CN104496952B - 一种达格列净的合成方法 - Google Patents

一种达格列净的合成方法 Download PDF

Info

Publication number
CN104496952B
CN104496952B CN201410712567.1A CN201410712567A CN104496952B CN 104496952 B CN104496952 B CN 104496952B CN 201410712567 A CN201410712567 A CN 201410712567A CN 104496952 B CN104496952 B CN 104496952B
Authority
CN
China
Prior art keywords
reaction
dapagliflozin
chloro
crude product
glucopyranose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410712567.1A
Other languages
English (en)
Other versions
CN104496952A (zh
Inventor
陈新亮
姚志军
李国弢
刘建
马亚平
袁建成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybio Pharmaceutical Co Ltd
Original Assignee
Hybio Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybio Pharmaceutical Co Ltd filed Critical Hybio Pharmaceutical Co Ltd
Priority to CN201410712567.1A priority Critical patent/CN104496952B/zh
Publication of CN104496952A publication Critical patent/CN104496952A/zh
Application granted granted Critical
Publication of CN104496952B publication Critical patent/CN104496952B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/10Oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明涉及一种达格列净的合成方法,采用卤代苯衍生物和2,3,4,6,‑四乙酰氧基‑α‑D‑吡喃葡萄糖溴化物为原料,省去了原方法中的还原反应和乙酰基化反应,缩短了反应工艺步骤,提高了总收率。将苯锂试剂制备成反应较温和的铜锂试剂或格氏试剂中间体,减少了副产物的产生,反应温度控制在‑10℃以下即可。

Description

一种达格列净的合成方法
技术领域
本发明属于药物化学领域,具体而言,涉及一种达格列净的合成方法。
背景技术
达格列净(通用名:Dapagliflozin),是由Bristol-Myers Squibb和AstraZeneca公司研发的治疗II型糖尿病药物。该药物商品名:Farxiga(美国),Forxiga(欧盟)。达格列净是一种钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂,适用在有2型糖尿病成人中作为辅助饮食和运动改善血糖控制。其分子结构式如下:
达格列净的合成方法:现有的专利(US20040138439)报道的合成达格列净采用TMS保护的葡萄糖酸内酯和卤代苯衍生物为原料,反应过程中首先在正丁基锂的作用下将卤代苯的衍生物制备成活泼的苯锂试剂与葡萄糖酸内酯发生反应,将得到的中间体反应液直接用甲醇和甲磺酸溶液淬灭得到甲醚中间体;得到的甲醚中间体直接用三乙基硅烷和三氟化硼进行还原生成粗品,粗品用乙酸酐或L-脯氨酸衍生化后进行重结晶纯化,最后进行脱乙酰基和L-脯氨酸化得到目标产物。合成路线如下式,
目前合成达格列净的方法工艺繁琐,操作步骤多,收率比较低。采用葡萄糖酸内酯为原料,在后续提纯工艺中需要对粗品进行衍生化,衍生化增加了反应的操作步骤,不利于提高反应收率。在工艺中得到的苯锂衍生物反应活性高,需要控制较低的温度(在-40℃以下),反应过程中易产生杂质,不利于后续的产品提纯。提纯粗品工艺中需要使用到乙酸酐,乙酸酐为易制毒品,管理、采购的手续和过程麻烦。
其他的文献中对达格列净也有报道,例如,采用锌试剂与2,3,4,6,-四特戊酰基-α-D-吡喃葡萄糖溴化物反应可以得到达格列净(Org.Lett.,Vol.14,No.6,2012),但是,该方法中溴化锌吸湿性特别强,不利于放大和操作。并且该文献的报道中,实验规模较小,为实验研究水平,具有较大的局限性,而且使用的2,3,4,6,-四特戊酰基-α-D-吡喃葡萄糖溴化物比2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物更昂贵,收率也较低。
因此,在达格列净的工业化生产的领域内,需要更为简易方便的适合大规模生产的合成方法。
发明内容
针对上述问题,发明人采用卤代苯衍生物和2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物为原料,省去了原方法中的还原反应和乙酰基化反应,缩短了反应工艺步骤,提高了总收率。将苯锂试剂制备成反应较温和的铜锂试剂或格氏试剂中间体,减少了副产物的产生,反应温度控制在-10℃以下即可。合成路线中使用的原料为非管制物料,便于采购和管理,操作方便。通过处理可以将产物纯度提高至99.93%,杂质均控制在0.05%以下,实验规模可以达到1公斤。具体合成工艺路线如下:
具体而言,
本发明涉及一种达格列净的生产方法,包括如下步骤:
(1)以卤代苯衍生物和2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物为原料合成化合物1(2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷);
(2)脱除化合物1的乙酰基,制备获得达格列净粗品;
(3)将步骤(2)所得达格列净粗品和丙二醇、纯化水在甲基叔丁基醚重结晶制备达格列净精品。
步骤(1)中卤代苯衍生物和2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物的摩尔比为1~2:1;
步骤(1)所述的卤代苯衍生物优选为5-溴-2-氯-4-乙氧基二苯甲烷,2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物优选为2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖。
步骤(1)的反应步骤为,
①-80~-40℃下向5-溴-2-氯-4-乙氧基二苯甲烷中滴加正丁基锂(n-BuLi)(n-BuLi与5-溴-2-氯-4-乙氧基二苯甲烷的摩尔比为1~1.5:1),滴加完毕后继续保持温度反应1小时;
②-40~-10℃下加入碘化亚铜或溴化亚铜或溴化镁(碘化亚铜或溴化亚铜或溴化镁与5-溴-2-氯-4-乙氧基二苯甲烷的摩尔比为0.5~1:1),反应1小时,再向反应体系中慢慢滴加2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖的THF溶液,反应1小时,最后慢慢将反应体系的温度恢复至室温并继续反应3小时。
③冰浴条件下用饱和NaHCO3或氯化铵水溶液淬灭反应,乙酸乙酯萃取并用饱和食盐水洗涤有机相,干燥减压浓缩得棕色粗产物,无水乙醇、甲苯、乙酸乙酯和正己烷、重结晶得到化合物1(2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷)。
步骤(2)的反应步骤为,
①向化合物1固体中添加THF与甲醇,搅拌使得溶液呈浑浊状,
②向反应体系中滴加LiOH(LiOH与化合物1的摩尔比为0.5~1:1)的水溶液,滴加过程中控制体系的温度在0-5℃之间,随着LiOH的加入溶液逐渐变澄清,室温反应过夜,减压除去有机溶剂,乙酸乙酯萃取并依次用饱和NH4Cl和饱和食盐水洗涤有机相,无水硫酸钠干燥、减压浓缩得黄色泡沫状达格列净粗品固体。
步骤(3)的反应步骤为,
①将达格列净粗品、丙二醇、和纯化水(摩尔比1:1:1)在甲基叔丁基醚(用量为每mmol达格列净粗品添加2~3mL甲基叔丁基醚)混合快速搅拌并加热至回流保持30分钟以上,待粗品全部溶解后停止加热,置于室温环境下缓慢降温,室温静置过夜;
②减压过滤,滤饼0-5℃下用甲基叔丁基醚(MTBE)或无水乙醚洗涤,减压干燥得白色固体达格列净。
本发明是采用2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物为原料,经过亲核取代反应、去乙酰基反应和共晶反应三个反应过程及可得到目标化合物。
在亲核取代反应步骤中通过控制反应的温度和投料比,将苯卤代衍生制备成有机锂、有机锌或有机铜试剂进行亲核取代反应,该步骤反应收率高,得到的产物可以通过重结晶的方法进行提纯,纯度可以达到99%以上;
采用温和氢氧化锂的混合溶液进行去乙酰基化反应,可以十分方便的将乙酰基脱去,得到纯度99%以上的目标分子;
晶型制备采用丙二醇、达格列净和水按照1:1:1的摩尔比在甲基叔丁基醚(MTBE)中重结晶,得到的共晶物即为原料药的晶型;
该工艺的整个反应过程操作简便,中间体易纯化,反应中所用到的物料均容易得到。对乙酰基保护的中间体采用重结晶纯化提高纯度,然后进行脱去乙酰基反应实验,最后将脱去乙酰基后得到的目标分子与异丙醇和水的共晶可以得到达格列净API需要产物,且纯度在99.5%以上,最大单杂控制在0.05%以下。
具体实施方式
实施例1:化合物1的制备
在氩气保护的条件下,于1L三颈瓶中加入经干燥的四氢呋喃(THF)300mL,5-溴-2-氯-4-乙氧基二苯甲烷65.5g(200mmol),用丙酮/干冰浴将反应体系的温度控制在-78℃,慢慢滴加正丁基锂(n-BuLi)80mL(2.5mol/L,200mmol,1eq)滴加过程中控制反应体系的温度在-78℃以下,滴加完毕后继续保持-78℃反应1小时;
然后向反应体系中慢慢加入碘化亚铜19.1g(100mmol),将反应体系的温度控制在-40~-30℃反应1小时,再向反应体系中慢慢滴加2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖THF溶液(41.5g,100mmol,THF 100mL,0.5eq),加料过程中控制反应温度在-40~-30℃并保持该温度反应1小时,加料完毕后慢慢将反应体系的温度恢复至室温反应3小时;
反应停止后在冰浴冷却的条件下用饱和的NaHCO3溶液淬灭反应,乙酸乙酯萃取,合并有机相,饱和食盐水洗涤有机相,无水硫酸镁干燥减压浓缩得到棕色粗产物59.8g,300mL无水乙醇重结晶得到53.1g类白色固体(化合物1:2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷),HPLC检测纯度在98.5%以上,收率93%。
采用MS和核磁共振确认产物结构,[M+H]=577.0,1H-NMR(CDCl3,400M)ppm,δ=1.39(t,J=7.0Hz,3H),1.71(s,3H),1.99(s,3H),2.05(s,3H),2.07(s,3H),3.78~3,81(m,1H),3.96~4.07(m,4H),4.14(d,J=12Hz,1H),4.26(dd,J=4.7Hz,J=12Hz,1H),4.31(d,J=9.8Hz,1H),5.06(t,J=9.6Hz,1H),5.20(t,J=9.6Hz,1H),5.28(t,J=9.6Hz,1H),6.81(d,J=8.3Hz,2H),7.05(d,J=8.3Hz,2H),7.07(s,1H),7.19(d,J=8.0Hz,1H),7.29(d,J=8.0Hz,1H)。
13C-NMR(CDCl3,400M)ppm,δ=170.68(s),170.31(s),169.46(s),168.74(s),157.45(s),139.02(s),135.06(s),134.54(s),130.99(s),129.78(s),125.93(s),114.46(s),79.44(s),76.07(s),74.07(s),72.48(s),68.42(s),63.33(s),62.22(s),38.20(s),20.71(s),20.59(s),20.25(s),14.81(s).。
实施例2:化合物1的制备
在氩气保护的条件下,于1L三颈瓶中加入经干燥的THF 350mL,5-溴-2-氯-4-乙氧基二苯甲烷163.1g(500mmol),用丙酮/干冰浴将反应体系的温度控制在-60℃,慢慢滴加正丁基锂240mL(2.5mol/L,600mmol,1.2eq)滴加过程中控制反应体系的温度在-60℃以下,滴加完毕后继续保持-60℃反应1小时;
然后向反应体系中慢慢加入碘化亚铜24.2g(240mmol),将反应体系的温度控制在-30~-20℃反应1小时,再向反应体系中慢慢滴加2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖THF溶液(98.8g,240mmol,THF 150mL,1.0eq),加料过程中控制反应温度在-30~-20℃并保持该温度反应1小时,加料完毕后慢慢将反应体系的温度恢复至室温反应5小时;
反应停止后在冰浴冷却的条件下用饱和的氯化铵水溶液淬灭反应,乙酸乙酯萃取,依次用饱和碳酸氢钠和食盐水洗涤有机相,无水硫酸镁干燥减压浓缩得到棕色粗产物134.2g,400mL甲苯重结晶得到117.6g类白色固体(化合物1:2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷),HPLC检测纯度在98.5%以上,收率88%。
采用MS和核磁共振确认产物结构,[M+H]=577.0,1H-NMR(CDCl3,400M)ppm,δ=1.34(t,J=7.0Hz, 3H),1.67(s,3H),1.99(s,3H),2.01(s,3H),2.07(s,3H),3.73~3,76(m,1H),3.90~4.02(m,4H),4.10(d,J=12Hz,1H),4.21(dd,J=4.7Hz,J=12Hz,1H),4.26(d,J=9.8Hz,1H),5.01(t,J=9.6Hz,1H),5.15(t,J=9.6Hz,1H),5.23(t,J=9.6Hz,1H),6.75(d,J=8.3Hz,2H),6.99(d,J=8.3Hz,2H),7.02(s,1H),7.14(d,J=8.0Hz,1H),7.24(d,J=8.0Hz,1H)。
13C-NMR(CDCl3,400M)ppm,δ=170.58(s),170.21(s),169.37(s),168.65(s),157.43(s),139.98(s),135.00(s),134.45(s),130.89(s),129.70(s),125.85(s),114.39(s),79.34(s),76.01(s),74.02(s),72.38(s),68.32(s),63.23(s),62.12(s),38.10(s),20.61(s),20.49(s),20.15(s),14.71(s).。
实施例3:化合物1的制备
在氩气保护的条件下,于2L三颈瓶中加入经干燥的THF 800mL,5-碘-2-氯-4-乙氧基二苯甲烷99.2g(266mmol),用丙酮/干冰浴将反应体系的温度控制在-50℃,慢慢滴加正丁基锂160mL(2.5mol/L,400mmol,1.5eq)滴加过程中控制反应体系的温度在-50℃,滴加完毕后继续保持-50℃反应1小时;
然后向反应体系中慢慢加入溴化镁49.1g(100mmol),将反应体系的温度控制在-20~-10℃反应1小时,再向反应体系中慢慢滴加2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖THF溶液(98.5g,240mmol,THF 200mL,0.9eq),加料过程中控制反应温度在-10~0℃并保持该温度反应1小时,加料完毕后慢慢将反应体系的温度恢复至室温反应5小时;
反应停止后在冰浴冷却的条件下用饱和的氯化铵水溶液淬灭反应,乙酸乙酯萃取,依次用饱和碳酸氢钠和食盐水洗涤有机相,无水硫酸镁干燥减压浓缩得到棕色粗产物135.4g,400mL乙酸乙酯和正己烷重结晶得到109.5g类白色固体(化合物1:2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷),HPLC检测纯度在98.5%以上,收率78%。
采用MS和核磁共振确认产物结构,[M+H]=577.0,1H-NMR(CDCl3,400M)ppm,[M+H]=577.3,1H-NMR(CDCl3,400M)ppm,δ=1.36(t,J=7.0Hz,3H),1.69(s,3H),2.01(s,3H),2.03(s,3H),2.09(s,3H),3.74~3,77(m,1H),3.91~4.03(m,4H),4.13(d,J=12Hz,1H),4.24(dd,J=4.7Hz,J=12Hz,1H),4.28(d,J=9.8Hz,1H),5.03(t,J=9.6Hz,1H),5.17(t,J=9.6Hz,1H),5.25(t,J=9.6Hz,1H),6.77(d,J=8.3Hz,2H),7.01(d,J=8.3Hz,2H),7.02(s,1H),7.12(d,J=8.0Hz,1H),7.26(d,J=8.0Hz,1H)。
13C-NMR(CDCl3,400M)ppm,δ=170.63(s),170.25(s),169.42(s),168.70(s),157.48(s),140.03(s),135.03(s),134.50(s),130.93(s),129.75(s),125.95(s),114.44(s),79.39(s),76.06(s),74.07(s),72.43(s),68.37(s),63.28(s),62.17(s),38.15(s),20.66(s),20.55(s),20.19(s),14.76(s).。
实施例4:化合物1的制备
在氩气保护的条件下,于10L反应釜中加入经干燥的THF 6.5L,5-溴-2-氯-4-乙氧基二苯甲烷626.2g(1.923mol),用冷却液将反应体系的温度控制在-40℃,在氩气保护的条件下慢慢加入正丁基锂850mL(2.5mol/L,2.12mol,1.1eq)滴加过程中控制反应体系的温度在-40℃,滴加完毕后继续保持-40℃反应1小时;
然后向反应体系中慢慢加入溴化亚铜136.6g(0.952mol),将反应体系的温度控制在-30~-20℃反应1小时,再向反应体系中慢慢滴加2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖THF溶液(391.5g,0.952mol,THF 150mL,1.0eq),加料过程中控制反应温度在-30~-20℃并保持该温度反应1小时,加料完毕后慢慢将反应体系的温度恢复至室温反应5小时;
反应停止后在冰浴冷却的条件下用饱和的氯化铵水溶液淬灭反应,乙酸乙酯萃取,依次用饱和碳酸氢钠和食盐水洗涤有机相,无水硫酸镁干燥减压浓缩得到棕色粗产物551.8g,3.3L无水乙醇重结晶得到502g类白色固体(化合物1),HPLC检测纯度在98.5%以上,收率91%。
采用MS和核磁共振确认产物结构,[M+H]=577.0,1H-NMR(CDCl3,400M)ppm,δ=1.34(t,J=7.0Hz,3H),1.67(s,3H),1.99(s,3H),2.01(s,3H),2.07(s,3H),3.73~3,76(m,1H),3.90~4.02(m,4H),4.10(d,J=12Hz,1H),4.21(dd,J=4.7Hz,J=12Hz,1H),4.26(d,J=9.8Hz,1H),5.01(t,J=9.6Hz,1H),5.15(t,J=9.6Hz,1H),5.23(t,J=9.6Hz,1H),6.75(d,J=8.3Hz,2H),6.99(d,J=8.3Hz,2H),7.02(s,1H),7.14(d,J=8.0Hz,1H),7.24(d,J=8.0Hz,1H)。
13C-NMR(CDCl3,400M)ppm,δ=170.58(s),170.21(s),169.37(s),168.65(s),157.43(s),139.98(s),135.00(s),134.45(s),130.89(s),129.70(s),125.85(s),114.39(s),79.34(s),76.01(s),74.02(s),72.38(s),68.32(s),63.23(s),62.12(s),38.10(s),20.61(s),20.49(s),20.15(s),14.71(s).。
实施例5:化合物2(达格列净粗品)的制备
将化合物1固体53.1g(90.3mmol)置于1L的圆底烧瓶中,往烧瓶中用300mL THF、200mL甲醇(MeOH),搅拌使得溶液呈浑浊状,然后向反应体系中滴加LiOH的水溶液100mL(含LiOH 1.1g,46mmol),滴加过程中控制体系的温度在0-5℃之间,随着LiOH的加入溶液逐渐变澄清,室温反应过夜。
随着LiOH的加入溶液逐渐变澄清,用HPLC检测原料的反应情况,当原料消耗完全且乙酰基全部脱除时停止反应,减压除去大部分有机溶剂,用乙酸乙酯萃取水层,合并有机相依次用饱和NH4Cl和食盐水洗涤,无水硫酸钠干燥,减压浓缩得黄色泡沫状固体(化合物2:达格列净粗品)35.9g,收率97%。
得到的化合物2经质谱和核磁共振氢谱确认产物结构。[M+H]=409.0,[2M+H]=817.08,1H-NMR(DMSO-d6-,400M)ppm,δ=7.39(d,J=8.2Hz,1H),7.35(s,1H),7.25(d,J=8.2Hz,1H),7.12(d,J =8.2Hz,2H),6.85(d,J=8.6Hz,2H),4.85-4.89(m,1H),4.09–3.92(m,5H),3.65-7.76(m,1H),3.53-3.63(m,1H),3.53–3.36(m,4H),3.23-3.33(m,3H),3.17(ddd,J=16.9,11.6,6.6Hz,3H),1.31(t,J=7.0Hz,3H).
实施例6:化合物2(达格列净粗品)的制备
于含有化合物1固体117.6g(201.4mmol)的烧瓶中加入400mL THF、200mL甲醇(MeOH),搅拌使得溶液呈浑浊状,然后向反应体系中滴加LiOH的水溶液100mL(含LiOH1.1g,46mmol),滴加过程中控制体系的温度在0-5℃之间,随着LiOH的加入溶液逐渐变澄清,室温反应过夜。
反应过程中用HPLC检测原料的反应情况,当原料消耗完全且乙酰基全部脱除时停止反应,减压除去大部分有机溶剂,然后乙酸乙酯萃取,有机相依次用饱和NaHCO3和食盐水洗涤、无水Na2SO4干燥,减压浓缩有机相得到黄色泡沫状固体78.8g(化合物2:达格列净粗品),收率96%。
得到的产物经质谱和核磁共振氢谱确认产物结构。[M+H]=409.0,[2M+H]=817.08,1H-NMR(DMSO-d6,400M)ppm,δ=7.41(d,J=8.2Hz,1H),7.37(s,1H),7.27(d,J=8.2Hz,1H),7.14(d,J=8.2Hz,2H),6.87(d,J=8.6Hz,2H),4.85-4.91(m,1H),4.09–3.94(m,5H),3.65-7.76(m,1H),3.53-3.63(m,1H),3.54–3.36(m,4H),3.25-3.35(m,3H),3.18(ddd,J=16.9,11.6,6.6Hz,3H),1.34(t,J=7.0Hz,3H).
实施例7:化合物2(达格列净粗品)的制备
将类白色化合物1固体109.5g(234.7mmol)置于2L的圆底烧瓶中,往烧瓶中用700mL THF、360mLMeOH,搅拌使得溶液呈浑浊状,然后向反应体系中滴加LiOH的水溶液240mL(含LiOH 5.6g,235mmol),滴加过程中控制体系的温度在0-5℃之间,随着LiOH的加入溶液逐渐变澄清,室温反应过夜。随着随着LiOH的加入溶液逐渐变澄清,用HPLC检测原料的反应情况,当原料消耗完全且乙酰基全部脱除时停止反应;
减压除去大部分有机溶剂,用乙酸乙酯萃取水层,合并有机相依次用饱和NH4Cl和食盐水洗涤,无水硫酸钠干燥,减压浓缩得黄色泡沫状固体80.2g(化合物2:达格列净粗品),收率96%。
得到的产物经质谱和核磁共振氢谱确认产物结构。[M+H]=409.0,[2M+H]=817.08,1H-NMR(DMSO-d6,400M)ppm,δ=7.36(d,J=8.2Hz,1H),7.32(s,1H),7.22(d,J=8.2Hz,1H),7.09(d,J=8.2Hz,2H),6.82(d,J=8.6Hz,2H),4.80-4.86(m,1H),4.04–3.89(m,5H),3.60-7.71(m,1H),3.48-3.58(m,1H),3.49–3.31(m,4H),3.20-3.30(m,3H),3.14(ddd,J=16.9,11.6,6.6Hz,3H),1.29(t,J=7.0Hz,3H).
实施例8:目标化合物(达格列净精品)的制备
将实施例5得到的达格列净粗品(90.3mmol)、丙二醇(6.9g,91mmol),甲基叔丁基醚300mL和纯化水1.63g加入到1L的圆底烧瓶中,快速搅拌并加热至回流保持30分钟以上,待粗品全部溶解后停止加热,置于室温环境下缓慢降温,室温静置过夜;
减压过滤,滤饼用0-5℃甲基叔丁基醚(MTBE)洗涤,减压干燥得白色固体(达格列净)37.73g,收率82%,纯度99.5%以上。
得到产品的结构通过TGA和核磁共振确认。1H-NMR(DMSO-d6,400M)ppm,δ=7.36(d,J=8.2Hz,1H),7.32(s,1H),7.22(d,J=8.2Hz,1H),7.09(d,J=8.2Hz,2H),6.82(d,J=8.6Hz,2H),4.86-4.98(m,2H),4.80-4.86(m,1H),4.32-4.53(m,3H),4.04–3.89(m,5H),3.60-7.71(m,1H),3.48-3.58(m,1H),3.49–3.31(m,4H),3.20-3.30(m,3H),3.14(ddd,J=16.9,11.6,6.6Hz,3H),1.29(t,J=7.0Hz,3H),0.99(dd,J=6.2,2.0Hz,4H).
13C-NMR(DMSO-d6,400M)ppm,δ=157.36(s),144.14(s),138.28(s),132.38(s),131.67(s),131.27(s),130.04(s),129.13(s),127.82(s),114.74(s),81.68(s),81.17(s),78.76(s),75.17(s),70.75(s),67.73(s),67.67(s),63.34(s),61.81(s),20.46(s),15.15(s)。
实施例9:目标化合物(达格列净精品)的制备
将实施例6得到的达格列净粗品(201.4mmol)、丙二醇(15.5g,202mmol),甲基叔丁基醚400mL和纯化水3.7g加入到1L的圆底烧瓶中,快速搅拌并加热至回流保持30分钟以上,待粗品全部溶解后停止加热,置于室温环境下缓慢降温,室温静置过夜;
减压过滤,滤饼用0-5℃MTBE洗涤,减压干燥得白色固体86.62g,收率88%,纯度99.5%以上。
得到产品的结构通过TGA和核磁共振确认。1H-NMR(DMSO-d6,400M)ppm,δ=7.34(d,J=8.2Hz,1H),7.30(s,1H),7.20(d,J=8.2Hz,1H),7.07(d,J=8.2Hz,2H),6.80(d,J=8.6Hz,2H),4.86-4.96(m,2H),4.80-4.84(m,1H),4.30-4.51(m,3H),4.02–3.87(m,5H),3.58-7.69(m,1H),3.46-3.56(m,1H),3.47–3.29(m,4H),3.18-3.28(m,3H),3.12(ddd,J=16.9,11.6,6.6Hz,3H),1.27(t,J=7.0Hz,3H),0.97(dd,J=6.2,2.0Hz,4H).
13C-NMR(DMSO-d6,400M)ppm,δ=157.30(s),144.08(s),138.22(s),132.32(s),131.61(s),131.21(s),129.98(s),129.07(s),127.75(s),114.68(s),81.62(s),81.11(s),78.70(s),75.11(s),70.69(s),67.67(s),67.61(s),63.28(s),61.75(s),20.40(s),15.09(s)。
实施例10:目标化合物(达格列净精品)的制备
将实施例7得到的达格列净粗品(234.7mmol)、丙二醇(18.1g,235mmol),无水乙醚700mL和纯化水4.3g加入到2L的圆底烧瓶中,快速搅拌并加热至回流保持30分钟以上,待粗品全部溶解后停止加热,置于室温环境下缓慢降温,室温静置过夜;
减压过滤,滤饼用0-5℃无水乙醚洗涤,减压干燥得白色固体95.47g,收率84.8,HPLC纯度99.5%以上。
得到产品的结构通过TGA和核磁共振确认。1H-NMR(DMSO-d6,400M)ppm,δ=7.36(d,J=8.2Hz,1H),7.32(s,1H),7.22(d,J=8.2Hz,1H),7.09(d,J=8.2Hz,2H),6.82(d,J=8.6Hz,2H),4.86-4.98(m,2H),4.80-4.86(m,1H),4.32-4.53(m,3H),4.04–3.89(m,5H),3.60-7.71(m,1H),3.48-3.58(m,1H),3.49–3.31(m,4H),3.20-3.30(m,3H),3.14(ddd,J=16.9,11.6,6.6Hz,3H),1.29(t,J=7.0Hz,3H),0.99(dd,J=6.2,2.0Hz,4H).
13C-NMR(DMSO-d6,400M)ppm,δ=157.32(s),144.10(s),138.24(s),132.34(s),131.63(s),131.23(s),130.01(s),129.09(s),127.78(s),114.70(s),81.64(s),81.13(s),78.72(s),75.13(s),70.71(s),67.70(s),67.63(s),63.31(s),61.77(s),20.42(s),15.11(s)。
最后需要说明的是,以上实施例仅用于帮助本领域技术人员理解本发明的实质,并不用作对本发明保护范围的限定。

Claims (9)

1.一种达格列净丙二醇一水合物的生产方法,包括如下步骤:
(1)以卤代苯衍生物和2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物为原料合成2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷;
(2)脱除2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷的乙酰基,制备获得达格列净粗品;
(3)将步骤(2)所得达格列净粗品和丙二醇、纯化水在甲基叔丁基醚重结晶制备达格列净丙二醇一水合物;
其中,步骤(1)中,所述的卤代苯衍生物为5-溴-2-氯-4-乙氧基二苯甲烷,2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物为2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖;
步骤(1)的反应步骤为,
①-80~-40℃下向5-溴-2-氯-4-乙氧基二苯甲烷中滴加正丁基锂,滴加完毕后继续保持温度反应1小时;
②-40~-10℃下加入碘化亚铜或溴化亚铜或溴化镁,反应1小时,再向反应体系中慢慢滴加2,3,4,6-四-O-乙酰基-α-D-吡喃溴代葡萄糖的THF溶液,反应1小时,最后慢慢将反应体系的温度恢复至室温并继续反应3小时;
③冰浴条件下用饱和NaHCO3或氯化铵水溶液淬灭反应,乙酸乙酯萃取并用饱和食盐水洗涤有机相,干燥减压浓缩得棕色粗产物,无水乙醇、甲苯、乙酸乙酯或正己烷重结晶得到2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷白色固体。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,
所述的卤代苯衍生物和2,3,4,6,-四乙酰氧基-α-D-吡喃葡萄糖溴化物的摩尔比为1~2:1。
3.根据权利要求1或2任一所述的方法,其特征在于,步骤(1)的①中,正丁基锂与5-溴-2-氯-4-乙氧基二苯甲烷的摩尔比为1~1.5:1;
②中,碘化亚铜或溴化亚铜或溴化镁与5-溴-2-氯-4-乙氧基二苯甲烷的摩尔比为0.5~1:1。
4.根据权利要求1所述的方法,其特征在于,步骤(2)的反应步骤为,
①向2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷固体中添加THF与甲醇,搅拌使得溶液呈浑浊状,
②向反应体系中滴加LiOH的水溶液,滴加过程中控制体系的温度在0-5℃之间,随着LiOH的加入溶液逐渐变澄清,室温反应过夜,减压除去有机溶剂,乙酸乙酯萃取并依次用饱和NH4Cl和饱和食盐水洗涤有机相,无水硫酸钠干燥、减压浓缩得黄色泡沫状达格列净粗品固体。
5.根据权利要求4所述的方法,其特征在于,步骤(2)的②中LiOH与2-氯-5-(2,3,4,6-四-O-乙酰基-β-D-吡喃葡萄糖-1-基)-4’-乙氧基二苯甲烷的摩尔比为0.5~1:1。
6.根据权利要求1所述的方法,其特征在于,步骤(3)的反应步骤为,
①将达格列净粗品、丙二醇、和纯化水在甲基叔丁基醚混合快速搅拌并加热至回流保持30分钟以上,待粗品全部溶解后停止加热,置于室温环境下缓慢降温,室温静置过夜;
②减压过滤,滤饼0-5℃下用甲基叔丁基醚或无水乙醚洗涤,减压干燥得白色固体达格列净丙二醇一水合物。
7.根据权利要求6所述的方法,其特征在于,步骤(3)的①中,甲基叔丁基醚的用量为每mmol达格列净粗品添加2~3mL甲基叔丁基醚。
8.根据权利要求6所述的方法,其特征在于,步骤(3)的①中,达格列净粗品、丙二醇、和纯化水摩尔比为1:1:1。
9.根据权利要求1、2、4、5、6、7、8任一所述的方法,其特征在于,所述的方法获得的达格列净丙二醇一水合物纯度99%以上,最大单杂0.05%以下。
CN201410712567.1A 2014-11-28 2014-11-28 一种达格列净的合成方法 Expired - Fee Related CN104496952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410712567.1A CN104496952B (zh) 2014-11-28 2014-11-28 一种达格列净的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410712567.1A CN104496952B (zh) 2014-11-28 2014-11-28 一种达格列净的合成方法

Publications (2)

Publication Number Publication Date
CN104496952A CN104496952A (zh) 2015-04-08
CN104496952B true CN104496952B (zh) 2017-04-19

Family

ID=52938426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410712567.1A Expired - Fee Related CN104496952B (zh) 2014-11-28 2014-11-28 一种达格列净的合成方法

Country Status (1)

Country Link
CN (1) CN104496952B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294624B (zh) * 2015-11-16 2018-01-12 山东罗欣药业集团股份有限公司 一种达格列净的制备方法
CN107304194A (zh) * 2016-04-20 2017-10-31 扬子江药业集团上海海尼药业有限公司 制备达格列净的方法
CN105859672A (zh) * 2016-04-25 2016-08-17 中国药科大学 一种达格列净的合成方法
CN107445932A (zh) * 2016-05-30 2017-12-08 上海医药工业研究院 达格列净共晶物的制备工艺
CN107488156B (zh) * 2017-09-04 2020-05-26 上海现代制药股份有限公司 一种无定型葡萄糖醇的合成方法
CN108516966A (zh) * 2017-10-19 2018-09-11 浙江海正药业股份有限公司 达格列净的晶型及其制备方法和用途
CN109705075B (zh) * 2018-12-13 2022-12-23 苏中药业集团股份有限公司 一种达格列净的纯化方法
CN110407891A (zh) * 2019-07-31 2019-11-05 扬子江药业集团北京海燕药业有限公司 一种sglt-2抑制剂中间体的精制方法
CN113620986B (zh) * 2021-08-17 2024-01-02 沧州那瑞化学科技有限公司 用D-葡萄糖酸-δ-内酯合成治疗糖尿病药物的方法
CN114716425B (zh) * 2022-04-11 2023-09-01 沧州那瑞化学科技有限公司 芳香杂环取代亚甲基的化合物的合成方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515117B2 (en) * 1999-10-12 2003-02-04 Bristol-Myers Squibb Company C-aryl glucoside SGLT2 inhibitors and method
CN101260130A (zh) * 2003-01-03 2008-09-10 布里斯托尔-迈尔斯斯奎布公司 制备c-芳基葡糖苷sglt2抑制剂的方法
US7919598B2 (en) * 2006-06-28 2011-04-05 Bristol-Myers Squibb Company Crystal structures of SGLT2 inhibitors and processes for preparing same
TW200904405A (en) * 2007-03-22 2009-02-01 Bristol Myers Squibb Co Pharmaceutical formulations containing an SGLT2 inhibitor
CN106075451A (zh) * 2009-05-27 2016-11-09 阿斯利康(瑞典)有限公司 使用sglt2抑制剂及其组合物在对先前用其它抗糖尿病药进行的治疗具有耐受的患者中治疗ii型糖尿病的方法
CN104059041B (zh) * 2013-03-20 2018-10-16 上海方楠生物科技有限公司 抗糖尿病药物达格列净中间体的制备方法

Also Published As

Publication number Publication date
CN104496952A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104496952B (zh) 一种达格列净的合成方法
CN106810426B (zh) 一种大麻二酚的合成方法
CN105330609B (zh) 一种制备lcz696的方法
CN110845502A (zh) 一种7-溴吡咯并[2,1-f][1,2,4]噻嗪-4-胺的制备方法
US20160318859A1 (en) Florfenicol synthesizing method
SG187140A1 (en) Process for preparing aminobenzoylbenzofuran derivatives
TW201335175A (zh) β-C-芳基葡萄糖苷之製備方法
CN110698467B (zh) 恩格列净的合成方法
CN112062712A (zh) 一种2-(5-溴-3-甲基吡啶-2-基)乙酸盐酸盐的制备方法
CN109180662A (zh) 一种卡格列净的制备方法
CN106565646A (zh) 一种美白剂原料的合成方法
CN108530408A (zh) 制备达格列净的方法
CN111559967B (zh) 一种4-氨基-2-羟基-3-异丙氧基苯甲酸的合成方法
CN107540685B (zh) 一种Sotagliflozin的制备方法及其中间体
CN108610316B (zh) 达格列净的制备方法
CN106317024A (zh) 克唑替尼中间体、制备方法以及克唑替尼的制备方法
CN103113379A (zh) 阿塞那平马来酸盐的合成工艺
CN113185508A (zh) 一种制备高纯度高收率鲁拉西酮的方法
CN109553649B (zh) 一种卡格列净中间体的制备方法
CN110724123B (zh) 一种卡格列净中间体的合成方法
CN108997236B (zh) 一种阿那曲唑杂质的制备方法
CN109265385B (zh) 一种手性催化剂的合成工艺
CN110642722A (zh) 一种制备n,n-四甲基癸二胺的方法
CN109553609B (zh) 一种卡格列净的制备方法
CN113816837A (zh) 一种4,4`-二甲氧基三苯基氯甲烷的合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170419

Termination date: 20201128