CN104526838A - Method for 3D ceramic printing forming - Google Patents

Method for 3D ceramic printing forming Download PDF

Info

Publication number
CN104526838A
CN104526838A CN 201410840236 CN201410840236A CN104526838A CN 104526838 A CN104526838 A CN 104526838A CN 201410840236 CN201410840236 CN 201410840236 CN 201410840236 A CN201410840236 A CN 201410840236A CN 104526838 A CN104526838 A CN 104526838A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
ceramic
method
3d printing
slurry
3d
Prior art date
Application number
CN 201410840236
Other languages
Chinese (zh)
Other versions
CN104526838B (en )
Inventor
邬国平
李妙妙
谢方民
Original Assignee
宁波伏尔肯机械密封件制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS, SLAG, OR MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders

Abstract

The invention discloses a method for 3D ceramic printing forming. The method comprises the following steps that (1) a 3D model of a target part is established; (2) layering processing is performed, and layered data are imported into a manufacturing program; (3) ceramic slurry is prepared; (4) the prepared ceramic slurry is added into a 3D printer to be made into a ceramic green body quickly formed; (5) the green body is cured at curing temperature for 10 min-60 min and then is placed in a drying oven for drying; (6) the dried green body is dewaxed and sintered to be made into the target part. The method is simple in technology and low in equipment cost; the distance between powder particles in the ceramic slurry can be reduced in the extrusion process, and therefore density is high; besides, the method is not limited by the type of ceramic particles and the shape of the part and is suitable for manufacturing ceramic products made of various ceramic materials and in various complex shapes.

Description

陶瓷3D打印成型的方法 3D printing method of molding ceramic

技术领域 FIELD

[0001] 本发明涉及一种陶瓷3D打印成型的方法。 [0001] The present invention relates to a method of forming a ceramic 3D printing.

背景技术 Background technique

[0002] 陶瓷材料具有优异的力学性能(高强度、高硬度、高耐磨性)、热学性能(耐高温、低热膨胀系数及抗热震性)以及化学稳定性,广泛应用于石油化工、钢铁冶金、机械电子、航空航天、能源环保、核能、汽车、高温窑炉等工业领域。 [0002] The ceramic material having excellent mechanical properties (high strength, high hardness, high wear resistance), thermal properties (high temperature, low thermal expansion coefficient and thermal shock resistance) and chemical stability, is widely used in petrochemical, steel metallurgy, machinery and electronics, aerospace, energy, environmental protection, nuclear energy, automotive, high temperature kilns and other industrial fields. 目前陶瓷材料成型方法主要有:挤压成型、注射成型、等静压成型、流延成型等,这些工艺制备构件时,需根据构件的形状制备具有相应形状的模具,若构件的结构稍有变化,就需要重新制备模具或需要对试样进行机械加工,因而加大了制备成本。 The method of forming a ceramic material present are: extrusion, injection molding, isostatic pressing, cast molding or the like, these preparation processes member, a mold is required to have a shape corresponding to the shape of the member was prepared according to a slight change in the structure if the member , it is necessary to re-sample required to make the mold or machining, thereby increasing manufacturing costs. 而且受到模具的限制,这些工艺适合制备形状简单的制品。 And the mold is limited, these processes for the preparation of a simple shape of the article. 随着工业的发展,这些传统成型工艺已不能满足某些特殊领域的要求。 With industrial development, these traditional molding processes can not meet the requirements of certain specific areas. 快速成型技术(RP)是近年来快速发展的一种新型成型工艺,该工艺利用计算机CAD软件设计构件,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、组织细胞等特殊材料进行逐层堆积粘结,最终叠加成型,制造出实体产品。 Rapid Prototyping (RP) is a new molding process in recent years, the rapid development of the software design process using CAD computer component, software and CNC forming discrete layered system using a laser beam, etc. nozzle melt the metal powder, ceramic powder, plastic, and other special materials tissue layer by layer stacking bonding, eventually forming superimposed, produce physical products. 该工艺与传统成型方法相比,具有以下特点:(1)可以制备形状复杂的制品;(2)成型过程中无需任何模具或模型参与,使过程更加集成化,制造周期缩短,生产效率高;(3)成型体几何形状及尺寸可通过计算机软件处理系统随时改变,无需等待模具的设计制造,大大缩短新产品开发时间;(4)可制备结构微小的电子陶瓷制品等优点。 The process as compared with the conventional molding method has the following characteristics: (1) shape of complex products can be prepared; (2) molding process without any mold or participate in, making the process more integrated, manufacturing cycle time, high efficiency; (3) the geometry and dimensions of the molded body may be changed by the computer system software processing at any time, without having to wait for the design and manufacture of molds, shorten the development time of new products; advantages (4) may be prepared fine structure of the electronic ceramic products. 因此,近年来快速成型技术受到广泛的关注。 Therefore, in recent years, rapid prototyping technology has been widespread concern.

[0003] 目前快速成型技术主要有立体光刻造型技术(SLA)、选择性激光烧结(SLS)、分层实体制造(LOM)、三维打印(3DP)等。 [0003] Currently there are rapid prototyping technology stereolithography (SLA), selective laser sintering (SLS), laminated object manufacturing (LOM), three dimensional printing (3DP) and the like. 目前已有关于陶瓷材料快速成型的报道,如专利号CN101391896A的“一种复杂陶瓷零件的快速制造工艺”采用将陶瓷粉末与液态光敏树脂均匀混合制备陶瓷浆料,然后在光固化成型机中进快速成型制备陶瓷素坯(SLA)。 Ceramic materials are available for all reports of rapid prototyping, such as Patent No. CN101391896A of "a complex ceramic part rapid manufacturing process" using ceramic powder uniformly mixed with the liquid photosensitive resin prepared ceramic slurry, then into the stereolithography machine preparing ceramic green rapid prototyping (SLA). 专利号CN101890480 “一种陶瓷型芯快速成型制造方法”将低温强化剂与陶瓷粉料混合均匀,得到用于SLS快速成型的陶瓷烧结粉料,用陶瓷烧结粉料进行SLS快速成型得到陶瓷型芯生坯,并对生坯进行强化前预处理、脱脂、预烧、烧结得到陶瓷型芯(SLS)。 Patent No. CN101890480 "a ceramic core method of rapid prototyping" mixing the ceramic powder with a uniform low-temperature enhancer, ceramic sintered powder to obtain SLS for rapid prototyping, a ceramic core SLS rapid prototyping obtained sintered ceramics powder before the green, green and intensive pretreatment, degreasing, calcined and sintered ceramic core (SLS). 专利号CN101391896A “一种复杂陶瓷零件的快速制造工艺”以涂有高分子粘结剂的陶瓷薄膜为原料,在薄材叠层制造快速成型系统上成型三维的陶瓷零件初坯,将陶瓷零件初坯覆上包套后进行冷等静压处理,最后进行脱脂、烧结、后处理,得到陶瓷零件(LOM)。 Patent No. CN101391896A "a complex ceramic part rapid manufacturing process" In the adhesive-coated polymer film is a ceramic material, for producing three-dimensional shaped ceramic parts early rapid prototyping system in the green sheet laminated thin, the ceramic parts First covered sheath blank after cold isostatic pressing, and finally degreasing, sintering, post-treatment, to obtain ceramic parts (LOM). 专利号CN1368386A “基于快速成型的人工生物活性骨骼的复合制造方法”中在快速成型机上制作一个带有可控加热系统的加热容器,容器底部开一个0.2mm的材料压出孔,将乳化糖加入加压容器实现分层制造,得到乳化糖人工骨反型(3DP)。 Patent No. CN1368386A "rapid prototyping method for producing a composite based on a bioactive artificial bone" produced in heating vessel having a controllable heating system on a rapid prototyping machine, the bottom of the container to open a hole 0.2mm extrusion material, the emulsion is added sugar tiered pressurized container, thereby obtaining a sugar artificial inversion emulsification (3DP).

[0004] 立体光刻造型技术(SLA)制备陶瓷材料由于所用的液态光敏树脂成本高、可选择范围小、树脂有一定毒性、设备昂贵等而没有得到广泛应用;现有的选择性激光烧结(SLS )、三维打印(3DP )制备陶瓷材料存在陶瓷粉末颗粒之间间距大,坯体致密度低,在高温烧结过程中无法致密化,陶瓷性能受影响的问题;分层实体制造(LOM)技术对陶瓷基片要求高、多余部分材料去除困难。 [0004] Technology for stereolithography (SLA) preparing a ceramic material because of the high cost of the liquid photosensitive resin used, select a small range, the resin have a certain toxicity, expensive equipment and the like have not been widely used; conventional selective laser sintering ( the SLS), there is a large distance between the ceramic powder particles, the low density body, can not be densified in a high temperature sintering process, the ceramic properties affected problem three dimensional printing (3DP) preparing a ceramic material; laminated object manufacturing (LOM) techniques high requirements on the ceramic substrate, the excess portion of the material difficult to remove.

发明内容 SUMMARY

[0005] 本发明所要解决的技术问题是,克服以上现有技术的缺点:提供一种工艺简单、设备成本低,在挤出过程中可减小陶瓷浆料中粉末颗粒的间距,致密度高,且不受陶瓷颗粒种类和零件形状的限制,适合制备各种陶瓷材料、各种复杂形状的陶瓷制品的陶瓷3D打印成型的方法。 [0005] The present invention solves the technical problem, overcoming the above disadvantages of the prior art: to provide a simple process, low equipment cost, can be reduced during extrusion pitch powder particles in the ceramic slurry, high density , the type of ceramic particles and is not limited and the shape of parts, for the preparation of various ceramic materials, the method of molding complex shapes of ceramic articles ceramic 3D printing.

[0006] 本发明的技术解决方案如下:一种陶瓷3D打印成型的方法,包括以下步骤: [0006] Technical Solution The present invention is as follows: 3D printing method of a ceramic molding, comprising the steps of:

(O构建目标零件的三维模型,将数据模型转换为STL格式文件; (O constructed three-dimensional model of the target part, to convert the data model STL format;

(2)用快速成型机的分层软件对STL格式文件进行分层处理,然后将分层数据导入制造程序中; (2) slicing STL format file of layered software rapid prototyping machine, and then introduced into the manufacturing process in the hierarchical data;

(3)将陶瓷粉末、去离子水、分散剂、消泡剂和固化剂混合均匀并球磨I〜8h ;然后将球磨后的浆料在真空除泡机中进行真空除泡10〜60min制备成陶瓷浆料; (3) the ceramic powder, deionized water, a dispersant, a defoamer and a curing agent mixed and milled I~8h; ball-milled slurry was then vacuum defoaming 10~60min prepared defoaming machine in vacuo ceramic slurry;

(4)将配制的陶瓷浆料加入到3D打印机的料筒中,将料筒温度加热到50〜250°C,保温5〜30min ;3D打印机的喷头在制造程序的控制下,根据步骤(2)中的分层数据挤出陶瓷浆料成挤出丝并打印出截面薄层,挤出丝中的固化剂在固化温度下开始固化,形成截面薄层的实体,通过层层堆积,制得陶瓷快速成型的坯体; (4) The prepared ceramic slurry is added to the 3D printer cartridge, the barrel temperature was heated to 50~250 ° C, insulation 5~30min; 3D printer under the control of the head manufacturing process, in accordance with step (2) the extruded ceramic slurry into a hierarchical data and print out the cross-section filaments extruded sheet, extruded filaments of the curing agent begins to cure at a curing temperature, forming a thin layer of solid cross section, by stacking the layers, obtained ceramic rapid molded blank;

(5)将坯体在固化温度下固化10〜60min后,置于烘箱中于40〜80°C干燥10〜60min ; (5) the blank 10~60min cured at a curing temperature in a dry 10~60min at 40~80 ° C in an oven;

(6)将干燥后的坯体进行脱蜡、烧结制得目标零件。 (6) drying the green body is dewaxed, sintered for certain parts.

[0007] 作为优化,步骤(3)中所述陶瓷浆料中,陶瓷粉末的含量为10〜95 «七%;固化剂含量为0.1〜20wt% ;分散剂的含量为0.1〜10wt% ;消泡剂的含量为0.1〜10wt% ;余量为去离子水。 [0007] As optimization step (3) in the ceramic slurry, the content of the ceramic powder is 10~95 «seven percent; curing agent content is 0.1~20wt%; content of the dispersant is 0.1~10wt%; elimination content of the foaming agent is 0.1~10wt%; the balance is deionized water.

[0008] 所述的陶瓷粉末为氧化物陶瓷(如氧化铝陶瓷、氧化锆陶瓷、氧化镁陶瓷)、碳化物陶瓷(如反应碳化硅陶瓷、无压碳化硅陶瓷、碳化硼陶瓷、碳化钛陶瓷、碳化锆陶瓷)、氮化物陶瓷(氮化硅陶瓷、氮化硼陶瓷、氮化铝陶瓷、氮化钛陶瓷)、生物陶瓷、玻璃陶瓷中的一种或几种。 [0008] The ceramic powder is an oxide ceramic (such as alumina ceramics, zirconia ceramics, magnesia ceramics), carbide ceramics (silicon carbide ceramics such as reactive, non-pressure SiC ceramic, boron carbide, titanium carbide ceramic zirconium carbide ceramics), nitride ceramics (ceramics silicon nitride, boron nitride ceramics, aluminum nitride ceramics, titanium nitride ceramic), bio-ceramic, glass ceramic or one of several.

[0009] 作为优选,所述的陶瓷粉末为氧化铝陶瓷、氧化锆陶瓷、反应碳化硅陶瓷、无压碳化硅陶瓷、碳化硼陶瓷中的一种。 [0009] Advantageously, the ceramic powder of alumina ceramics, zirconia ceramics, silicon carbide ceramics reaction, no pressure SiC ceramic, boron carbide ceramic.

[0010] 所述陶瓷粉末的平均粒径为0.5〜100 μ m。 The [0010] average particle diameter of the ceramic powder is 0.5~100 μ m.

[0011] 所述的固化剂为水溶性溶胶(如明胶、硅溶胶、海藻酸钠、琼脂糖)、有机单体(如丙烯酰胺)和交联剂(亚甲基双丙烯酰胺)、热塑性材料(如石蜡以及聚乙烯、聚丙烯、聚丁烯、聚苯乙烯等热塑性树脂)。 Curing Agent [0011] The sol is soluble (such as gelatin, silica sol, sodium alginate, agarose), organic monomers (e.g., acrylamide) and the crosslinking agent (methylene bisacrylamide), a thermoplastic material (such as paraffin wax and polyethylene, polypropylene, polybutylene, thermoplastic resin such as polystyrene).

[0012] 作为优化,所述的固化剂为水溶性溶胶。 [0012] Optimally, the curing agent is a water-soluble sol.

[0013] 作为进一步优化,所述水溶性溶胶为明胶、硅溶胶、海藻酸钠、琼脂糖中的一种。 [0013] As a further optimization, the water-soluble gelatin sol, silica sol, sodium alginate, an agarose.

[0014] 作为最优化,所述水溶性溶胶为琼脂糖。 [0014] As optimization, the water-soluble agarose sol.

[0015] 所述喷头的喷孔直径为60 ym〜5mm,料筒加热温度为50〜250 °C,挤出后固化温度为_30°C〜120°C,陶瓷浆料挤出速度为0.5〜100mm/s,挤出丝与丝之间的间距为0.01 〜10mm。 [0015] The nozzle orifice diameter of 60 ym~5mm, barrel heating temperature of 50~250 ° C, a curing temperature of the extrusion _30 ° C~120 ° C, the ceramic paste extrusion rate of 0.5 ~100mm / s, distance between the wire and the extruded filaments is 0.01 ~10mm.

[0016] 所述的分散剂为氨水、四甲基氢氧化铵、柠檬酸盐、聚丙烯酸盐、六磷偏酸钠、聚醚酰亚胺、阿拉伯树胶、三聚磷酸钠、聚乙二醇、水玻璃、三乙醇胺、聚羧酸铵盐、聚乙烯亚胺(PEI)中的一种。 Dispersant [0016] said aqueous ammonia, tetramethylammonium hydroxide, citrates, polyacrylates, six partial sodium phosphate, polyetherimides, gum arabic, sodium tripolyphosphate, polyethylene glycol , sodium silicate, triethanolamine, ammonium salt of polycarboxylic acid, polyethylene imine (PEI) of one.

[0017] 所述的消泡剂为正辛醇、正丁醇、磷酸三丁酯、烷基硅油、乙二醇中的一种。 [0017] The antifoaming agent is n-octanol, n-butanol, tributyl phosphate, alkyl silicone oil, a glycol.

[0018] 本发明首次将3D打印技术结合水溶性凝胶的固化特性,应用于陶瓷材料的快速制造工艺,不受陶瓷材料和零部件形状的限制,可以快速成型出精度高、相对密度高的陶瓷材料。 [0018] The present invention will first 3D printing technologies curing characteristics of the aqueous gel, for rapid manufacturing process of the ceramic material, the ceramic material is not limited and the shape of the component, can be a rapid prototyping high precision, high relative density Ceramic material. 为复杂形状陶瓷材料的制备提供了新的工艺方法,大大降低了复杂形状陶瓷零部件的研发周期和成本,实现了陶瓷材料的快速无模制造。 Preparation of complex shapes to provide ceramic materials for the process for a new and greatly reduce the development period and cost of the ceramic parts of complex shapes, molding to achieve a rapid without producing ceramic material.

[0019] 本发明的有益效果是:本发明利用水溶性凝胶的固化特性,在水基陶瓷浆料中加入一定量的固化剂,利用3D打印成型工艺制备各种形状复杂的陶瓷部件。 [0019] Advantageous effects of the present invention are: the use of the present invention, the aqueous gel curing characteristics, a certain amount of curing agent in a water based ceramic slurry, prepared using a 3D print complex shapes molded ceramic part process. 本发明工艺简单、设备成本低,在挤出过程中可减小陶瓷浆料中粉末颗粒的间距,致密度高,且不受陶瓷颗粒种类和零件形状的限制,适合制备各种陶瓷材料、各种复杂形状的陶瓷制品,为陶瓷零件的快速成型提供了一种新的方法。 The present invention has simple process, low equipment cost, can be reduced during extrusion pitch powder particles in the ceramic slurry, high density, and the kind of the ceramic particles and not to limit the shape of parts, for the preparation of various ceramic materials, various species complex shape ceramic article, provides a new method for rapid prototyping ceramic part.

附图说明 BRIEF DESCRIPTION

[0020] 图1本发明陶瓷3D打印成型的方法的工艺流程图。 [0020] FIG invention is a process flow diagram of a method of forming a ceramic print a 3D.

具体实施方式 detailed description

[0021] 下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。 [0021] The following examples further specifically with the detailed description of the present invention, but the present invention is not limited to the following specific examples.

[0022] 实施例一 [0022] Example a

如图1所示,本发明的工艺步骤包括: As shown in FIG 1, the process step of the invention comprises:

1)三维模型的建立。 ) 3D model 1. 根据实际需求,用Pro/E或AutoCAD软件构造零件的三维模型,并将三维模型数据转换为STL格式文件; According to actual demand, with Pro / E model or three-dimensional structural part of AutoCAD software, and converts the data into three-dimensional model STL format;

2)采用快速成型机的分层软件将三维模型进行分层处理,分层后的数据导入制造程序中; 2) rapid prototyping machine layered software slicing three-dimensional model, the hierarchical data is introduced into the manufacturing process;

3)取250g反应结合碳化硅原料粉(炭粉与a-SiC以质量比为1: 4〜99混合),0.306g氨水、40g去离子水搅拌30min后,加入1.8g磷酸三丁醋、1.5g明胶,在高速球磨机中球磨2h ; 3) Take 250g reaction bonded silicon carbide raw material powder (a-SiC charcoal with a mass ratio of 1: 4~99 mixture), 0.306 g ammonia, 4Og deionized water after stirring for 30min, 1.8g tributyl phosphate added vinegar, 1.5 g gelatin, 2h in a high speed milling in a ball mill;

4)将球磨后的浆料在真空除泡机中于-0.0SMPa真空下除泡1min ; 4) The slurry after ball milling machine under vacuum bubbles -0.0SMPa vacuum defoaming addition 1min;

5)将除泡后的浆料置于快速成型机(优选为电机推动微注射式3D打印机)的料筒中,开始加热料筒,设置料筒加热温度为70〜100°C ;保温20min后快速成型机的喷头在制造程序的控制下,根据步骤(2)中的分层数据挤出陶瓷浆料成挤出丝并打印出截面薄层,挤出丝在室温(25°C)下固化,形成截面薄层的实体,通过层层堆积,制得陶瓷快速成型的素坯;所述挤出丝直径为60μηι〜5mm,陶瓷楽料挤出速度为0.5〜100mm/s,挤出丝与丝之间的间距为0.01〜10mnin 5) In addition to the slurry after the bubble was placed rapid prototyping machine (preferably motor driven microinjection of formula 3D printer) of the barrel, the barrel heating was started, the heating temperature is set cylinder 70~100 ° C; 20min fast after incubation head molding machine under the control of the manufacturing process, the hierarchy data in accordance with step (2) of the extruded filaments extruded ceramic slurry into a sheet and print a section, extruded filaments solidified at room temperature (25 ° C), forming a thin layer of solid cross section, by stacking the layers, to obtain ceramic green rapid prototyping; diameter of the extruded filaments 60μηι~5mm, extrusion speed of the ceramic material yue 0.5~100mm / s, the filament extruded filaments It is the spacing between 0.01~10mnin

[0023] 6)将固化成型的素坯在60°C下干燥30min,然后在80°C下干燥30min,使素坯完全干燥; [0023] 6) The solidified molded green dried at 60 ° C 30min, and then dried at 80 ° C 30min, so that the green completely dry;

7)干燥后的素坯进行脱蜡。 7) drying the green dewaxing. 脱蜡温度曲线为:从室温升温至160°C保温lh,然后升温至600°C保温lh,接着升温至850°C保温2h ; 8)反应烧结。 Dewaxing temperature profile: from room temperature to 160 ° C incubated lh, warmed to 600 ° C and then incubated lh, then heated to 850 ° C incubated 2h; 8) reaction sintering. 将脱蜡后的素坯包埋在Si粒中,在真空下进行反应烧结;烧结温度曲线为:从室温升温至600°C,然后升温至1000°C,接着升温至1550°C保温2h即可,烧结密度达到3.05g/cm3以上。 The green embedded in the Si particles after dewaxing, the sintering reaction is carried out under vacuum; the sintering temperature profile: from room temperature to 600 ° C, then warmed to 1000 ° C, then warmed to 1550 ° C for 2h i.e. may be, the sintered density of 3.05g / cm3 or more.

[0024] 实施例二 [0024] Second Embodiment

本实施例与实施例一不同的是,在步骤3)中采用的陶瓷粉末为氧化铝陶瓷粉末,固化剂为琼脂糖,在步骤8)中烧结为:从室温以2V /min的速率升温至500°C,然后以10°C /min的速率升温至800°C,接着以8°C /min的速率升温至1700°C保温2h,得到的氧化铝陶瓷烧结密度为3.85 g/cm3以上。 The present embodiment is different from the first embodiment is employed in step 3) the ceramic powder is alumina ceramic powder, the curing agent is agarose, sintered at Step 8): heated from room temperature to a rate of 2V / min of 500 ° C, at a rate of 10 ° C / min heating to 800 ° C, then warmed to 1700 ° C for 2h at a rate of 8 ° C / min, the density of the sintered alumina ceramic obtained was 3.85 g / cm3 or more.

[0025] 实施例三 [0025] Example three

本实施例与实施例一不同的是,在步骤3)中采用的陶瓷粉末为氧化锆陶瓷粉末,固化剂为有机单体丙烯酰胺和交联剂亚甲基双丙烯酰胺,在步骤8)中烧结为:从室温以2°C /min的速率升温至500 °C,然后以10 °C /min的速率升温至800°C,接着以8°C /min的速率升温至1460°C保温3h,得到氧化锆陶瓷的烧结密度为5.55 g/cm3以上。 The present embodiment is different from the first embodiment, the ceramic powder used in step 3) zirconia ceramic powder, the curing agent is an organic monomers acrylamide and methylene bis acrylamide crosslinker in step 8) sintering: a rate of 2 ° C / min from room temperature to 500 ° C, then warmed to 800 ° C at a rate of 10 ° C / min, the temperature was then raised to 1460 ° C for 3h at a rate of 8 ° C / min to to give zirconia ceramic sintered density of 5.55 g / cm3 or more.

[0026] 本发明基于3D打印成型技术制备陶瓷零部件的工艺方法,通过在水基陶瓷浆料中添加固化剂,在3D打印机中快速成型,通过干燥、脱蜡、烧结得到所需形状的陶瓷材料。 [0026] The present invention is based on the molding process for making ceramic components 3D printing techniques, by adding a curing agent in a water based ceramic slurry, in the rapid prototyping 3D printer, by drying, dewaxing, to obtain a sintered ceramics having a desired shape material. 本发明基本原理是利用水溶性凝胶物质的凝胶固化特性,在水基陶瓷浆料中加入一定量的凝胶固化剂,球磨混合后真空除泡,将所得陶瓷浆料置于3D打印机(优选为电机推动微注射式3D打印机)料筒内,通过对料筒加热改善浆料的粘度和流动性,陶瓷浆料在步进机推动下从针头挤出,挤出丝在一定的温度下固化后,通过层层叠加快速成型为复杂零件素坯。 The basic principle of the invention is the use of a gel curing properties of the aqueous gel material, a certain amount of gel setting agent in an aqueous ceramic slurry, the defoaming milled in vacuo, and the resulting slurry was placed in a ceramic 3D printer ( microinjection is preferably motor driven type 3D printer) within the cartridge, extruded from the needle driven by a stepper barrel heating to improve the fluidity and viscosity, the ceramic slurry paste extruded filaments at a certain temperature after curing, fast green molded into complex parts by superimposed layers. 最后通过干燥、脱蜡、烧结得到陶瓷零部件。 Finally, by drying, dewaxing, to obtain a sintered ceramic parts. 该方法可以成型各种复杂形状的陶瓷坯体,无需模具,无需后期去料处理,工艺简单,成本低。 The method can be formed of various ceramic bodies of complex shape, without the die, to materials without post processing, simple process and low cost.

[0027] 以上仅是本发明的特征实施范例,对本发明保护范围不构成任何限制。 [0027] The above features are merely exemplary embodiments of the present invention, the scope of the present invention does not constitute any limitation. 凡采用同等交换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。 Where the use of the same exchange or equivalents technical solution is formed, it is within the scope of protection of the present invention as claimed.

Claims (10)

  1. 1.一种陶瓷3D打印成型的方法,其特征在于:包括以下步骤: (O构建目标零件的三维模型,将数据模型转换为STL格式文件; (2)用快速成型机的分层软件对STL格式文件进行分层处理,然后将分层数据导入制造程序中; (3)将陶瓷粉末、去离子水、分散剂、消泡剂和固化剂混合均匀并球磨I〜8h,然后将球磨后的浆料在真空除泡机中进行真空除泡10〜60min制备成陶瓷浆料; (4)将配制的陶瓷浆料加入到3D打印机的料筒中,将料筒温度加热到50〜250°C,保温5〜30min ;3D打印机的喷头在制造程序的控制下,根据步骤(2)中的分层数据挤出陶瓷浆料成挤出丝并打印出截面薄层,挤出丝中的固化剂在固化温度下开始固化,形成截面薄层的实体,通过层层堆积,制得陶瓷快速成型的坯体; (5)将坯体在固化温度下固化10〜60min后,置于烘箱中于40〜80°C干燥10〜60min ; (6)将干燥后的 A method of forming a ceramic 3D printing, characterized by: comprising the steps of: (O target part constructed three-dimensional model, the data model to the STL format; (2) rapid prototyping machine with a layered software STL slicing format, and then introduced into the manufacturing process in the hierarchical data; (3) the ceramic powder, deionized water, a dispersant, a defoamer and a curing agent mixed and milled I~8h, then ball-milled slurry was vacuum defoaming in vacuum defoaming machine to a ceramic slurry prepared 10~60min; (4) the prepared ceramic slurry is added to the 3D printer cartridge, the barrel temperature was heated to 50~250 ° C, insulation 5~30min; 3D printer head under the control of the manufacturing process, the hierarchy data in accordance with step (2) of the extruded filaments extruded ceramic slurry into a sheet and print a section extruded filaments in the curing agent the curing temperature begins to solidify, forming a thin layer of solid cross section, by stacking the layers, to obtain a ceramic green body rapid prototyping; (5) the blank 10~60min cured at a curing temperature, placed in an oven at 40~ 80 ° C drying 10~60min; (6) after drying 体进行脱蜡、烧结制得目标零件。 Body is dewaxed, sintered for certain parts.
  2. 2.根据权利要求1所述的陶瓷3D打印成型的方法,其特征在于:步骤(3)中所述陶瓷浆料中,陶瓷粉末的含量为10〜95 wt% ;固化剂含量为0.1〜20wt% ;分散剂的含量为0.1〜10wt% ;消泡剂的含量为0.1〜10wt% ;余量为去离子水。 2. The method of forming a ceramic 3D printing claim, wherein: step (3) in the ceramic slurry, the content of the ceramic powder is 10~95 wt%; the content of the curing agent is 0.1~20wt %; content of the dispersant is 0.1~10wt%; content of the antifoam is 0.1~10wt%; the balance is deionized water.
  3. 3.根据权利要求1或2所述的陶瓷3D打印成型的方法,其特征在于:所述的陶瓷粉末为氧化铝陶瓷、氧化锆陶瓷、反应碳化硅陶瓷、无压碳化硅陶瓷、碳化硼陶瓷中的一种。 The method according to claim 1 or 2 or 3D Printing ceramic molding as claimed in claim, wherein: said ceramic powder of alumina ceramics, zirconia ceramics, silicon carbide ceramics reaction, no pressure SiC ceramic, boron carbide ceramic in kind.
  4. 4.根据权利要求1或2所述的陶瓷3D打印成型的方法,其特征在于:所述陶瓷粉末的平均粒径为0.5〜100 μ m。 4. The method of claim 1 or 2 or 3D Printing ceramic molding as claimed in claim, wherein: the average diameter of the ceramic powder is 0.5~100 μ m.
  5. 5.根据权利要求1或2所述的陶瓷3D打印成型的方法,其特征在于:所述的固化剂为水溶性溶胶。 5. The method of claim 1 or 2 or 3D Printing ceramic molding as claimed in claim, wherein: said curing agent is a water-soluble sol.
  6. 6.根据权利要求5所述的陶瓷3D打印成型的方法,其特征在于:所述水溶性溶胶为明胶、硅溶胶、海藻酸钠、琼脂糖中的一种。 6. The method of claim 5 3D printing ceramic molding according to claim, characterized in that: said water-soluble gelatin into a sol, silica sol, sodium alginate, agarose in.
  7. 7.根据权利要求5所述的陶瓷3D打印成型的方法,其特征在于:所述水溶性溶胶为琼脂糖。 7. The method of claim 5 3D printing ceramic molding as claimed in claim, characterized in that: said water-soluble agarose sol.
  8. 8.根据权利要求1所述的陶瓷3D打印成型的方法,其特征在于:所述喷头的喷孔直径为60 μ m〜5mm,料筒加热温度为50〜250°C,挤出后固化温度为_30°C〜120°C,陶瓷浆料挤出速度为0.5〜100mm/s,挤出丝与丝之间的间距为0.01〜10mm。 A ceramic molding 3D printing method according to claim 1, wherein: said nozzle orifice having a diameter of 60 μ m~5mm, barrel heating temperature of 50~250 ° C, a curing temperature after extrusion of _30 ° C~120 ° C, extrusion speed of the ceramic slurry 0.5~100mm / s, distance between the wire and the wire was extruded 0.01~10mm.
  9. 9.根据权利要求1或2所述的陶瓷3D打印成型的方法,其特征在于:所述的分散剂为氨水、四甲基氢氧化铵、柠檬酸盐、聚丙烯酸盐、六磷偏酸钠、聚醚酰亚胺、阿拉伯树胶、三聚磷酸钠、聚乙二醇、水玻璃、三乙醇胺、聚羧酸铵盐、聚乙烯亚胺(PEI)中的一种。 9. The method of claim 1 or 2 or 3D Printing ceramic molding according to claim, wherein: the dispersing agent is ammonia, tetramethylammonium hydroxide, citrates, polyacrylates, six partial sodium phosphate , polyetherimide, gum arabic, sodium tripolyphosphate, polyethylene glycol, sodium silicate, triethanolamine, ammonium salt of polycarboxylic acid, polyethylene imine (PEI) of one.
  10. 10.根据权利要求1或2所述的陶瓷3D打印成型的方法,其特征在于:所述的消泡剂为正辛醇、正丁醇、磷酸三丁酯、烷基硅油、乙二醇中的一种。 10. The method of claim 1 or 2 or 3D Printing ceramic molding as claimed in claim, wherein: said antifoaming agent is n-octanol, n-butanol, tributyl phosphate, alkyl silicone oil, ethylene glycol a.
CN 201410840236 2014-12-30 2014-12-30 3d printing ceramic molding method CN104526838B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410840236 CN104526838B (en) 2014-12-30 2014-12-30 3d printing ceramic molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410840236 CN104526838B (en) 2014-12-30 2014-12-30 3d printing ceramic molding method

Publications (2)

Publication Number Publication Date
CN104526838A true true CN104526838A (en) 2015-04-22
CN104526838B CN104526838B (en) 2017-01-11

Family

ID=52842563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410840236 CN104526838B (en) 2014-12-30 2014-12-30 3d printing ceramic molding method

Country Status (1)

Country Link
CN (1) CN104526838B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959594A (en) * 2015-07-10 2015-10-07 北京科技大学 Method for preparing high-solid-phase low-adherence magnetic alloy powder used for 3D printing
CN104997643A (en) * 2015-07-19 2015-10-28 谢宝军 Raw material for all-ceramic dental restoration system and rapid prototyping method of raw material
CN105198414A (en) * 2015-09-16 2015-12-30 东莞深圳清华大学研究院创新中心 Ceramic material for 3D printing and preparation method thereof
CN105269654A (en) * 2015-10-15 2016-01-27 宁波伏尔肯机械密封件制造有限公司 3D printing manufacturing method for silicon carbide reflector
CN105399428A (en) * 2015-12-09 2016-03-16 中国建筑材料科学研究总院 Ceramic slurry and ceramic material 3D printing method
CN105503146A (en) * 2015-12-24 2016-04-20 成都新柯力化工科技有限公司 Clay material for laser sintering 3D printing and preparation method of clay material
CN105582571A (en) * 2016-02-24 2016-05-18 浙江大学 Manufacturing method of high-strength bioactive porous scaffold
CN105599106A (en) * 2015-12-31 2016-05-25 华中科技大学 Micro-jetting bonding forming method of ceramic mould core blank
CN105645923A (en) * 2015-12-24 2016-06-08 成都新柯力化工科技有限公司 Filamentous clay material for 3D printing and preparation method thereof
CN105777180A (en) * 2016-03-01 2016-07-20 贵州师范大学 Method for preparing porous silicon nitride through three-dimensional printing
CN106064421A (en) * 2016-05-30 2016-11-02 清华大学 Wax spray rapid hardening principle-based complicated ceramic part forming method
CN106083074A (en) * 2016-06-02 2016-11-09 瑞泰科技股份有限公司 Al2O3-ZrO2 material for 3D printing and technology for producing special-shaped product with high thermal shock resistance
CN106435236A (en) * 2016-11-08 2017-02-22 西安铂力特激光成形技术有限公司 Preparation method for nickel-based high-temperature alloy workpiece
CN106584637A (en) * 2016-11-28 2017-04-26 华中科技大学 Forming device and method for additive manufacturing based on ceramic material
WO2017077024A1 (en) * 2015-11-06 2017-05-11 Technische Universität Bergakademie Freiberg Process for producing carbon-containing ceramic components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063874A (en) * 2001-08-27 2003-03-05 Toray Ind Inc Method for manufacturing ceramic spherical body
US20090160104A1 (en) * 2007-12-25 2009-06-25 Taiwan Textile Research Institute Manufacturing method of ceramic fibers
CN102627448A (en) * 2012-03-31 2012-08-08 江苏大学 Method for preparing ceramic fibers
CN104140259A (en) * 2014-07-30 2014-11-12 华中科技大学 Method for quickly manufacturing Li2TiO3 tritium breeding small balls
CN104193345A (en) * 2014-08-20 2014-12-10 中南大学 Method for preparing wave-absorbing ceramic component on basis of 3D printing technique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063874A (en) * 2001-08-27 2003-03-05 Toray Ind Inc Method for manufacturing ceramic spherical body
US20090160104A1 (en) * 2007-12-25 2009-06-25 Taiwan Textile Research Institute Manufacturing method of ceramic fibers
CN102627448A (en) * 2012-03-31 2012-08-08 江苏大学 Method for preparing ceramic fibers
CN104140259A (en) * 2014-07-30 2014-11-12 华中科技大学 Method for quickly manufacturing Li2TiO3 tritium breeding small balls
CN104193345A (en) * 2014-08-20 2014-12-10 中南大学 Method for preparing wave-absorbing ceramic component on basis of 3D printing technique

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959594A (en) * 2015-07-10 2015-10-07 北京科技大学 Method for preparing high-solid-phase low-adherence magnetic alloy powder used for 3D printing
CN104959594B (en) * 2015-07-10 2017-02-22 北京科技大学 3d printing method for preparing a high solids low viscosity phase of the magnetic alloy powder
CN104997643A (en) * 2015-07-19 2015-10-28 谢宝军 Raw material for all-ceramic dental restoration system and rapid prototyping method of raw material
CN105198414A (en) * 2015-09-16 2015-12-30 东莞深圳清华大学研究院创新中心 Ceramic material for 3D printing and preparation method thereof
CN105269654A (en) * 2015-10-15 2016-01-27 宁波伏尔肯机械密封件制造有限公司 3D printing manufacturing method for silicon carbide reflector
WO2017077024A1 (en) * 2015-11-06 2017-05-11 Technische Universität Bergakademie Freiberg Process for producing carbon-containing ceramic components
CN105399428A (en) * 2015-12-09 2016-03-16 中国建筑材料科学研究总院 Ceramic slurry and ceramic material 3D printing method
CN105503146A (en) * 2015-12-24 2016-04-20 成都新柯力化工科技有限公司 Clay material for laser sintering 3D printing and preparation method of clay material
CN105645923A (en) * 2015-12-24 2016-06-08 成都新柯力化工科技有限公司 Filamentous clay material for 3D printing and preparation method thereof
CN105599106A (en) * 2015-12-31 2016-05-25 华中科技大学 Micro-jetting bonding forming method of ceramic mould core blank
CN105582571A (en) * 2016-02-24 2016-05-18 浙江大学 Manufacturing method of high-strength bioactive porous scaffold
CN105777180A (en) * 2016-03-01 2016-07-20 贵州师范大学 Method for preparing porous silicon nitride through three-dimensional printing
CN106064421A (en) * 2016-05-30 2016-11-02 清华大学 Wax spray rapid hardening principle-based complicated ceramic part forming method
CN106083074A (en) * 2016-06-02 2016-11-09 瑞泰科技股份有限公司 Al2O3-ZrO2 material for 3D printing and technology for producing special-shaped product with high thermal shock resistance
CN106435236A (en) * 2016-11-08 2017-02-22 西安铂力特激光成形技术有限公司 Preparation method for nickel-based high-temperature alloy workpiece
CN106584637A (en) * 2016-11-28 2017-04-26 华中科技大学 Forming device and method for additive manufacturing based on ceramic material

Also Published As

Publication number Publication date Type
CN104526838B (en) 2017-01-11 grant

Similar Documents

Publication Publication Date Title
Travitzky et al. Additive manufacturing of ceramic‐based materials
Piotter et al. Injection molding of components for microsystems
Guo et al. Additive manufacturing: technology, applications and research needs
Yan et al. Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends
CN101462151A (en) Method for preparing TiAl-based alloy formwork by precision-investment casting
CN102335742A (en) Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body
Song et al. Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology
CN101862811A (en) Rapid investment casting method of complex thin-wall component
US20110048664A1 (en) Method for forming a cast article
US6609043B1 (en) Method and system for constructing a structural foam part
CN103992088A (en) Rapid-molding powder material for three-dimensional printing as well as preparation method and application thereof
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece
CN101301677A (en) Method for quickly and precisely casting complex parts
CN1850396A (en) Method for rapidly manufacturing injection-mould insert with follow-cooling passageway
US6365082B1 (en) Polymer gel molds
Singh Three dimensional printing for casting applications: A state of art review and future perspectives
CN102140246A (en) Method for preparing nylon powder for selective laser sintering
Bourell et al. Rapid Prototyping
CN1970202A (en) Method for selective laser sintering for quick and direct production of injection die
Gill et al. Comparative study of 3D printing technologies for rapid casting of aluminium alloy
CN103817767A (en) Method for manufacturing ceramic products with 3D printing technology
CN101992264A (en) Resin casting mould rapid manufacturing method
CN1693016A (en) Quick mfg. method for powder metallurgy formation
US20120193841A1 (en) Three-dimensional powder molding
US20060198916A1 (en) Method for producing ceramic objects

Legal Events

Date Code Title Description
C10 Entry into substantive examination
COR Change of bibliographic data
GR01