CN101311702A - 感知装置 - Google Patents

感知装置 Download PDF

Info

Publication number
CN101311702A
CN101311702A CNA2008101095944A CN200810109594A CN101311702A CN 101311702 A CN101311702 A CN 101311702A CN A2008101095944 A CNA2008101095944 A CN A2008101095944A CN 200810109594 A CN200810109594 A CN 200810109594A CN 101311702 A CN101311702 A CN 101311702A
Authority
CN
China
Prior art keywords
frequency
rotating vector
signal
value
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101095944A
Other languages
English (en)
Inventor
塚本信夫
赤池和男
古幡司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dps Technology Associates Inc
Nihon Dempa Kogyo Co Ltd
Original Assignee
Dps Technology Associates Inc
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dps Technology Associates Inc, Nihon Dempa Kogyo Co Ltd filed Critical Dps Technology Associates Inc
Publication of CN101311702A publication Critical patent/CN101311702A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明的目的是提供具有高精度并能够瞬时地检测出微量地存在的例如环境污染物质等的感知装置。作为具体的解决方法,根据来自基准时钟发生部的频率信号对来自石英振子的频率信号进行取样,将该取样值作为数字信号进行输出,对与该输出信号对应的频率信号进行根据数字信号的正交检波,取出以该频率信号的频率和用于正交检波的正弦波频率之差的频率进行旋转的旋转矢量,通过根据各取样值检测旋转矢量的速度检测频率的变化量。而且,通过在所述旋转矢量上乘以与该速度对应的逆旋转矢量,能够扩大频率变化的测定范围。

Description

感知装置
本申请是2005年8月11日递交的发明名称为“感知装置”的申请200580027099.3的分案申请
技术领域
本发明涉及感知装置,通过使用在其表面上形成用于吸附感知对象物的吸附层,由感知对象物的吸附改变固有振动频率的传感器用振子例如石英振子,检测该传感器用振子的固有振动频率的变化量并感知感知对象物。
背景技术
为了保护环境,迫切需要掌握河川和土壤中的种种环境污染物质的浓度,污染物质即便极其微量对人体的毒性也很强,因此希望确立微量的污染物质的测量技术。最近作为一种引人注目的污染物质是二恶英(Dioxin),作为测定该二恶英的方法,使用气相色谱质量分析仪的方法和ELISA法(适用酵素免疫测定法)是众所周知的。如果根据气体色谱法质量分析仪,则能够进行10-12g/ml量级的高精度的微量分析,但是存在着装置的价格极高,因此分析成本也很高,进一步分析需要长的期间那样的缺点。而且ELISA法与气相色谱质量分析仪比较,装置价格和分析价格低,分析需要的时间也短,但是存在着分析精度低到10-9g/ml量级那样的课题。
因此,由当感知对象物附着在石英振子上时其固有振动频率与其附着量相应地变化,所以作为二恶英等的污染物质的测定装置,本发明者着眼于石英振子。另一方面,作为使用石英振子的化学传感装置有专利文献1中记载的技术。该装置是具有输出传感器振子的振荡频率和由基准振子产生的基准频率的差频率的绝对值的取样电路、以所要的分频比对差频率进行分频的分频电路、将基准频率的周期作为时钟对该分频输出的周期进行计数的计数器、和根据已计数的周期求得传感器振子的振荡频率的计算装置的构成,是用于识别吸附气体的装置。根据该化学传感装置,因为是求差频率,所以具有能够减小要测定的频率的绝对值,可不扩大测定范围而进行高分辨率的测定的优点。
但是专利文献1的技术存在有通过使用分频电路降低计数器的时钟频率,因此上述差频率高且分频电路的段数多,因为当该段数变多时相位噪声增大,所以事实上上述差频率不太高,从而难以确保高的测定精度。结果限定了适用范围,难以应用于要求高精度地检测二恶英等那样极其微量的物质的情形。而且因为使用计数器,所以也存在着要求分辨率高和测定时间长的缺点。
专利文献1:日本专利特开平6-241972号公报
发明内容
本发明就是在这样的情况而作出,本发明的目的是提供具有高精度并能够检测出微量存在的例如环境污染物质等的感知对象物的感知装置。本发明的另一个目的是提供具有高精度并能够瞬时地检测出感知对象物的感知装置。进一步又一个目的是提供具有高精度地检测出感知对象物,能够扩大测定范围的感知装置。
本发明的感知装置的特征是其表面上形成有用于吸附感知对象物的吸附层,使用由于感知对象物的吸附而使固有振动频率改变的传感器用振子,根据该传感器用振子的固有振动频率的变化感知感知对象物,其特征在于,具有:
传感器用振荡电路,使上述传感器用振子振荡;
基准时钟发生部,产生用于对来自上述传感器用振子的频率信号进行取样的时钟信号;
模拟/数字变换部,通过来自上述基准时钟发生部的时钟信号对来自上述传感器用振子的频率信号进行取样,将该取样值作为数字信号进行输出;
旋转矢量取出部件,对与来自该模拟/数字变换部的输出信号对应的频率信号进行根据数字信号的正交检波,并取出由复数表示旋转矢量时的实数部分和虚数部分,其中该旋转矢量以与该频率信号中的频率和由用于正交检波的数字信号特定的频率的频率差相当的角速度旋转;和
旋转矢量速度计算部件,根据由该旋转矢量取出部件得到的上述实数部分和虚数部分的各时间系列数据,求得旋转矢量的角速度。
此外,本发明也可以具有求得当传感器用振子在第一环境中时的旋转矢量的角速度与当传感器用振子在第二环境中时的旋转矢量的角速度之差的部件。作为第一环境,例如能够举出纯水等的溶媒,作为第二环境,能够举出在该溶媒中包含感知对象物的情形。
上述旋转矢量取出部件具有上述旋转矢量取出部件包括对与来自模拟/数字变换部的输出信号对应的频率信号进行正交检波的部件、和除去包含在由该部件得到的数据中的高频成分的部件。此外,当设定与在某个定时中的上述取样值对应的实数部分和虚数部分分别为I(n)和Q(n),设定与在该定时前的定时中的上述取样值对应的实数部分和虚数部分分别为I(n-1)和Q(n-1)时,上述旋转矢量速度计算部件根据{Q(n)-Q(n-1)}·I(n)-{I(n)-I(n-1)}·Q(n)的计算,求得旋转矢量的角速度。
上述旋转矢量速度计算部件可以构成为具有对由上述旋转矢量速度计算部件求得的计算结果求出规定时间内的平均值的部件。作为一个更具体的例子,构成作为求得移动平均的部件。而且,优选在上述旋转矢量速度计算部件的前段中,设置有根据由实数部分和虚数部分决定的矢量的标量除上述实数部分和虚数部分的修正处理部。
进一步优选本发明如下地构成。即,构成为进一步具有:
对通过上述旋转矢量速度计算部件求得的角速度进行积分的积分部件;逆旋转矢量生成部,生成复数表示以与该积分部件的输出值对应的速度并且与由上述旋转矢量取出部件取出的旋转矢量逆方向地旋转的逆旋转矢量时的实数部分和虚数部分;和
设置在上述旋转矢量速度计算部件的前段,对由上述旋转矢量取出部件获得的上述旋转矢量和由上述逆旋转矢量生成部生成的逆旋转矢量进行乘法运算的部件。
这时,逆旋转矢量生成部具有沿旋转方向顺次配置的限定在复数表面上的逆旋转矢量的位置的实数部分和虚数部分的组的数据表、和通过由与上述频率的变化量相当的增量数或减量数产生上述数据表的地址生成逆旋转矢量的地址控制部。作为一个更具体的例子,能够举出逆旋转矢量生成部具有输出与当用数字信号表示由上述旋转矢量速度计算部件求得的频率变化量时的下位位的值相应的占空比的脉冲列的脉冲宽度控制部、和将当用数字信号表示上述频率变化量时的上位位的值和由上述脉冲宽度控制部作成的脉冲的电平相加,输出到上述地址控制部的加法部,
上述地址生成部,对来自该加法部的输出值进行积分,将该积分值作为上述数据表的地址的构成。
本发明,根据来自基准时钟发生部的时钟信号对来自例如石英振子等的传感器用振子的频率信号进行取样,将该取样值作为数字信号进行输出,对与该输出信号对应的频率信号进行根据数字信号的正交检波,取出以与由上述取样值特定的频率信号(模拟/数字变换部的输出信号)的频率和由用于正交检波的数字信号特定的频率之差相当的频率进行旋转的旋转矢量。因为该旋转矢量的角速度与传感器用振子的振荡频率(固有振动频率)对应,所以通过检测当将传感器用振子浸渍在例如纯水等的溶媒中时的旋转矢量的角速度和当将包含感知对象物的液体供给该溶媒时的旋转矢量的角速度,能够检测出旋转矢量的角速度的变化量,能够知道吸附在传感器用振子上的感知对象物的吸附量。此外在本发明中,也可以通过根据检测量线等掌握例如预先在溶媒中的感知对象物的各种浓度和旋转矢量的角速度的对应,通过将旋转矢量的角速度与上述检测量线等进行核对推定感知对象物的浓度。
因此,与对脉冲进行计数求得频率的方法比较,能够以高精度而且在极短时间内检测出传感器用振子的振荡频率。从而也能够以高精度而且在极短时间内检测出传感器用振子的振荡频率的变化量,作为检测环境污染物质的极微量物质的装置是有用的。
而且,通过用与由上述旋转矢量速度计算部件求得的频率变化量相当的角速度,即与上述旋转矢量对应的角速度,生成与该旋转矢量逆向旋转的逆旋转矢量,使逆旋转矢量与上述旋转矢量相乘,能够延迟上述旋转矢量的角速度。结果,因为即便传感器用振子的振荡频率高,通过延迟旋转矢量的角速度也能够检测出该角速度,所以结果能够扩大频率的测定范围。
附图说明
图1是表示本发明的感知装置的实施方式的整体构成的框图。
图2是表示用于上述实施方式的载波去除器和低通滤波器的构成图。
图3是表示与石英振子的频率信号中的频率变化量对应的旋转矢量的说明图。
图4是表示用于上述实施方式的修正处理部的构成图。
图5是表示当旋转矢量延缓时产生检测误差的情况的说明图。
图6是表示在相前后的定时取样的旋转矢量的相位差的说明图。
图7是表示用于上述实施方式的速度计算部的构成图。
图8是表示本发明的其它实施方式的整体构成的框图。
图9是表示上述其它实施方式中的旋转矢量和逆旋转矢量相乘的情况的说明图。
图10是表示在上述其它实施方式中用于产生的逆旋转矢量的数据表的说明图。
图11是详细地表示上述其它实施方式中的主要部分的构成的框图。
图12是表示上述其它实施方式中的一部分作用的时序图。
图13是表示上述其它实施方式中的一部分作用的时序图。
图14是表示在上述其它实施方式中使用的脉冲宽度电路部的输入值的一个例子的特性图。
图15是表示上述脉冲宽度电路部的输出值的一个例子的特性图。
图16是表示在上述其它实施方式中使用的加法器的输出值的一个例子的特性图。
图17是表示在本发明的具体实施例中,对来自石英振子的振荡电路的频率信号进行取样并变换成数字值的情况的说明图。
图18是表示对由图8得到的输出信号验证频谱的结果的特性图。
图19是表示在上述实施例中用载波去除器得到的I值和Q值的特性图。
图20是表示在上述实施例中用低通滤波器得到的I值和Q值的特性图。
图21是表示在上述实施例中偏移频率和检测输出的关系的特性图。
图22是表示在上述实施例中频率变化量的检测值的上升的情况的特性图。
具体实施方式
图1是表示本发明的感知装置的实施方式的整体构成的示意图。1是传感器部,该传感器部1具有由石英等密封作为传感器用振子的压电振子例如石英振子11的一个面而露出另一个面,作为例如浸渍在存在有感知对象物质的溶液12中的兰杰文(Langevin)型振子的构成。在上述石英振子11中与溶液接触的面上形成用于吸附(捕获)感知对象物质的吸附层,例如包含用于吸附二恶英的抗体的吸附层。13是使石英振子11振荡的振荡电路,例如输出作为频率信号的正弦波的高频信号。
2是基准时钟发生部,为了对来自振荡电路13的高频信号进行取样,输出作为频率稳定性极高的频率信号的时钟信号。21是A/D(模拟/数字)变换器,根据来自基准时钟发生部2的时钟信号对来自振荡电路13的高频信号进行取样,将该取样值作为数字信号进行输出。由该数字信号特定的高频信号除了基波之外也包含有高频波。即当对具有高频波失真的正弦波进行取样时,设想该高频波成分受到折叠的影响,根据情况在频谱中的频率轴上基波频率和高频波的频率重叠的情形。因此为了能够得到正确的感知工作必须避免这种重叠。
一般当以频率fs的时钟信号对频率f1的正弦波信号进行取样时,以公式(1)表示该取入结果的频率f2。其中mod(,)表示modulo(模)函数。
f2=|mod(f1+fs/2,fs)-fs/2|……(1)
在该取入结果中,因为对基波频率,n次高频波的频率表现为n×(基波频率),所以如果将其置于f2上代入到上述公式(1),则能够计算作为什么样的频率取入高频波。能够以通过使用该计算使基波的频率和高频波的频率不重叠的方式,设定来自振荡电路13的高频信号的频率fc和取样频率(时钟信号的频率)fs,例如设定fc为11MHz,fs为12MHz。这时,由作为来自A/D变换器21的数字信号的输出信号特定的频率信号的基波成为1MHz的正弦波。此外,如果设定fc/fs为11/12,则基波的频率和高频波的频率不重叠,但是fc/fs不限于该值。
在A/D变换器21的后段,以载波去除器31和低通滤波器32的顺序设置它们。载波去除器31和低通滤波器32用于,取出以通过来自A/D变换器21的数字信号特定的例如1MHz的正弦波信号的频率与用于正交检波的正弦波信号的频率之差的频率进行旋转的旋转矢量。
为了容易理解地说明取出旋转矢量的作用,设定通过来自A/D变换器21的数字信号特定的正弦波信号为Acos(ω0t+θ)。另一方面,载波去除器31具有如图2所示对上述正弦波信号乘上cos(ω0t)的乘法部31a和对上述正弦波信号乘上-sin(ω0t)的乘法部31b。即通过这种计算进行正交检波。乘法部31a的输出和乘法部31b的输出分别由公式(2)和公式(3)表示。
Acos(ω0t+θ)·cos(ω0t)
=1/2·Acosθ+1/2{cos(2ω0t)·cosθ+sin(2ω0t)·sinθ}……(2)
Acos(ω0t+θ)-sin(ω0t)
=1/2·A sinθ-1/2{sin(2ω0t)·cosθ+cos(2ω0t)·sinθ}……(3)
从而,因为使乘法部31a的输出和乘法部31b的输出分别通过低通滤波器32a和32b,除去2ω0的频率信号,所以结果从低通滤波器32取出1/2·Acosθ和1/2·Asinθ。此外记载有低通滤波器32由低通滤波器32a和32b构成。低通滤波器32中的实际的数字处理,对于从载波去除器31输出的时间系列数据计算连续的多个数据例如6个数据的移动平均。
而且当由Acos(ω0t+θ)表示的正弦波信号的频率变化时,Acos(ω0t+θ)成为Acos(ω0t+θ+ω1t)。其中ω1与ω0相比足够小。从而1/2·Acosθ成为1/2·Acos(θ+ω1t),1/2·Asinθ成为1/2·Asin(θ+ω1t)。即,从低通滤波器32得到的输出是与正弦波信号[Acos(ω0t+θ)]的频率变化量ω1/2π对应的信号。即这些值是旋转矢量时的实数部分(I)和虚数部分(Q),其中旋转矢量以通过来自A/D变换器21的数字信号特定的正弦波信号的频率与用于正交检波的正弦波信号的频率ω0/2π之差的频率进行旋转。
图3是表示该旋转矢量的示意图,该旋转矢量的长度为A,角速度为ω1。在图2和图3中将ω1t表示为φ。从而如果例如当来自在石英振子11上没有吸附感知对象物质时的A/D变换部21的频率信号的频率为ω0/2π,则因为ω1为零,所以其旋转矢量的角速度为零,但是当在石英振子11上吸附有感知对象物质且石英振子11的频率变化,因此上述正弦波信号的频率变化时,旋转矢量以与该变化量相应的角速度旋转。此外,如果来自当在石英振子11上没有吸附感知对象物质时的A/D变换部21的频率信号的频率从ω0/2π偏离,则旋转矢量以与该偏离的频率相应的角速度旋转。因为在无论那种情形中旋转矢量的角速度都为与石英振子11的振荡频率对应的值,所以如果通过求得例如当将石英振子11浸渍在溶媒中时和在该溶媒中加入感知对象物使感知对象物吸附在石英振子11上时的各个旋转矢量的角速度,求得它们的角速度差,则能够知道由于使感知对象物吸附在石英振子11上引起的振荡频率的变化量。
这样,载波去除器31对上述正弦波信号进行正交检波,低通滤波器32对该检波结果除去高频成分,从而它们是取出旋转矢量时的实数部分和虚数部分的装置,其中旋转矢量以复数表示对来自A/D变换器21的频率信号进行根据数字信号的正交检波,在该频率信号中的频率和用于正交检波的正弦波信号的频率ω0/2π的频率差相当的角速度旋转。
回到图1,在低通滤波器32的后段设置有减量处理部4。该减量处理部4是对于通过从低通滤波器32得到的时间系列的数字信号即12MHz的时钟信号得到的数字值组,进行例如每隔120个取出数据的减量处理(间拔处理)的装置。这样通过减量处理,减轻了计算机的运算负担。而且在本实施方式中如后述那样,因为通过掌握在取样间隔中旋转矢量旋转了多少次,求得该旋转矢量的角速度,所以无论对数字值组进行多少间拔,都对上述角速度的检测精度(频率的变化量的检测精度)没有影响。
在减量处理部4的后段设置有修正处理部5,该修正处理部5进行通过分别以旋转矢量的标量除通过低通滤波器32并且经过减量处理的上述旋转矢量的作为实数部分的I值和上述旋转矢量的作为虚数部分的Q值,求得旋转矢量的每个单位长度的I值和Q值的处理。即,如图4所示,修正处理部5以当将符号V分配给旋转矢量时,分别将I值和Q值平方并加起来,算出该加法值的平方根而求得旋转矢量V的标量|V|,以|V|除I值和Q值的方式进行构成。
这样地修正I值和Q值的理由如下所述。在本实施方式中,每当算出旋转矢量V在取样间隔中旋转了多少次时,如图5所示,根据包含连结由第n个取样求得的旋转矢量V(n)和由第(n-1)个取样求得的旋转矢量V(n-1)的矢量ΔV的因子进行评价。因此存在当由于来自振荡电路13的高频信号的波形波动等可以说旋转矢量被延缓,ΔV变成ΔV’时,ΔV和旋转矢量的旋转量Δφ的对应关系崩溃,损害旋转矢量的角速度的检测值的可靠性。因此,因为通过如上所述地进行修正处理,使在各定时的I值和Q值作为与旋转矢量的单位长度对应的值一致,所以能够排除旋转矢量延缓的影响。
进一步如图1所示,在上述修正处理部5的后段设置有用于求得旋转矢量的角速度的速度计算部6。参照图6和图7说明该速度计算部6,如图6所示,当设定常数为K时,如果旋转矢量的角速度(频率)与取样频率相比足够小,则能够以公式(4)近似通过第(n-1)个取样求得的旋转矢量V(n-1)和由第n个取样求得的旋转矢量V(n)=V(n-1)+ΔV所成的角度Δφ。其中Δφ是V(n)的相位φ(n)和V(n-1)的相位φ(n-1)之差,而且imag是虚数部分,conj{V(n)}是V(n)的共轭矢量。
Δφ=K·imag[ΔV·conj{V(n)}]……(4)
这里如果对于I值和Q值设定与第n个取样对应的值分别为I(n)和Q(n),则当复数表示ΔV和conj{V(n)}时分别由公式(5)和公式(6)表示。
ΔV=ΔI+jΔQ……(5)
Conj{V(n)}=I(n)-jQ(n)……(6)
其中ΔI是I(n)-I(n-1),ΔQ是Q(n)-Q(n-1)。将公式(5)和公式(6)代入到公式(4)中经过整理后,Δφ由公式(7)表示。
Δφ=ΔQ·I(n)-ΔI·Q(n)……(7)
上述速度计算部6是通过进行该公式(7)的计算求得Δφ的近似值的装置,其构成如图7所示。当输入到速度计算部6的I值是作为与第n个取样对应的值的I(n)时,将作为一个前的定时的与第(n-1)个取样对应的I(n-1)保持在寄存器61中,在核对电路部62中核对它们,取出I(n)和I(n-1)的差分ΔI,将I(n)和ΔI输入到计算部65。此外,关于Q值也由寄存器63和核对电路部64同样地进行处理,将Q(n)和ΔQ输入到计算部65。而且在计算部65中,进行公式(7)的计算,求得Δφ。将计算部65的计算结果作为Δφ详细地进行评价。
这里如果求得旋转矢量V(n-1)和V(n),则求它们之间的角度Δφ的方法或者对其进行评价的方法能够使用各种数学方法,作为一个例子只举出公式(4)的近似式。作为该公式也可以用作为将连结V(n)和V(n-1)的各终点的线的中点和原点连结起来的矢量V0的{V(n)+V(n-1)}/2,在公式(4)中代替V(n)代入该矢量V0。能够这样近似公式(4)的理由是因为能够将V0和ΔV看作正交的,因此可以将ΔV的长度处理为与当将V0看作实轴时的ΔV的虚数值相当。而且作为求Δφ的方法直观地容易理解的方法可以是求得argV(n)和argV(n-1)使它们相减的方法,但是这时因为需要将各矢量的虚数值和实数值的组与该矢量的相位φ对应起来的数据表,所以根据上述的公式(4)进行计算从减轻计算机负担方面来看是好方法。此外argV(n)是tan-1(虚数值/实数值)。
如图1所示,在该速度计算部6的后段设置有时间平均化处理部7,时间平均化处理部7取出并输出对于作为由速度计算部6得到的计算结果的Δφ的时间系列数据进行的时间平均化处理,例如规定量的数据的移动平均。将这里得到的输出值输入到频率差检测部71。该频率差检测部71是用于检测当将石英振子11置于作为第一环境的例如纯水等的溶媒中时的旋转矢量的角速度、和当将石英振子11置于作为第二环境的供给感知对象物的溶媒中时的旋转矢量的角速度之差的装置。因为旋转矢量的角速度是与石英振子11的振荡频率对应的值,所以由频率差检测部71检测出的角速度检测差是与由石英振子11吸附有感知物质引起的振荡频率的变化量对应的值,可以称为是评价感知物质的吸附量的值。更具体地说,频率差检测部71具有存储各旋转矢量的角速度的存储器、读出该存储器内的各旋转矢量的角速度并计算该角速度差的部件等。
如上所述通过使本实施方式的构成方框化进行了说明,通过软件实施实际的计算或数据处理。
下面说明上述实施方式的作用。例如通过12MHz的频率信号以A/D变换部21变换包含由传感器部1的石英振子(振荡电路13)振荡产生的作为基波的正弦波的例如11MHz的频率信号,从A/D变换部21输出包含约1MHz的作为基波的正弦波信号的信号。这里为了说明方便,当设定该正弦波信号为Acos(ω0t+ω1t+θ)时(ω1与ω0相比足够小),通过对该正弦波信号进行正交检波,除去更低频率成分,取出以与该正弦波信号的频率变化量对应的角速度旋转的旋转矢量。即,取出该旋转矢量的实数部分和虚数部分分别作为I值和Q值。由减量处理部4对这些I值和Q值进行减量处理,进一步在修正处理部5中除以旋转矢量V的标量|V|,除去旋转矢量的延缓的影响,输入到频率差计算部6。此外,为了避免说明的繁杂性,在修正处理前后的旋转矢量上附加相同的标号“V”进行说明。
该旋转矢量V以正弦波信号为Acos(ω0t+ω1t+θ)的频率和用于正交检波的正弦波信号的频率ω0/2π之差,即ω1的角速度进行旋转(参照图3)。这里为了易于说明,例如将传感器部1浸渍在用于检测感知对象物质存在的溶液内,并且当设定与当感知对象物质不存在时(当在石英振子11的检测界限以下时)的石英振子11的固有振动频率对应的角速度为ω0时,因为ω1为零,所以旋转矢量V静止。从而作为时间平均化处理部7的输出的Δφ为零。
另一方面,当在上述溶液中存在有感知对象物质例如二恶英时,与吸附在石英振子11上的二恶英的量相应,其振荡频率(固有振动频率)变化。这时上述旋转矢量V开始以与频率变化量对应的角速度旋转。为了使说明简略化假定当设定频率的变化量为1Hz时,旋转矢量V在1秒内旋转1次。这里在本实施方式中,取样是通过掌握相前后的V(n)的相位φ(n)和V(n-1)的相位φ(n-1)之差Δφ,检测出旋转矢量的角速度的取样,当假定该取样间隔为1/100秒时,Δφ成为3.6度。换句话说,只在旋转矢量间隔的时间内求旋转矢量V的角速度,就能够知道石英振子11的振荡频率的变化量。
但是,因为与当不存在感知对象物质时的石英振子11的振荡频率对应的角速度与用于正交检波的正弦波信号的角速度一致是相当稀少的,所以实际上分别求与当不存在感知对象物质时的石英振子11的振荡频率对应的旋转矢量的角速度和与当存在感知对象物质时的石英振子11的振荡频率对应的旋转矢量的角速度,然后求出这两个角速度之差。因为该旋转矢量的角速度之差是与在石英振子11上吸附有感知物质引起的石英振子11的频率的变化量对应的值,所以通过预先掌握感知对象物质的吸附量和频率的变化量的关系,能够求得这时的感知对象物质的吸附量。而且如果预先求得溶液中的感知对象物质的浓度和感知对象物质的吸附量的关系,则根据感知对象物质的吸附量即石英振子11的频率的变化量,可以知道溶液中的感知对象物质的浓度。因此可以知道供给浸渍有石英振子11的溶液(图1中的标号12)的试料液中的感知物质的浓度。
这样,根据上述实施方式,对石英振子11的振荡频率(来自振荡电路13的频率信号的频率)进行数字处理,根据与取样间隔相应的相位差检测旋转矢量的角速度。结果与现有技术那样对脉冲进行计数的方法相比,如在后述的实施例中证明的那样,能够以高精度而且在极短时间内检测出石英振子11的振荡频率的变化量。在现有的脉冲计数方法中,因为将正弦波作为脉冲进行计数,所以例如为了以1Hz的分辨率识别10MHz的脉冲需要1秒钟的时间。如从以上说明看到的那样,本发明作为检测以环境污染物质为首的微量物质的装置是极有用的。
作为本发明的使用方法,不限于将传感器部1浸渍在溶液中,也可以使溶液在石英振子11的表面上滴下,而且可以感知二恶英以外的环境污染物质例如PCB等,或者也可以感知病毒。
而且在本发明中,也可以例如通过使与石英振子11接触的溶液中的感知对象物质的浓度进行各种改变,预先求得各浓度和旋转矢量的角速度的关系,根据使溶液与石英振子11接触时的旋转矢量的角速度和该关系,推定感知对象物质的吸附量。
而且也可以将使石英振子1与纯水等的溶媒接触的状态作为所谓的空白值,但是也可以不使石英振子1与溶媒接触而将曝露在大气中的状态作为空白值,捕捉到当使溶液与石英振子1接触而吸附感知对象物质时的旋转矢量的旋转数的变化量。
进一步,本发明不限于感知存在于液体中的物质,能够应用于检测石油的味道、检测火灾时的烟,或者检测沙林气体等的毒气、检测部品内的气体、检测半导体制造工厂等的净化室内的气体等的各种领域。
此外,本发明能够用于通过表示频率的变化量本身检测感知对象物质的浓度,但是也能够形成作为不检测该浓度,例如具有对频率的变化量的阈值,只知道有无存在感知对象物质的装置的构成。这种情形也因为能够捕捉到频率的变化量,所以当然包含在本发明的技术范围内。
接着说明本发明的其它实施方式。本实施方式的目的是在上述实施方式中,进一步扩大频率差的测定范围。在前面的实施方式中,因为如图6所示将旋转矢量的角速度作为连结V(n)和V(n-1)的各终点的直线的长度进行评价,所以当这些旋转矢量的相位差大时测定误差变大。因此,在本实施方式中,通过作成以与旋转矢量的角速度相应的角速度逆向旋转的逆旋转矢量,使上述旋转矢量和该逆旋转矢量相乘,能够降低旋转矢量的角速度,即便旋转矢量或快或慢,也可以高精度地检测出V(n)和V(n-1)的相位差即旋转矢量的角速度,这样扩大了当将试料溶液供给传感器时的频率的变化量(频率差)的测定范围。
图8表示本实施方式的整体构成,在频率差计算部6的输出端与时间平均化处理部7之间设置有积分器70。另一方面,在低通滤波器32与减量处理部4之间设置有频率范围修正部8并且设置有与积分器70的输出相应地,生成与上述旋转矢量V逆向旋转的逆旋转矢量的逆旋转矢量生成部9,这里用频率范围修正部8将生成的逆旋转矢量和根据从低通滤波器32输出的时间系列数据特定的旋转矢量相乘。
在旋转矢量中,如图9所示设定某个定时的取样例如第n次取样值为I(n)+jQ(n)。当使该矢量回到沿实轴的位置时,可以作成对上述旋转矢量V逆向旋转的逆旋转矢量V’,乘上该逆旋转矢量V’。旋转矢量V根据逆旋转矢量V’旋转的矢量I+jQ成为{I(n)+jQ(n)}×{I’(n)+jQ’(n)}。当对该式进行整理时,成为公式(8),频率范围修正部8进行该公式的计算。
I+jQ(n)={I(n)·I’(n)-Q(n)·Q’(n)}+j{I(n)·Q’(n)+I’(n)·Q(n)}……(8)
当发生逆旋转矢量V’时,以实际上在复数平面上的矢量逆旋转的方式设定该矢量的实数部分和虚数部分的值、即逆旋转矢量V’的相位为φ时,发生cosφ和sinφ的值。图10表示沿矢量的旋转方向顺次排列矢量的cosφ和sinφ的组的I/Q表90,逆旋转矢量生成部9在本例中具有上述I/Q表90,用与积分器70的输出相应的增量数或减量数读出I/Q表90的地址,输出到频率范围修正部8。例如根据时钟的读出定时逐个地读出地址从“0”到“11”,当再次回到“0”时在12时钟矢量在复数平面上顺时钟转动地旋转1次,增量数成为2,每隔1个读出地址,矢量的角速度成为倍速。从而与积分器70的输出的大小相应地决定增量数,能够生成以由与上述频率差计算部6(参照图8)计算的频率差Δφ相应的角速度(与旋转矢量V的角速度相应的角速度)逆旋转的逆旋转矢量。
与旋转矢量V的方向相应地决定逆旋转矢量V’的方向,积分器70的输出与该方向相应地成为正值或负值,关于I/Q表90的地址读出,当积分器70的输出为正值时,用与该值相应的增量数进行读出,当积分器70的输出为负值时,用与该值相应的减量数进行读出。即,I/Q表90形成cos、sin的关系,由地址控制部103,通过使I/Q表90的地址增量或减量,对旋转矢量V的修正方向进行控制。此外为了易于理解本发明,模式地作成图10的I/Q表,而没有举出实际的表的优选的作成例。
在图11中表示了逆旋转矢量生成部9的优选例。在该例子中,逆旋转矢量生成部9具有将积分器70的输出值分成上位位值和下位位值的位分割部100。例如当积分器的输出值为16位时,分割成上位8位值和下位8位值进行输出。在本例中,通过在以16位表示的积分器70的输出值中,在上位8位的BCD码(二进制化的十进制数)的值上乘以1/M(M为10的负8次方),作成上位8位的值(十进制变换值),从作为上述输出值的16位的BCD码减去通过在该值上乘以M回到原来的8位的BCD码值的值,作成下位8位的值(十进制变换值)。此外将积分器70的输出值分成上位位的值和下位位的值的方法,不限于这种方法,也可以只取出上位位的值和下位位的值。
而且在位分割部100的下位位的输出侧(在本例中输出下位8位的值的输出端侧)设置有脉冲宽度控制部101,进一步在该脉冲宽度控制部101的后段设置有加法器102,由加法器102将通过与下位位的值相应地进行脉冲宽度控制而输出的脉冲列和上位位的值相加。而且以在该加法器102的后段侧设置有地址控制部103,该地址控制部103对加法器102的值进行积分,与该积分值相应地对I/Q表90中的地址的读出进行控制,即控制地址的增量数或减量数的方式进行构成。
下面说明本实施方式的作用。首先由于在石英振子11上吸附感知对象物,当石英振子11的频率从没有吸附感知对象物的状态变化时,旋转矢量以与作为该频率的变化量的频率差对应的角速度旋转。如已述那样该情况是与振荡频率为ω0一致的情况,一般地能够说是以对应ω0和ω1的差的角速度旋转的旋转矢量V。而且将作为与旋转矢量V的角速度对应的积分器70的输出值的上位位例如上位8位的值的电平的信号输入到加法器102。另一方面将积分器70的输出值的下位位例如下位8位的值输入到脉冲宽度控制部101。在脉冲宽度控制部101中,根据关于计算机的时钟脉冲对每个预先设定的脉冲数发生的取样信号,进行脉冲宽度计算,输出与输入值相应的占空比的脉冲列。
该脉冲列是将在1时钟中发生的+1电平的脉冲和在1时钟中发生的-1电平的脉冲组合起来形成的,假定每20时钟进行脉冲宽度计算,当与脉冲宽度控制部101的输入值对应的占空比为50%时,如图12所示交互地分别每10个地输出+1电平的脉冲和-1电平的脉冲。而且,例如当与上位8位的值相当的电平为“5”时,在发生取样信号后到发生下一个取样信号之间,从加法器102交互地输出“6”和“4”,地址控制部103对该输出值进行积分,其积分值成为I/Q表90的地址。即此时,因为积分值的增加量交互地重复“6”和“4”,所以地址的增量数交互地重复“6”和“4”,结果用作为与上位8位的值相当的电平的平均“5”的增量数访问地址,读出记载在该地址中的逆旋转矢量V’的实数部分和虚数部分。即产生与该“5”对应的角速度的逆旋转矢量V’。此外图10的I/Q表90是易于理解的,不与这时的动作对应。这样从I/Q表90读出的实数部分和虚数部分的各值,在频率范围修正部8中,进行上述公式(8)的计算,使逆旋转矢量V’与旋转矢量V相乘。此外81是位处理部,为了削减频率差计算部6以后的计算位数,进行下位位的舍入成整数的处理。
而且,因为图11所示的逆旋转矢量发生部9构成PLL(Phase LockLoop:锁相环),所以如果使从低通滤波器32侧输入到频率范围修正部8的信号值稳定,则立即锁定旋转矢量V的角速度和逆旋转矢量V’的角速度,形成稳定状态,在图12中表示出各信号。因此锁定时的积分器70的输出值成为与旋转矢量V的角速度相对应,由于能够基于该输出值进行频率的测定,结果扩大了测定范围。
而且,当与脉冲宽度控制部101的输入值对应的占空比比50%大时,如图13所示只有与越过50%的量相应的数,+1电平的脉冲连续,此后+1电平的脉冲和-1电平的脉冲交互地发生。从而该脉冲列的积分值的增加量,因为最初“6”连续,所以地址的增量数连续成为“6”,不久交互地重复“6”和“4”。因此,在对脉冲宽度控制部101的输入值进行取样后到下一个取样的间隔的逆旋转矢量V’的角速度的平均值,在与“5”对应的角速度和与“6”对应的角速度之间,成为与上述占空比相应的大小。即该角速度成为与在“5”上加上小数点以下的值对应的角速度,这意味着与脉冲宽度控制部101的输入值(积分器70的输出的下位位的值)相应地插补在“5”和“6”之间。此外在本例中,设定脉冲宽度计算的定时为20时钟,但也可以设定该时钟数,例如为下位位的位数,在本例中是8个,每8时钟进行脉冲宽度计算。
在这样不设置位分割部100和脉冲宽度控制部101,与积分器70的输出的输出值相应地决定I/Q表90的地址的增量数的方法的情形中,I/Q表90需要与要求精度(频率差检测分辨率)相应的数,并且比用脉冲宽度控制时的大。对此,如本实施方式那样进行构成,能够只以在脉冲宽度控制中增补的量削减I/Q表90的存储容量。
这里作为积分器70的输出值不出现在上位位中的情形,以石英振子的频率差为500Hz的情形为例,在图14和图15中分别表示出通过模拟调查脉冲宽度控制部101的输入电平的变化和输出电平的变化的结果。如图14所示,可知脉冲宽度控制部101的输入电平大致在1msec中是稳定的,由包含逆旋转矢量生成部9的PLL瞬时地锁定旋转矢量V的角速度。而且脉冲宽度控制部101的输出实际上为+1和-1的电平信号,将其值输入到地址控制部103,但是以与描绘的图像分辨率的关系在+1和-1拉成直线。而且作为积分器70的输出值出现在上位位中的情形,以石英振子的频率差为10000Hz的情形为例,在图16中表示出加法器102的输出电平。在本例中加法器102的输出大致稳定在“81”上。
根据上述其它的实施方式,除了前面的实施方式的效果外,进一步还有下面的效果。因为使旋转矢量V’和与石英振子的频率(固有振动频率)的变化量对应的旋转矢量V相乘,降低旋转矢量V的角速度,所以例如如图6所示,即便在将旋转矢量V的角速度作为连结某个定时的矢量和下一个定时的矢量的直线长度进行评价的情形中,也能够高精度地求得旋转矢量V的角速度,从而因为即便旋转矢量V的角速度可以快也可以慢,也能够高精度地求得该角速度,所以能够从大的值到小的值测定石英振子的固有振动频率的变化量,结果扩大了测定范围。而且对反馈的旋转矢量V的角速度分成上位位的值和下位位的值,关于下位位的值利用脉冲宽度控制,插补I/Q表90的数据值,所以如已经详细述说明的那样能够减小I/Q表90的大小,能够减小电路规模。
作为验证本发明的装置的实验,设定来自振荡电路13的频率信号的频率fc为1MHz,基准时钟信号的频率fs为12MHz,实际上由计算机进行数据处理。作为来自振荡电路13的频率信号使用的试验用的高频信号(正弦波信号)使频率从1MHz稍微改变。图17是表示根据基准时钟信号对试验用的高频信号进行取样并求得数字值的情况的示意图。在图18中表示了关于用这样求得的数字值特定的信号调查频谱的情形。从而这里从A/D变换器21取出将1MHz的正弦波信号作为基波的高频信号。
图19表示从载波去除器31输出的I值和Q值,图20表示从低通滤波器32得到的I值和Q值。在本例中因为关于试验用的高频信号使频率改变,所以低通滤波器32的输出值上升。而且图21是表示在该实施例中偏移频率(频率变化量)与检测输出的关系的示意图,当偏移频率增大时误差增大,但是可知在偏移频率小的区域中,两者的对应关系良好,能够以高可靠性检测频率变化量。此外,图22是表示在使上述试验用的高频信号的频率改变后时间平均化处理部7的输出的示意图,可知能够在0.1秒内检测出频率的变化量。而且频率检测精度与输出停止上升与时间轴平行的区域的脉动的振幅相当,但是其值为0.0035Hz,证明了频率检测精度极高。

Claims (7)

1.一种测定频率信号的频率的频率测定装置,其特征在于,包括:
基准时钟产生部,产生用于对频率信号取样的时钟信号;
模拟/数字变换部,利用来自所述基准时钟产生部的时钟信号对所述频率信号进行取样,并以该取样值作为数字信号输出;
旋转矢量取出部件,对与来自该模拟/数字变换部的输出信号对应的频率信号进行根据数字信号的正交检波,并取出由复数表示旋转矢量时的实数部分和虚数部分,其中该旋转矢量以与该频率信号中的频率和由用于正交检波的数字信号特定的频率的频率差相当的角速度旋转;和
旋转矢量速度计算部件,根据由该旋转矢量取出部件得到的所述实数部分和虚数部分的各时间系列数据,求得旋转矢量的角速度。
2.根据权利要求1所述的频率测定装置,其特征在于:
所述旋转矢量取出部件包括:对与来自模拟/数字变换部的输出信号对应的频率信号进行正交检波的部件、和除去通过该部件得到的数据中包括的高频率成分的部件。
3.根据权利要求1所述的频率测定装置,其特征在于:
当设定与在某个定时中的所述取样值对应的实数部分和虚数部分分别为I(n)和Q(n),设定与在该定时前的定时中的所述取样值对应的实数部分和虚数部分分别为I(n-1)和Q(n-1)时,所述旋转矢量速度计算部件根据{Q(n)-Q(n-1)}·I(n)-{I(n)-I(n-1)}·Q(n)的计算,求得旋转矢量的角速度。
4.根据权利要求1所述的频率测定装置,其特征在于:
在所述旋转矢量速度计算部件的前段中,设置有利用根据实数部分和虚数部分决定的矢量的标量除所述实数部分和虚数部分的修正处理部。
5.根据权利要求1所述的频率测定装置,其特征在于,具有:
对通过所述旋转矢量速度计算部件求得的角速度进行积分的积分部件;
逆旋转矢量生成部,生成复数表示以与该积分部件的输出值对应的角速度并且与由所述旋转矢量取出部件取出的旋转矢量逆方向地旋转的逆旋转矢量时的实数部分和虚数部分;和
设置在所述旋转矢量速度计算部件的前段,对由所述旋转矢量取出部件获得的旋转矢量和由所述逆旋转矢量生成部生成的逆旋转矢量进行乘法运算的部件。
6.根据权利要求5所述的频率测定装置,其特征在于:
逆旋转矢量生成部包括,沿旋转方向顺次配置的规定在复数表面上的逆旋转矢量的位置的实数部分和虚数部分的组的数据表、和通过由与所述频率的变化量相当的增量数或减量数产生所述数据表的地址生成逆旋转矢量的地址控制部。
7.根据权利要求6所述的频率测定装置,其特征在于:
逆旋转矢量生成部包括:脉冲宽度控制部,输出与当以数字信号表示由所述旋转矢量速度计算部件求得的频率变化量时的下位位的值对应的占空比的脉冲列;和加法部,将当以数字信号表示所述频率变化量时的上位位的值和由所述脉冲宽度控制部作成的脉冲的电平相加,输出到所述地址控制部,
所述地址控制部对来自该加法部的输出值进行积分,将该积分值作为所述数据表的地址。
CNA2008101095944A 2004-08-11 2005-08-11 感知装置 Pending CN101311702A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004234735 2004-08-11
JP2004234735 2004-08-11
JP2005038205 2005-02-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2005800270993A Division CN101014848B (zh) 2004-08-11 2005-08-11 感知装置

Publications (1)

Publication Number Publication Date
CN101311702A true CN101311702A (zh) 2008-11-26

Family

ID=38701534

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2005800270993A Active CN101014848B (zh) 2004-08-11 2005-08-11 感知装置
CNA2008101095944A Pending CN101311702A (zh) 2004-08-11 2005-08-11 感知装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2005800270993A Active CN101014848B (zh) 2004-08-11 2005-08-11 感知装置

Country Status (1)

Country Link
CN (2) CN101014848B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535836A (zh) * 2014-12-29 2015-04-22 广东电网有限责任公司电力科学研究院 电力信号的基波频率测量方法和系统
CN106404009A (zh) * 2015-07-27 2017-02-15 约翰内斯·海德汉博士有限公司 位置测量设备和用于运行其的方法
CN111830137A (zh) * 2020-07-23 2020-10-27 中国舰船研究设计中心 一种隔振器水下隔振效果测试系统及评估方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI648528B (zh) * 2017-11-23 2019-01-21 財團法人工業技術研究院 電阻式氣體感測器與其氣體感測方法
JP7188907B2 (ja) * 2018-04-27 2022-12-13 ラピスセミコンダクタ株式会社 対象物判定装置、プログラム、対象物判定方法、及び半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552696B1 (ko) * 2003-11-12 2006-02-20 삼성전자주식회사 발진회로가 적용된 미세 질량 측정 장치 및 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535836A (zh) * 2014-12-29 2015-04-22 广东电网有限责任公司电力科学研究院 电力信号的基波频率测量方法和系统
CN104535836B (zh) * 2014-12-29 2017-05-10 广东电网有限责任公司电力科学研究院 电力信号的基波频率测量方法和系统
CN106404009A (zh) * 2015-07-27 2017-02-15 约翰内斯·海德汉博士有限公司 位置测量设备和用于运行其的方法
CN106404009B (zh) * 2015-07-27 2020-05-19 约翰内斯·海德汉博士有限公司 位置测量设备和用于运行其的方法
CN111830137A (zh) * 2020-07-23 2020-10-27 中国舰船研究设计中心 一种隔振器水下隔振效果测试系统及评估方法
CN111830137B (zh) * 2020-07-23 2023-04-18 中国舰船研究设计中心 一种隔振器水下隔振效果测试系统及评估方法

Also Published As

Publication number Publication date
CN101014848A (zh) 2007-08-08
CN101014848B (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
EP1788377B1 (en) Sensing apparatus
CN100451666C (zh) 改进的时域信号频率稳定度测量方法和装置
CN101014848B (zh) 感知装置
US8676518B2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
CN102639973B (zh) 信号处理方法、信号处理装置以及科里奥利流量计
JP4611959B2 (ja) 感知方法
EP2290332B1 (en) Signal processing method, signal processing device, and coriolis flowmeter
JP4177361B2 (ja) 感知装置
WO2006070940A1 (ja) 感知装置
CN107209028A (zh) 分析器装置
Zamora et al. An FPGA implementation of a digital Coriolis mass flow metering drive system
US8700343B2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
EP2597434A2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
JP4765100B2 (ja) 位相測定装置、方法、プログラムおよび記録媒体
JP2006258787A5 (zh)
JP2012501617A (ja) 高精度位相シフト測定のシステムと方法
JP4594162B2 (ja) 感知装置
JP4700485B2 (ja) 演算装置及び試験装置
CN103376366B (zh) 一种测量电容值的方法和设备
US20080046201A1 (en) Coriolis Flowmeter
Singh et al. Doppler velocity measurement using closed-loop Goertzel algorithm in PLL technique
JPH11264846A (ja) 周波数変化測定装置
JPH06147949A (ja) 質量流量計
JPH11214931A (ja) Fm検波方式

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20081126