A (zh) * 2015-09-18 2015-11-18 广东电网有限责任公司电力科学研究院 对电力信号进行正交调制的方法和系统
CN105092970A (zh) * 2015-09-18 2015-11-25 广东电网有限责任公司电力科学研究院 获取电力信号序列正弦函数零初相位基准点的方法和系统
CN105182075B (zh) * 2015-09-18 2018-01-30 广东电网有限责任公司电力科学研究院 获取电力信号序列余弦函数零初相位基准点的方法和系统
CN105067885B (zh) * 2015-09-18 2018-01-30 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位信号序列的方法和系统
CN105137172B (zh) * 2015-09-18 2018-01-30 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位余弦信号序列的方法和系统
CN105044460A (zh) * 2015-09-18 2015-11-11 广东电网有限责任公司电力科学研究院 对电力信号序列进行零初相位余弦函数调制方法和系统
CN105158559B (zh) * 2015-09-18 2018-01-30 广东电网有限责任公司电力科学研究院 将电力信号转换为零初相位正弦信号序列的方法和系统
CN107305223A (zh) * 2016-04-19 2017-10-31 天津大学 一种改进的相位差频率估计方法
CN107305223B (zh) * 2016-04-19 2019-12-10 天津大学 一种改进的相位差频率估计方法
CN106501602A (zh) * 2016-09-28 2017-03-15 西南交通大学 一种基于滑窗频谱分离的基波参数测量方法
CN106501602B (zh) * 2016-09-28 2018-10-30 西南交通大学 一种基于滑窗频谱分离的基波参数测量方法
CN106885941A (zh) * 2017-03-15 2017-06-23 国网福建省电力有限公司 基于频谱极值点的电网基波频率检测方法
CN113848384A (zh) * 2021-09-22 2021-12-28 浙江大学 一种基于鉴频鉴相器的高精度反馈式频率测量装置及方法

Also Published As

Publication number Publication date
CN104535836B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN104535836A (zh) 电力信号的基波频率测量方法和系统
CN104502706A (zh) 电力信号的谐波幅值测量方法和系统
CN104502700A (zh) 电力信号的正弦参数测量方法和系统
CN104635045A (zh) 基于相位调制的电力信号频率检测方法和系统
CN104635044A (zh) 基于幅值调制的电力信号频率检测方法和系统
CN104459320A (zh) 电力信号的谐波相位测量方法和系统
CN104459321A (zh) 电力信号的基波相位测量方法和系统
CN104502675A (zh) 电力信号的基波幅值测量方法和系统
CN105067880A (zh) 对电力信号进行正交调制的方法和系统
CN107478896A (zh) 一种基于级联广义积分器的频率自适应谐波电流检测方法
Salcic et al. An improved Taylor method for frequency measurement in power systems
CN202119835U (zh) 非稳定谐波及间谐波测量仪
CN105372471A (zh) 正弦信号的幅值检测方法和系统
CN102323481A (zh) 非稳定谐波及间谐波测量仪
Mokeev Optimal filter synthesis
CN104991104A (zh) 电力信号的幅值检测方法和系统
CN105182077B (zh) 根据余弦函数调制的电力信号全相位差检测方法和系统
CN104977467A (zh) 电力信号的初相位检测方法和系统
CN105445551A (zh) 正弦信号的截止相位检测方法和系统
Budkina et al. A Technique for Increasing the Accuracy of Frequency Measurement When Using a Method Based on Phase Increment Analysis
CN105445552A (zh) 正弦信号的初相位检测方法和系统
CN105067885A (zh) 将电力信号转换为零初相位信号序列的方法和系统
CN105044462B (zh) 电力信号的截止相位检测方法和系统
CN105092967A (zh) 电力信号的频率检测方法和系统
CN105548693A (zh) 获取零初相位基准正弦函数倍频序列的方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant